MA301 Analyse II

Suites de fonctions TD 3

Exercice 1.

On considère les suites de fonctions définies sur [0,1] par

1.
$$f_n(x) = x^n$$

2.
$$g_n(x) = \begin{cases} 1 - nx, & \text{si } 0 \le x \le \frac{1}{n}, \\ 0, & \text{si } \frac{1}{n} \le x \le 1, \end{cases}$$

1.
$$f_n(x) = x^n$$
,
2. $g_n(x) = \begin{cases} 1 - nx, & \text{si } 0 \le x \le \frac{1}{n}, \\ 0, & \text{si } \frac{1}{n} \le x \le 1, \end{cases}$
3. $h_n(x) = \begin{cases} 2n^3x, & \text{si } 0 \le x \le \frac{1}{2n}, \\ -2n^3x + 2n^2, & \text{si } \frac{1}{2n} \le x \le \frac{1}{n}, \\ 0, & \text{si } \frac{1}{n} \le x \le 1. \end{cases}$

Dans chacun des cas, étudier la convergence simple et la convergence uniforme des suites de fonctions sur

Exercice 2.

- La suite de fonctions (f_n) est définie $sur \] \infty, + \infty [$ par son terme général $f_n(x) = \frac{x^{2n}}{1 + x^{2n}}.$ (a) Montrer que cette suite converge simplement vers une fonction f que l'on déterminera.
 (b) Montrer que la convergence est uniforme sur tous les intervalles du type [a,b] avec |a| < 1 et |b| < 1, ou bien a > 1, ou bien b < -1.
- (c) Montrer qu'il n'y a pas convergence uniforme sur des intervalles qui ne sont pas de l'un de ces trois

Exercice 3.

Etudier la convergence simple et la convergence uniforme de la suite de fonctions définies sur [0,1] par $f_n(x) = x^n \sin(\pi x).$

Exercice 4.

Etudier la convergence simple et la convergence uniforme de la suite de fonctions $f_n(x) = \frac{nx^3}{1+nx}$ définies sur l'intervalle [0, 100]. Que dire de cette convergence sur l'intervalle $[0, +\infty[$?

1

Exercice 5.

Soit
$$(f_n)_n$$
 définie $sur \mathbb{R}^+$ par $f_n(x) = \begin{cases} \left(1 - \frac{x}{n}\right)^n & si \ x \in [0, n] \\ 0 & si \ x > n \end{cases}$

Montrer que $(f_n)_n$ converge simplement, puis uniformément sur \mathbb{R}^+ .

Exercice 6.

On donne la suite de fonctions $f_n(x) = \frac{\sin(nx)}{nx}$, $x \in]0,1[$.

Etudier la convergence simple et la convergence uniforme de cette suite sur l'intervalle de définition.

Exercice 7.

Déterminer les domaines de convergence simple et de convergence uniforme des quatres suites de fonctions dont les termes généraux sont donnés par

aont les termes generaux so
$$1. \ f_n(x) = 1 - \frac{1}{nx^2 + 1},$$

$$2. \ g_n(x) = \frac{n}{n^3x^2 + 1},$$

$$3. \ h_n(x) = \frac{n^2x}{n^3x^2 + 1},$$

$$4. \ i_n(x) = x^n(1 - x^n).$$

2.
$$g_n(x) = \frac{n}{n^3 x^2 + 1}$$

3.
$$h_n(x) = \frac{n^2x}{n^3x^2 + 1}$$

4.
$$i_n(x) = x^n(1-x^n)$$
.

Exercice 8.

Déterminer la limite suivante : $\lim_{n \to +\infty} \int_0^1 \frac{ne^x}{n+x} dx$.

Exercice 9.

Soit la suite de fonctions (f_n) définies sur $[0, +\infty[$ par

$$f_n(x) = \frac{n}{(x-n)^2 + n^2}$$

(a) Montrer que pour tout a ≥ 0, la suite (f_n) converge uniformément sur [a, +∞[vers une fonction f que l'on déterminera.
(b) Montrer que les deux intégrales généralisées ∫₀^{+∞} f_n(x)dx et ∫₀^{+∞} f(x)dx convergent et que pourtant, on ne peut pas passer aux limites :

$$\lim_{n \to +\infty} \int_0^{+\infty} f_n(x) dx \neq \int_0^{+\infty} \lim_{n \to +\infty} f_n(x) dx.$$

Exercice 10.

Soit α un nombre réel positif ou nul, et (f_n) la suite de fonctions définies sur [0,1] par $f_n(x) = \frac{nx}{1+n^2x^{\alpha}}$.

(a) Déterminer les valeurs de α pour lesquelles la suite (f_n) converge uniformément sur [0,1].

(b) Dans les deux cas $\alpha = 2$ et $\alpha = 4$, étudier la convergence de la suite de fonctions de terme général