TD 4: Intégrales

Intégrales classiques

Exercice 1: a) Soit $f = \chi_Q$ i.e, f(x) = 1 si $x \in \mathbb{Q}$ et f(x) = 0 sinon. Déterminer, pour toute subdivision $0 = x_0 < x_1 < \ldots < x_{N-1} < x_N = 1$, les valeurs $M_i = \sup f|_{]x_i, x_{i+1}[}$ et $m_i = \inf f|_{]x_i, x_{i+1}[}$, $i = 0, \ldots, N$.

b) En déduire que f n'est pas Riemann-intégrable sur [0,1].

Exercice 2: Donner un exemple de fonction bornée et continue sur]0,1], et non prolongeable par continuité en 0. Montrer qu'une telle fonction (avec une valeur attribuée arbitraire en 0) est Riemann-intégrable sur [0,1].

Exercice 3: En utilisant une somme de Riemann, déterminer $\lim_{n\to+\infty} S_n$ où

$$S_n = \frac{2\pi}{n} \sum_{k=0}^n \cos^2\left(\frac{2k\pi}{n}\right).$$

Exercice 4: a) Soit $f \in C^1([a,b])$. Montrer: $\int_a^b f(x)e^{i\lambda x}dx \to 0$ quand $\lambda \to \pm \infty$.

b) Recommencer avec l'hypothèse que f en escalier sur [a,b]. En déduire que pour toute fonction f Riemann–intégrable sur [a,b], on a

$$\int_a^b f(x)e^{i\lambda x}dx \to 0 \quad \text{quand } \lambda \to \pm \infty.$$

Exercice 5: En utilisant $\ln(1+x) = \int_0^x dt/(1+t)$, obtenir le développement en série entière

$$\ln(1+x) = \sum_{n\geq 1} \frac{(-1)^{n-1}x^n}{n}, \quad |x| < 1.$$

Exercice 6: Déterminer pour a > 1 et $z \in \mathbb{C}$ tel que $|z| = 1, z \neq 1$, l'intégrale complexe

$$I(a) = \int_{t=1}^{a} \frac{dt}{t(t-z)}.$$

Déterminer la limite de I(a) quand $a \to +\infty$.

Intégrales Généralisées

Exercice 7: Soit f définie sur $[a, +\infty[$, localement intégrable, positive et décroissante. Montrer que f est intégrable sur $[a, +\infty[$ si et seulement si la série $\sum_{n\geq a} f(n)$ est convergente.

Exercice 8: Soit $I(z) = \int_0^\infty x^z e^{-x} dx$, $z \in \mathbb{C}$. Déterminer l'ensemble de définition de I. Montrer que I(n) = n! pour tout entier n.

Exercice 9: Donner une minoration de $\int_{k\pi}^{k\pi+\pi}(|\sin x|/x)dx$, $k\in\mathbb{N}$. En déduire que l'intégrale généralisée $\int_0^\infty(\sin x/x)dx$ n'est pas absolument convergente. Montrer qu'elle est semi–convergente.

Exercice 10: Déterminer la convergence simple ou absolue des intégrales généralisées suivantes, où $a \ge 0$ est un paramètre :

a)
$$\int_0^{\pi} x^{-a} \sin x dx,$$

b)
$$\int_{-\pi}^{+\infty} x^{-a} \sin x dx$$
 (pour la convergence simple, penser à des intégrations par parties).

Intégrales dépendant d'un paramètre

Exercice 11: Soit
$$F(x) = \int_0^1 \frac{dt}{(t^2+1)(t^2+x^2)}$$
.

- 1) Montrer que F(x) est continue sur \mathbb{R}_{+}^{*} .
- 2) Montrer que pour $x \neq 1$, $F(x) = \frac{1}{x^2 1} \left(\frac{\pi}{4} \frac{1}{x} \arctan \frac{1}{x} \right)$.
- 3) En déduire que $F(1) = \pi/8 + 1/4$.

Exercice 12: Soit
$$F_n(x) = \int_0^1 \frac{dt}{(t^2 + x^2)^n}, n \ge 1, x \ne 0.$$

- 1) Montrer que F_n est continue et dérivable sur \mathbb{R}^* .
- 2) Donner une expression de $F'_n(x)$ et en déduire qu'on peut calculer les F_n par récurrence.

- Exercice 13: On pose $F(k) = \int_{-\infty}^{+\infty} \exp(-x^2 + ikx) dx$, $k \in \mathbb{R}$. 1) Montrer que F(k) est continue et dérivable sur \mathbb{R} et que F'(k) = -(k/2)F(k).
 - 2) En déduire F(k), en admettant que $\int_{\mathbb{R}} \exp(-x^2) dx = \pi$.

Exercice 14: Soit $f(x) = \int_{-\pi/2}^{\pi/2} e^{-x \sin t} dt$.

- 1) Montrer que f est continue sur \mathbb{R} .
- 2) Montrer que f est dérivable deux fois sur \mathbb{R} et donner des expressions intégrales de f' et de f''.
 - 3) Montrer que xf'' + f' xf = 0 (faire une intégration par parties dans l'expression de f).

Exercice 15: Soit $f(x) = \int_0^{\pi} \sqrt{|1 - x \cos t|} dt$.

- 1) Montrer que f est continue sur \mathbb{R} .
- 2) Etudier la parité de f.
- 3) Calculer f'(x) sur]-1,1[. (On pourra poser $y=\tan(\frac{t}{2})$).
- 4) Montrer que f est deux fois dérivable sur]-1,1[et qu'elle satisfait

$$4x(x^{2}-1)f''(x) + 4(x^{2}-1)f'(x) - xf(x) = \int_{0}^{\pi} R(t,x)dt, \text{ où } R(t,x) = \frac{\partial}{\partial t} \left(\frac{2\sin t}{\sqrt{|1-x\cos t|}} \right).$$

5) En déduire que f satisfait l'équation différentielle

$$4x(x^2 - 1)y''(x) + 4(x^2 - 1)y'(x) - xy(x) = 0.$$

- Exercice 16 : Soit $F(x) = \int_{-\pi}^{\pi} \ln(1 + x^2 2x \cos t) dt$.

 1) Déterminer le domaine de définition de F puis montrer que F est continue et dérivable sur I =]-1,1[.
 - 2) Calculer F'(x) sur]-1,1[(on pourra poser $y=\tan(t/2)$) puis en déduire F(x) sur I.