

Licence de mathématiques, 2^e année Algèbre Linéaire 2

			•		
I)	evc	\Ir	a	ıa	maisor
\boldsymbol{L}	CVC	,,,	a	ıa	maisor

à rendre le jeudi 1^{er} octobre 2015

Aix-Montperrin
Luminy

☐ Saint-Jérôme ☐ Château-Gombert

Enseignants : M.H. Nicole, P. Mercat

Vous porterez une attention particulière sur la rédaction.

Exercice I. Dans \mathbb{R}^4 , on considère le plan vectoriel \mathcal{P}_1 d'équation

$$x - 2y - z + t = z - t = 0.$$

- 1. Vérifier que \mathcal{P}_1 est bien un plan (c'est-à-dire de dimension 2) et donner une base de ce plan.
- **2.** Montrer que les vecteurs u = (1,0,2,0) et v = (-1,1,-1,1) ne sont pas colinéaires.
- 3. Donner une équation cartésienne du plan vectoriel \mathcal{P}_2 engendré par u et v.
- 4. Les plans vectoriels \mathcal{P}_1 et \mathcal{P}_2 sont-ils supplémentaires?

Exercice II. 1. Dans le plan euclidien, tracer le vecteur u=(1,3) et la droite \mathcal{D} d'équation x-2y=0.

- 2. Tracer l'image p(u) du vecteur u par la projection orthogonale p sur la droite \mathcal{D} .
- **3.** Tracer l'image s(u) du vecteur u par la symétrie orthogonale p sur la droite \mathcal{D} .
- **4.** Pour un vecteur quelconque v = (x, y), exprimer le vecteur (x', y') = v' = p(v) en fonction de x et y.
- **5.** Même question pour la symétrie orthogonale.