Université d'Aix-Marseille PEIP Semestre 3 2013-2014

UE Analyse et Calcul intégral

Partiel 2 - Durée : 2 heures

Pas de documents - Pas de calculatrice - Pas de portable

Toute réponse doit être justifiée, la clarté et la précision de la rédaction seront des éléments importants d'appréciation de la copie.

EXERCICE 1

- 1. Déterminer le rayon de convergence de la série entière $\sum_{n\in\mathbb{N}} \frac{(n+1)^{\alpha}}{n!} z^n$ (avec $\alpha\in\mathbb{R}$)
- 2. (a) Rappeler le développement en série entière de la fonction f définie par $f(x) = e^x$. Quel est son rayon de convergence ?
 - (b) Déterminer le rayon de convergence puis la somme de la série entière $\sum_{n\in\mathbb{N}} \frac{(n+1)}{n!} x^n$ de la variable réelle x.
- 3. Déterminer le rayon de convergence puis la somme de la série entière $\sum_{n=1}^{\infty} a_n x^n$ de la variable réelle x où la suite $(a_n)_n$ est définie par :

$$\forall n \in \mathbb{N} \quad a_{2n} = \frac{1}{2^n} \quad a_{2n+1} = (-1)^n$$

- 4. (a) Soient les séries entières $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$ de rayons de convergence respectifs R_1 et R_2 . On suppose que $|a_n| \sim_{+\infty} |b_n|$. Montrer alors que $R_1 = R_2$.
 - (b) Utiliser le résultat de **a**) pour déterminer le rayon de convergence de la série entière $\sum_{n\in\mathbb{N}^*} \ln\left(1+\sin\left(\frac{1}{n}\right)\right) z^n$.

Tournez la page SVP

EXERCICE 2

Soit l'équation différentielle (E) définie par :

(E)
$$x^2y'' + x(x+1)y' - y = 0$$

- 1. On veut déterminer les solutions de (E) développables en série entière sous la forme $y(x) = \sum_{n=0}^{+\infty} a_n x^n$, série de rayon de convergence R > 0. Déterminer le rapport $\frac{a_n}{a_{n-1}}$ pour tout $n \ge 2$ et en déduire R.
- 2. Déterminer le coefficient a_0 puis les coefficients a_n en fonction de a_1 pour tout $n \geq 2$.
- 3. Exprimer la somme de la série entière y(x) à l'aide de la fonction exponentielle.

On considère la série de fonctions $\sum_{n\geq 1} f_n(x)$ où $\forall x>0$ $f_n(x)=\frac{1}{n+n^2x}$.

- 1. Montrer que cette série de fonctions converge simplement sur $]0, +\infty[$.
- 2. On notera S la fonction somme de cette série. Montrer que S est de classe C^1 sur $[a, +\infty[$ pour tout a > 0. En déduire que S est de classe \mathcal{C}^1 sur $]0, +\infty[$.
- 3. Etudier la monotonie de S.
- 4. Etudier la limite en $+\infty$ de S.
- 5. Déterminer un équivalent de S en $+\infty$.