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Abstract. —
We present a convenient and powerfull tool to describe sets like Rauzy fractals and

quasicrystals associated to substitutions. Using this tool, we give necessary and suffi-
cient conditions for a quasicrystal to come from substitutions. The proof is construc-
tive and allows us, among others, to construct substitutions having Rauzy fractals of
any shape.
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1. Introduction

Given a substitution, let’s say for example the Fibonnacci substitution :{
a 7→ ab

b 7→ a

we can look at a fixed point. Up to replace the substitution by a power, such a fixed
point always exists. Here, by iterating the letter a, we get the following fixed point :

abaababaabaababaababaabaababaabaababaaba...
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This infinite sequence has a lot of interesting properties in general. If we replace
letters by intervals of convenient lengths, we get a self-similar tiling of R+. Con-
venient lengths are given by the non-negative coefficients of a Perron eigenvector of

the incidence matrix M of the substitution. Here this matrix is M =

(
1 1

1 0

)
and(

1

β − 1

)
is an eigenvector for the Perron eigenvalue β, which is the golden number.

The set of points that appears at the boundaries of intervals in this self-similar tiling
are elements of Q(β), and this set of points have very strong properties, because it is
a non-periodic self-similar Meyer set. Here, we get the points

0, 1, β, β + 1, β + 2, 2β + 1, 2β + 2, 3β + 1, 3β + 2, 3β + 3, 4β + 2, 4β + 3, ...

To get this set of points, we start from 0 and read the fixed point : we add 1 each
time we read a letter a and we add β − 1 each time we read a letter b.

This set of points of Q(β) is described by the automaton of figure 1 below.

Figure 1. Automaton describing the quasicrystal associated to the
Fibonnacci substitution

a

0

b
1
0

The initial state of this automaton is the one labelled by letter ’a’, and the two
states ’a’ and ’b’ are final states. The language recognized by this automaton, defined
as the set of sequences of labels of paths from the initial state to a final state, is here
exactly the set of words over the alphabet {0, 1} that does not contain the subword
11.

The set of points of Q(β) described by such an automaton is the following :{∑n
k=0 akβ

k n ∈ N, a0a1...an labeling a path from state a
}

Such a description of the quasicrystal will appear to be very usefull in the following.
The self-similar tiling of R+ is obtained by taking the embedding of Q(β) in R

corresponding to the Perron eigenvalue of the incidence matrix M . If we look at the
others embeddings, corresponding to eigenvalues less than 1, we get a bounded set
whose adherence is called Rauzy fractal of the substitution. Here there is a unic such
embedding, which is a real one, corresponding to the root of x2−x−1 between −1 and
1. The Rauzy fractal is here the interval [−1, ϕ] of R where ϕ is the golden number
(i.e. greatest root of x2 − x− 1).

Here is a result from [MPP] that gives exactly which intervalle is a Rauzy fractal.
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Theorem 1.1 (MPP). — An intervalle [a, b] is the Rauzy fractal of a substitution
whose Perron number is a unit Pisot quadratic number if and only if we have

— it contains 0,
— a < b,
— and a, b ∈ Q(β).

In this article we generalize this result by replacing intervals by g-β-sets (see be-
low for a definition) which permits to describe conveniently every Rauzy fractal and
quasicrystal arising from substitutions.

TODO : Tell history about what is known, cite the numerous people involved in
such topic.

1.1. Organization of the paper. — This paper is organized as follow. The sec-
tion 2 gives the main definitions and main results. We define Rauzy fractals, qua-
sicrystals, cut-and-project sets, and we introduce g-β-sets which is the main tool of
this paper. The section 3 explains how to construct a domain exchange conjugated
to the shift on a given quasicrystal. This will be an important step to construct a
substitution. The section 4 gives a proof of the main result of this paper, that is
the construction of a substitution describing a given quasicrystal. In section 5, we
give various examples obtained thanks to my implementation in Sage of the tools
described in this article, and we give an explicit construction of Rauzy fractal approx-
imating a shape. The last section is mainly devoted to two questions. One is about
the complexity of substitutions coming from quasicrystals, and the other is about the
definition of Rauzy fractals.

I thanks Pierre Arnoux, Arnaud Hilion and Pascal Hubert, for interesting discus-
sions that helped me.

2. Definitions and main results

2.1. Rauzy fractals. — Let s be a substitution, or in others words, a word mor-
phism over a finite alphabet A = {a1, ..., an}. Up to replace s by a power, we can
assume that s has a fixed point ω.

We defined the broken line associated to ω as the subset of Zn defined by

number of occurences of a1 in ωk
number of occurences of a2 in ωk

...
number of occurences of an in ωk

 ∈ Zn k ∈ N


where ωk is the prefix of length k of the infinite word ω.

This broken line is very interesting since it is a geometrical object which completely
encode the substitution and is stable by multiplication by the incidence matrix.
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Definition 2.1. — First defined by Gérard Rauzy in 1982, the Rauzy fractal (also
called the central tile) is the closure of the projection of the broken line to the con-
tracting space along the expanding line.

With this definition, we can state one of our main result :

Theorem 2.2. — Let n ∈ N≥1 and P ⊆ Rn. The set P is arbitrarly approximated
by Rauzy fractals, for the Hausdorff distance, if and only if P is bounded and 0 ∈ P .
Moreover the proof is constructive.

But to have a precise definition of what is a Rauzy fractal, we need to define
what is the expanding line and what is the contracting space. This is particulary
important for non-irreducible substitution (i.e. for substitutions on n letters whose
Perron number has degree d < n), especially as substitutions given by this theorem are
not irreducible in general. The “expanding line” has dimension 1 for Pisot numbers,
but it can have greater dimension for other Perron numbers. Let’s define it roughly
for any Perron number.

Let Ms be the incidence matrix of the substitution s. By definition the coeffi-
cient (i, j) of this matrix is the number of occurrences of the letter aj in the word
s(ai) (maybe this is the transpose of the usual definition). By Perron-Frobenius the-
orem, there exists an eigenvector v ∈ (R+)n, unic if the matrix is irreducible, for an
eigenvalue λ which is the spectral radius of Ms, and moreover we can assume that
v ∈ (Q(λ))n.

We can define a sort of broken line in Q(λ), by the following.

Qω =
{∑N

k=1 vak N ∈ N, a1a2...aN prefix of ω of length N
}
.

This is a projection of the broken line on Q(λ). This set is invariant by multiplication
by the Perron eigenvalue λ and gives a self-similar tiling of R+. The definition of Qω
depends of the choice of an eigenvector. We prefer to choose an eigenvector whose
coefficients belongs to the integer ring Oλ, in order to have Qω ⊂ Oλ.

For Q(λ), there are natural contracting and expanding spaces for the multiplication
by λ. Indeed, consider the bigest sets P+ and P− of places (i.e. equivalence class of
absolute values) of Q(λ) such that

∀v ∈ P+, |λ|v > 1 and ∀v ∈ P−, |λ|v < 1.

If λ is an algebraic unit, the set P+ corresponds to roots of the minimal polynomial
of λ greater than 1 in absolute value, counting two conjugate complexes only once,
and it is the same for P− with the roots of modulus less than 1.

For each place v, we define a space Ev as the completion of Q(λ) for the absolute
value v. If v is a real place (i.e. corresponding to a real root or the minimal polynomial
of λ), then Ev = R. If v is a complex place (i.e. corresponding to two conjugated
complex roots or the minimal polynomial of λ), then Ev = C. Otherwise, Ev is a
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p-adic space, which is a finite extension of the p-adic field Qp (which is the completion
of Q for the p-adic absolute value).

Remark 2.3. — When the substitution is irreducible and when the number λ is an
algebraic unit, the spaces Ev can be seen as the eigenspaces of the matrix Ms.

Now, we can define the expanding space

E+
λ :=

∏
v∈P+

Ev,

and the contracting one
E−λ :=

∏
v∈P−

Ev.

Let’s take σ+ and σ− some embeddings of Q(λ) into the spaces E+ and E− respec-
tively. We will also denote by σβ the maximal real embedding when β is a Perron
number.

Definition 2.4. — We call Rauzy fractal of the substitution s the adherence of
σ−(Qω) in E−λ .

Remark 2.5. — This is the definition implemented in Sage by Timo Jolivet for unit
Pisot numbers.

Now that we have a precise and general definition of Rauzy fractal, we can give a
more general version of the theorem 2.2.

Theorem 2.6. — Let β be a Pisot number (not necessarly unit), and let P ⊆ E−β .
The set P is arbitrarily approximated by Rauzy fractals, for the Hausdorff distance,
if and only if P is bounded and 0 ∈ P .

This theorem is proven in subsection 5.6.

Remark 2.7. — I have developped tools in sage that permits to compute explicitly
substitutions given by this theorem. See subsection 5.6 for more details.

2.2. Quasicrystals. — In this subsection, we define what we call quasicrystal, and
show that broken lines in Q(β) arising from substitutions whose Perron number is
Pisot, are quasicrystals.

Definitions are compendious, but the reader will easily find more details in the
literature.

Definition 2.8. — A Delone set is a set uniformly discrete and relatively dense.

Definition 2.9. — A quasicrystal (or Meyer set) Q is a Delone set such that
Q−Q is also a Delone set.

Remark 2.10. — There are a lot of equivalent characterizations of Meyer sets.
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Proposition 2.11. — If ω is a bi-infinite fixed point of a substitution whose Perron
number is Pisot (eventually non-unit), then σ+(Qω) is a quasicrystal of R.

Proof. — It is easy to see that σ+(Qω) is a Delone set, because there are a finite
number of intervalles between two consecutive points. Let β be the Pisot number
associated to the substitution whose ω is a fixed point. Up to rescaling, we can
assume that Qω ⊆ Oβ . The difference σ+(Qω)−σ+(Qω) is uniformly discrete, because
σ−(Qω)−σ−(Qω) = σ−(Qω−Qω) is bounded (it is included in R−R where R is the
Rauzy fractal of the substitution), and because Oβ is uniformly discrete in E−β ×E

+
β

and contains Qω − Qω. We get the relative denseness of σ+(Qω − Qω) using the
inclusion 0 ∈ Qω ⊆ Qω −Qω.

Remark 2.12. — We have the same result for infinite fixed point. If ω is a infinite
fixed point of a substitution whose Perron number is Pisot (eventually non-unit), then
σ+(Qω) is a quasicrystal of R+.

2.3. g-β-sets. —

2.3.1. Definitions and main theorem. — In this paragraph we define g-β-sets and we
state our main result.

Definition 2.13. — A g-β-set, for an algebraic number β, is a subset of Q(β) of
the form

Qβ,L :=
{∑n

i=0 aiβ
i n ∈ N, a0a1...an ∈ L

}
.

where L is a regular language over a finite alphabet Σ ⊂ Q(β).

In the following, we will work with a fixed algebraic integer β. Thus, we will denote
the corresponding g-β-set by QL.

Remark 2.14. — The name “g-β-sets” comes from the fact that it describes finite
β-expansions of elements of Q(β), and the “g” stands for graph, as in gIFS (graph
Iterated Function System).

The following proposition is easy and shows that g-β-sets are usefull to describe
quasicrystals associated to substitutions.

Proposition 2.15. — Let ω be a fixed point of a substitution associated to a Perron
number β, then the set Qω is a g-β-set.

The following theorem is the main result of this paper. It gives a converse to the
proposition 2.15.

Theorem 2.16. — Let β be a Pisot number, eventually non-unit, and let Q be a
g-β-set. We have the equality Q = Qω, for a fixed point ω of a substitution whose
Perron number is β, if and only the following three conditions are satisfied:

— Q is a quasicrystal (i.e. a Meyer set, see 2.2 for a definition),
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— βQ ⊆ Q,
— 0 ∈ Q.

Moreover the proof is constructive.

Theorems 2.2 and 2.6 are easy corollaries of this theorem 2.16.

Remark 2.17. — The theorem 2.16 can easily be extended to any Perron number
without conjugate of modulus one, but in this case we have to replace the quasicrystal
hypothesis by the finite condition (see subsection 3.1 for more details).

2.3.2. Properties. — In this paragraph we will see that g-β-sets have a lot of nice
and powerfull properties.

There are several languages that gives the same g-β-set, but there is a canonical
one if we choose an alphabet, by the following proposition.

Definition 2.18. — If Q is a g-β-set, and if Σ ⊂ Q(β) is a finite alphabet, then we
define the language

LΣ
Q =

{
a0a1...an ∈ Σ∗ n ∈ N,

∑n
i=0 aiβ

i ∈ Q
}
.

We have obviously that Q = QLΣ
Q
as soom as Q ⊆ QΣ∗ . The following proposition

tell us that moreover the language LΣ
Q is regular.

Proposition 2.19. — If Q is a g-β-set, for an algebraic number β without conju-
gate of modulus one, then LΣ

Q is a regular language. Moreover, the language LΣ
Q is

computable from any language L such that Q = QL.

Proof. — For a language L ⊆ Σ∗, let us denote

Z(L) :=
{
a0...an ∈ Σ′

∗
n ∈ N,∃k ∈ Z, a0...an0k ∈ L

}
where Σ′ = Σ ∪ {0}. When k < 0, the notation a0...an0k means that the word 0k is
a suffix of the word a0...an (otherwise it is not defined), and it means that it is the
word such that (a0...an0k)0−k = a0...an.

It is not difficult to see that the language Z(L) is regular if L is regular. Let L be
a regular language over an alphabet Σ′ such that Q = QL. Then we have

LΣ
Q = Z(p1(LrelΣ′∪Σ∪{0} ∩ (Σ ∪ {0})∗ × Z(L))) ∩ Σ∗,

where p1 is the projection on the first coordinate, and LrelΣ is defined by

LrelΣ :=
{

(u0...un, v0...vn) ∈ (Σ× Σ)∗ n ∈ N,
∑n
i=0(ui − vi)βi = 0

}
.

The language LrelΣ′∪Σ∪{0} is regular thanks to theorem 1.1 in [Me], hence LΣ
Q is regular.

Remark 2.20. — This last proposition permits to change the alphabet used to rep-
resent a given g-β-set.

In the following, we will denote by Oβ the integer ring of the number field Q(β).
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Definition 2.21. — For a g-β-set Q, and for a lattice O ⊂ E− × E+, we call
adherence in O the set

Q
O

:=
{
x ∈ O σ−(x) ∈ σ−(Q)

}
.

Remark 2.22. — σ+(QL
O

) is the cut-and-project set obtained with the window
σ−(QL) for the lattice O. See subsection 2.4 below.

Remark 2.23. — The adherence in O is the adherence for the topology on O in-
duced by the one on E−β . In others words, the set of open sets for this topology is{
QΩ Ω open set of E−β

}
where QΩ =

{
t ∈ O σ−(t) ∈ Ω

}
.

Properties 2.24. — For a fixed algebraic number β with no conjugate of modulus
one, the set of g-β-sets is stable by

1. intersection,

2. union,

3. complementary (in another g-β-set),

4. Minkowski sum (i.e. the sum of two g-β-sets is a g-β-set),

5. multiplication by an element of Q(β),

6. translation by an element of Q(β),

7. adherence, interior, boundary, for the topology of Oβ induced by E−.

And finite subsets of Q(β) are g-β-sets. Moreover, everything is computable, and
non-emptiness, inclusion and equality are decidable.

Remark 2.25. — If β = λn for some integer n ∈ N≥1, then a g-β-set is also a
g-λk-set for any k ∈ Nk≥1.

Question . — Most of these properties are also true for numbers β with conjugates
of modulus one. Are they all true ?

Proof of properties 2.24. — Let Q and Q′ be two g-β-sets, and let respectively L and
L′ be regular languages coming from proposition 2.19 for some alphabets. Up to take
the union of the two alphabets, we can assume that we have L = LΣ

Q and L′ = LΣ
Q′

for the same alphabet Σ. Then we have

QL ∩QL′ = QL∩L′ , QL ∪QL′ = QL∪L′ , and QL\QL′ = QL\L′ ,

hence properties 1, 2 and 3 follows from properties of regular languages.
If L is a regular language over the alphabet Σ, and if L′ is a regular language over

the alphabet Σ′, then, we have

QL +QL′ = QS(L×L′)

where S is the word morphism defined by S(s, s′) = s + s′,∀(s, s′) ∈ Σ × Σ′. This
proves property 4.
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The property 5 is obvious since we have λQL = QλL : the language λL is the same
as the language L but with the alphabet multiplied by λ.

Let t ∈ Q(β) and let L be a regular language over the alphabet Σ, then let

L′ =
⋃
a∈Σ

(a+ t)(a−1L),

where a−1L =
{
w ∈ Σ∗ aw ∈ L

}
. The language L′ is a regular language over the

alphabet Σ ∪ (Σ + t) and we have QL + t = QL′ , hence this proves property 6.
The proof of property 7 is a little bit harder. By following the ideas of the proof

of the main theorem of [Me], we can prove the following theorem :

Theorem 2.26. — Let β be a algebraic number without conjugate of modulus one,
and let Σ ⊂ Q(β) be a finite alphabet. The following language is regular :

Lrel∞Σ :=
{

(u, v) ∈ (Σ× Σ)∗ ∃(u′, v′) ∈ (Σ× Σ)N whose (u, v) is a prefix and
∑+∞
i=0 (u′i − v′i)βi = 0 in E−β

}
.

Let Q be a g-β-set for an alphabet Σ′. Using this theorem, we can define the
following regular language

L := p1(Lrel∞Σ′∪Σ ∩ Σ∗ × Z(LΣ′

Q )).

where Σ ⊂ O is an alphabet containing 0, and such that Q
O ⊆ QΣ∗ (such an alphabet

Σ always exists). Then we define the language

L′ :=
{
u ∈ Σ∗ there exists an infinite number of k ∈ N such that u0k ∈ L

}
.

We can check that L′ is a regular language, and that we have Q
QΣ∗ = Q

O
= QL′′ .

Using properties 1 and 3 we also have the interior and boundary, so we have proven
property 7.

It is easy to see that finite subsets of Q(β) are g-β-sets. All this proof is construc-
tive, since proofs of theorem 2.26 and theorem 1.1 in [Me] are constructive.

proof of remark 2.25. — Let Qβ,L be a g-β-set for a regular language L over an al-
phabet Σ. Then we have Qβ,L = Qβn,L′ where L′ is the regular language over the
alphabet Σn defined by

L′ :=
{
a0...ak ∈ (Σn)∗ a0...ak ∈ L seen as a word of length n(k + 1) over the alphabet Σ

}
.

Conversely, if Qβn,L is a g-β-set for L a regular language over an alphabet Σ, then
we have Qβn,L = Qβ,L′ where L′ is the regular language over the alphabet Σ ∪ {0}
defined by

L′ :=
{

0n−1a00n−1a1...0
n−1ak ∈ (Σ ∪ {0})∗ a0a1...an ∈ L

}
.

This ends the proof of remarks 2.25.
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The fact that g-β-sets come naturally to describe quasicrystals arising from sub-
stitutions and has a lot of nice properties show that it is an interesting fundamental
object.

Remark 2.27. — We see from theses properties that we can construct g-β-sets with
any shape in the contracting space E−. This allows us to construct Rauzy fractals of
any shape. See subsection 5.6.

Remark 2.28. — Most of these operations on g-β-sets has been implemented effi-
ciently in Sage, but there is still a lot of work to make this code more robust, more
documented and more usable by others people than me.

With these properties of g-β-sets and with the theorem 2.16, we easily get some
stability for Rauzy fractals.

Corollary 2.29. — Let R1 and R2 be two Rauzy fractals of substitutions whose Per-
ron numbers are power of the same Pisot number β (eventually non-unit). Then we
have

— If 0 ∈
◦
R1 then R1 ∪ λR2 and R1 + λR2 are Rauzy fractals for all λ ∈ Q(β),

— If 0 ∈
◦
R1 and 0 ∈

◦
R2 then R1 ∩R2 is a Rauzy fractal,

— If t ∈
◦
R1 ∩ σ−(Q(β)) then R1 − t is a Rauzy fractal.

More generally, the sets
◦
R1, R1 ∩ R2, R1 ∪ R2, R1\R2, R1 + λ and R1 + λR2, for

λ ∈ σ−(Q(β)), are Rauzy fractals if they have non-empty interior, contain zero, and
are invariant by multiplication by βn, for some n ∈ N≥1, in E−β (β acting diagonally,
by σv(β) in Ev). Moreover, everything is computable.

2.4. Cut-and-project sequences. — Substitutions give examples of self-similar
quasicrystals. Another way to construct sets with comparable properties is the cut-
and-project method. This consist on taking a lattice and keeping only elements whose
projection belongs to a choosen windows. Here the lattice we take is a ideal I of Oβ
for a unit Pisot number β.

Definition 2.30. — Let Oβ be the integer ring of a unit Pisot number β, and I be
an ideal of Oβ. The cut-and-project sequence of window Ω ⊂ E− for the ideal I
is the set σ+(QI,Ω) ⊆ E+ = R where

QI,Ω :=
{
x ∈ I σ−(x) ∈ Ω

}
.

When β and I are fixed, we will denote QI,Ω = QΩ.

Definition 2.31. — A model set is a cut-and-project sequence for a window of
non-empty interior.
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Remark 2.32. — Cut-and-project sets can be defined in a much more general set-
ting. We restrict to ideals of Oβ because every model set arising from a substitution
whose Perron number is a unit Pisot number, has this form.

Remark 2.33. — For β a unit Pisot number, a g-β-set is a model set if and only if
it has non-empty interior in I, for the topology of I induced by E−β , where I is the
group generated by the g-β-set.

Here is a link between Meyer sets and model sets.

Proposition 2.34. — A model set is a Meyer set.

Here is a sort of converse (but the converse is not true, see example 5.7).

Proposition 2.35. — Let Q ⊆ Oβ. If σ+(Q) is a Meyer set, it is included in a
model set. And there exists a finite set T ∈ Oβ such that σ+(Q+ T ) is a model set.

Hence, quasicrystals are really closed to model sets.
This permits to show that Rauzy fractals as non-empty interior, thanks to the

following general lemma.

Lemma 2.36. — A finite union of closed sets of empty interior has empty interior.

Corollary 2.37. — A Rauzy fractal of a substitution whose Perron number is unit
Pisot, always has non-empty interior.

We can naturally ask the following conjecture. We say that a matrix is irreducible
if there exists a positive power of the matrix whose coefficients are all positives.

Conjecture 2.38. — Every quasicrystal coming from a substitution whose Perron
number is a unit Pisot number and whose incidence matrix is irreducible, is a model
set.

See example 5.7 for a counter example if we remove the hypothesis about the
incidence matrix.

It is decidable to test this conjecture :

Proposition 2.39. — It is decidable to test if a β-invariant Meyer g-β-set is a model
set for β unit Pisot number.

Proof. — If Q is a Meyer set and is a g-β-set, we can compute the finite set of
translations t1, t2, ..., tn of the shift. Then we can decide if the g-β-set has non-empty
interior in the ideal I =

∑n
i=1 tiOβ using properties 2.24, and this is equivalent to

decide if it is a model set.

With the stability by adherence of g-β-sets and with the theorem 2.16, we easily
get the following corollary.
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Corollary 2.40. — Given a substitution whose Perron number is a Pisot number,
there exists another substitution with the same Rauzy fractal and satisfying the con-
jecture 2.38 (i.e. it describes a quasicrystal which is a model set).

The following result is easy and shows that the theorem 1.1 is a consequence of my
theorem 2.16.

Proposition 2.41. — Let [a, b] be an interval of R and let β be a quadratic Pisot
number. Then, Q[a,b] is a g-β-set if and only if a, b ∈ Q(β).

Idem for Q(a,b), Q(a,b] and Q[a,b).

3. Construction of a domain exchange

The first step, to construct a substitution from a quasicrystal, is to construct a
domain exchange which describe the shift on the quasicrystal. This is done by the
following proposition. For the moment, we don’t need to know that it is a g-β-sets.

This construction is an easy generalization to any quasicrystal of the fact that we
can color the Rauzy fractal in order to have a domain exchange.

Proposition 3.1. — Let β be a Pisot number (eventually non unit), and let Q ⊆
Q(β) such that σ+(Q) is a quasicrystal of R or R+. Then there exists a domain ex-
change with a finite number of pieces such that the union of the pieces is Q. Moreover,
this domain exchange is conjugated to the shift on σ+(Q).

Figure 2. Construction of a domain exchange in the unit disk, for the
integer ring Oβ , where β is the Tribonnacci number.

-2 -1 1 2

-2

-1

1

2

-2 -1 1 2

-2

-1

1

2

−2β2 + 2β, β2 − β − 1, β − 1, 1, −β2 + 2β + 1, β2 − β, β
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Proof. — The fact that σ+(Q) is a quasicrystal tells us that there exists a finite
number of translations in the shift, i.e. to go from one point of σ+(Q) ⊆ E+ = R to
the next one.

The shift on the quasicrystal can be described by a greedy algorithm that consist
at taking the smallest translation possible (in E+ = R) to go from one point to the
next one. If not possible test the second smallest translation, etc...

If we look what gives this algorithm in Q, we get the domain exchange. Indeed,
the set of all points of Q that can be translated by some translation t and stay in Q is
simply Q∩ (Q− t). Thus, we get the pieces of the domain exchange by the following.

If t0, ...tn ∈ Q(β) are the possible translations of the shift, with

0 < σ+(t0) < σ+(t1) < ... < σ+(tn),

then the (n+ 1) pieces of the domain exchanges are

Q ∩ (Q− t0), Q ∩ (Q− t1)\(Q− t0), Q ∩ (Q− t2)\ ((Q− t0) ∪ (Q− t1)) , ...

The picture 2 shows the construction of a domain exchange on the model set
QOβ ,Ω where Ω is the unit disk in C, and β is the Tribonnacci number (i.e. root of
x3 − x2 − x− 1).

Remark 3.2. — The domain exchange described in the figure 2 for the open unit
disk gives exactly the list of Pisot numbers (including non-unit ones) of degree 3 in
Q(β), where β is the Tribonnacci number (i.e. greatest root of x3−x2−x−1). Indeed
if x is a Pisot number of degree three in Q(β), the next Pisot number is obtained by
looking in which piece is the conjugate x, and adding the corresponding translation to
x.

Remark 3.3. — If moreover Q is a g-β-set, then the pieces of the domain exchange
conjugated to the shift are also g-β-sets, and are computable. This is a consequence
of the proof of proposition 3.1 and properties 2.24 of g-β-sets.

3.1. Finite condition. — The following definition gives a necessary and sufficient
condition for the existence of an finite domain exchange conjugated to the shift on
a given quasicrystal. This permits to extend proposition 3.1 to any Perron number,
and to extend theorem 2.16 to any Perron number without conjugate of modulus one.

Definition 3.4. — For β a Perron number (eventually non-unit), we say that a set
Q ⊂ Q(β) (respectively a set Ω ⊆ E−β ) satisfy the finite condition on R if σβ(Q) is
discrete and if there exists a finite set of translations T ∈ Q(β) such that

σβ(T ) ⊂ R∗+ and Q ⊆ Q+ T (respectively Ω ⊆ Ω + σ−(T ))
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In others words, the finite condition is equivalent to say that the set of differences
of two consecutive points is finite.

The finite condition for R+ is the same, except that we replace the inclusion Q ⊆
Q+ T by Q ⊆ {0} ∪ (Q+ T ).

Proposition 3.5. — Let β be a Perron number. There exists a domain exchange on
Q ⊂ Q(β) (respectively on Ω ⊂ E−β ) conjugated to the shift on σβ(Q) (respectively on
σβ(QΩ)) if and only if Q satisfy the finite condition.

And here is the generalization of the main theorem.

Theorem 3.6. — Let β be a Perron number, eventually non-unit, without conjugate
of modulus one, and let Q be a g-β-set. We have the equality Q = Qω for a fixed
point ω of a substitution whose Perron number is β if and only the following three
conditions are satisfied:

— Q satisfy the finite condition,
— βQ ⊆ Q,
— 0 ∈ Q.

Moreover the proof is constructive.

4. Construction of a substitution

In this section, we give a proof of the theorems 2.16 and 3.6.
If we know that a quasicrystal σ+(Q) of R or R+ comes from the fixed point of a

substitution for a Pisot number λ, it is not difficult to guess what is the substitution.
Indeed, it is enough to take intervals between two consecutive points, multiply it by
λ, and see how the result is covered by others intervals.

a b a c a b a a b a c a b

a b a c a b a a b a c a b

×λ

But we have to take care of the fact that one interval can have several substitutions
rules, corresponding to the fact that several letters of a substitution can give intervals
of same lengths.

If we look at what happens in the contracting space E−, we have to do a sort
of induction on λQ for the domain exchange on Q, and we have to iterate it up
to stabilization. But it’s not really an induction : we have to distinguish between
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different possible trajectories for points in λQ before they come back to λQ, otherwise
the induction only give the same domain exchange on λQ than in Q.

Algorithm 1 Computing a substitution describing a given quasicrystal of R+

Require: Q (quasicrystal, or window in E−λ of the cut-and-project set, from which
we want to compute a substitution)

Require: λ Pisot number such that λQ ⊂ Q
1: P ← { set of pieces of the domain exchange } (see proof of proposition 3.1 to see

how to compute them)
2: stop ← false
3: while not stop do
4: stop ← true
5: for Q′ ∈ P do
6: t← 0

7: repeat
8: if λQ′ + t is not a subset of an element of P then
9: replace in P the element Q′ by the non-empty ones Q′ ∩λ−1(Q′′− t) for

Q′′ ∈ P .
10: stop ← false
11: leave the for loop
12: else
13: t← t+ t0 where t0 is the translation of the domain exchange for λQ′+ t.
14: end if
15: until not λQ′ + t ⊂ λQ
16: end for
17: end while
18: for Q′ ∈ P do
19: The substitution rule for letter Q′ is given by the orbit, under the domain

exchange, of λQ′ before coming back to λQ (i.e. the rule is given by the
successive elements of P ).

20: end for

The algorithm 1 compute the smallest substitution describing a given quasicrystal
Q for a Pisot number λ such that λQ ⊂ Q.

Remark 4.1. — For λ Pisot such that λQ ⊂ Q, if there exists a domain exchange
with a finite number of pieces, this algorithm 1 terminates if and only if Q is g-λ-set.

Remark 4.2. — A more efficient version of this algorithm has been implemented in
Sage.
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proof of theorems 2.16 and 3.6. — We will assume that Q is a quasicrystal of R+. It
is not difficult to adapt the proof to a quasicrystal of R.

Let β be a Perron number, eventually non-unit, without conjugate of modulus one.
Let’s define a ring R, invariant by multiplication by β and by β−1, by the following

R =
{
t ∈ Q(β) ∀ place v 6∈ P+ ∪ P−, |t|v ≤ 1

}
.

Then, we have

Lemma 4.3. — The ring R is discrete in E− × E+.

See [Me] for more details.
In the case where β is an unit number, the integer ring Oβ is also stable by multi-

plication by β and by β−1 and is discrete in E− ×E+, hence we can take R = Oβ in
the following.

Let L be a regular language over the alphabet Σ, such that Q = QL. Up to
rescaling, we assume that the alphabet Σ is included in the ring R. Therefore we
have Q ⊂ R.

The hypothesis that σ+(Q) is a quasicrystal (i.e. a Meyer set) or that it satisfy the
finite condition, permits to obtain a domain exchange with a finite number of pieces
by proposition 3.1 or proposition 3.5. Let’s call it fQ. In other words, fQ is the shift
on the quasicrystal Q. The following lemma tells that there is a finite returning time
in βQ for this domain exchange fQ.

Lemma 4.4. — There exists an integer N ∈ N, such that for all x ∈ βQ, there exists
an integer 0 < n ≤ N such that (fQ)n(x) ∈ βQ.

Indeed, if T0 is the set of translations of the domain exchange, we can take

N =

⌊
max

{
σβ(βt) t ∈ T0

}
min

{
σβ(t) t ∈ T0

} ⌋ .
Now let’s define T be the smallest set containing{∑n

k=0 ti (ti)
n
i=0 ∈ T

n+1
0 , 0 ≤ n < N

}
∩ (Q−Q)

and such that
(β−1T − Σ) ∩ (Q−Q) ⊆ T.

Lemma 4.5. — T is finite.

Indeed, σ−(T ) ⊂ σ−(Q)−σ−(Q) is bounded, and it is easily seen that σ+(T ) is also
bounded, because the map T 7→ β−1(T − Σ) is contracting in E+

β . The discreteness
of T ⊂ R in E− × E+ gives the finiteness.

The fact that L is a regular language tells us that there exists a deterministic
automaton A, with a finite number of states S, recognizing the language L. For
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i ∈ S, we define the language Li of state i by

Li := {a1a2...an ∈ Σ∗ path in A from i to a final state}.

We denote by i t−→ j an edge in the automaton. We have the following relations

QLi =
⋃
i
t−→j

t+ βQLj

for all i ∈ S.
To construct a substitution having a fixed point ω such that Qω = Q, we start by

constructing the set of letters of the substitution. We define A0 as the smallest set
stable by intersection, union, complementary in Q, and containing

(QLi − t) ∩Q

for all i ∈ S and t ∈ T .

Lemma 4.6. — A0 is finite.

The sets
{
QLi − t i ∈ S, t ∈ T

}
and

{
Q\(QLi − t) i ∈ S, t ∈ T

}
are finite. If

we take all possible intersections of elements of these sets, there are in finite number.
There are finitely many unions of such intersections. And any element of A is obtain
that way.

Using the set A0, we can define the alphabet A by

A :=
{
a ∈ A0 ∀b ∈ A0, b ⊆ a =⇒ a = b

}
\{∅}.

By construction, we have the following property.

Lemma 4.7. — The set A is a finite partition of Q.

Now that we have defined the alphabet of the substitution, let us show what is the
substitution rule of a letter. The following lemma show that such a substitution rule
is well defined.

Lemma 4.8. — For all a ∈ A and for all 0 ≤ n < N , there exists a unic b ∈ A such
that (fQ)n(βa) ⊆ b.

Proof. — For a ∈ A and 0 < n < N , there exists t ∈ T such that (fQ)n(βa) = βa+ t

and βa + t ⊆ Q. By lemma 4.7, there exists b ∈ A such that (βa + t) ∩ b 6= ∅. This
is equivalent to a ∩ β−1(b − t) 6= ∅. But the set Q ∩ β−1(b − t) is an element of A0,
because b is an union of intersections of sets of the form (QLi−t)∩Q and Q\(QLi−t),
and we have

β−1(QLi − t) =
⋃
i
t′−→j

t′ − β−1t+QLj .

The translation β−1t− t′ is in T by definition of T , and we can see that Q∩β−1(b− t)
is an element of A0. The element Q ∩ β−1(b − t) ∩ a is also an element of A0 and is
included in a ∈ A.We deduce that βa+ t ⊆ b.
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We define a substitution s over the alphabet A by s(a) = a1a2...ana where ai is
the element of A such that (fQ)i−1(βa) ⊆ ai, and

na := min
{
k ∈ N≥1 (fQ)k(βa) ∈ βQ

}
.

Lemma 4.9. — Let a0 be the unic element of A containing 0. The substitution s

admit a fixed point ω starting from letter a0, and we have Qω = Q.

Proof. — TODO, easy.

We have constructed a substitution from the quasicrystal. The converse is easy
using proposition 2.11 (or remark 2.12) and proposition 2.15. This terminates the
proof of theorems 2.16 and 3.6.

5. Examples

In this section, we give various examples of g-β-sets, and substitutions computed
from them. More examples and details about these examples can be found here :

http://www.i2m.univ-amu.fr/~mercat.p/RauzyFractals.

5.1. Cantor sets. — It is easy to describe sets like Cantor sets or Sierpiński carpets
with g-β-sets. If we add a part of non-empty interior and make it such that it is
invariant by multiplication by some power βn of the Pisot number β (we can guarantee
that by putting 0 in the interior for example), then the theorem 2.16 applies and we
can get a substitution describing the quasicrystal and hence having a Rauzy fractal
with a part that is a Cantor set or a Sierpiński carpet. Here are two such examples.

Exemple 5.1. — Take the quadratic unit Pisot number β =
√

2 + 1, and take the
regular language L defined by the automaton of the figure 4. Then we can compute
the smallest substitution whose a fixed point ω verifies Qω = QL and whose Perron
number is β. We get the following substitution

1 7→ 125

2 7→ 7

3 7→ 126

4 7→ 448

5 7→ 9348

6 7→ 93

7 7→ 12

8 7→ 4

9 7→ 5

whose Rauzy fractal is an interval union a Cantor set as described by the automaton.

http://www.i2m.univ-amu.fr/~mercat.p/RauzyFractals
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Figure 3. Rauzy fractal of the example 5.1

Figure 4. Regular language describing an g-β-set which is an intervalle
union a Cantor set for β =

√
2 + 1

0

1
0

2

2

0
1
2

0
2

Exemple 5.2. — Take the Tribonnacci Pisot number β, root of x3 − x2 − x − 1,
and take L the regular language defined by the automaton of the figure 5. Then we
can compute the domain exchange conjugated to the shift on σ+(QL). See figure 7.
The smallest substitution whose a fixed point ω verify Qω = QL, and whose Perron
number is β4, has 15 letters and is displayed in figure 6.
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Figure 5. Regular language describing a g-β-set which is a Sierpiński
carpet union a set of non-empty interior for β the Tribonnacci number
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1

0
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0

1

0

1

1

0

0

1

Figure 6. Smallest substitution whose Perron number is β4 for the example 5.2

a 7→ ndofmc,

b 7→ bcibcoa,

c 7→ ndofmclbfmcoandof,

d 7→ ndofmcocofmcoandof,

e 7→ ndofebakhjjhjgjh,

f 7→ ndofmclbfmcoa,

g 7→ jhjgjhj,

h 7→ jhjgjhjjhjg,

i 7→ ebfegjhjjhjg,

j 7→ jhjgjhjjhjgjh,

k 7→ lbfmcoandofebcijgjh,

l 7→ ebfegjhjjhjgjh,

m 7→ ndofmcoa,

n 7→ ocofmcoa,

o 7→ mcofmcoa.
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Figure 7. Domain exchange with 6 pieces, describing the shift on
σ+(QL) for the regular language L defined in figure 5

5.2. Quadratic Pisot numbers. — Quadratic Pisot numbers of a given quadratic
field are always described by substitutions. This is a consequence of [MPP]. Indeed,
the set of Pisot numbers of degree d of a given number field of degree d, form a model
set, for the integer ring and for the windows Ω :=

{
x ∈ E− ∀v ∈ P−, |x|v < 1

}
.

When moreover the number field is real quadratic, this windows Ω is the intervalle
] − 1, 1[, hence we can compute a substitution describing Q]−1,1[ thanks to the main
result of [MPP].
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Proposition 5.3. — Let β be a quadratic Pisot number. There exists a substitution
whose a fixed point give the ordered list of quadratic Pisot numbers (including non-unit
ones) of the field Q(β).

Using my tools implemented in sage, I can compute the g-β-set Q]−1,1[, for any
quadratic Pisot number β, and then compute a substitution describing the quasicrys-
tal.

The following substitution describes the list of quadratic Pisot numbers (including
non-unit ones) of the field Q(

√
5).

1 7→ 121

2 7→ 3

3 7→ 313

The fixed point generated by 3 is

3131213131213121313121313121312131312131...

We associcate to letter 1 the number 1, to letter 2 the number ϕ− 1 and to letter 3

the number ϕ, where ϕ is the golden number. These numbers are the entries of the
Perron eigenvector of the incidence matrix. Then if we take the first n letters of this
fixed point, the sum of the corresponding numbers is the nth Pisot number of the field
Q(
√

5). We get the following list

ϕ, ϕ+ 1, 2ϕ+ 1, 2ϕ+ 2, 3ϕ+ 1, 3ϕ+ 2, 4ϕ+ 2, 4ϕ+ 3, 5ϕ+ 3, 5ϕ+ 4, 6ϕ+ 3, ...

5.3. Irreducible example. — I have implemented in sage a tool that permit to
draw a Rauzy fractal of any shape with the mouse, like in a drawing software, and to
compute the corresponding substitution. The following example has been obtain by
drawing randomly using this tool.

Figure 8. Regular language describing a g-β-set for the example 5.4, for
β the Tribonnacci number

Exemple 5.4. — Let’s take the following irreducible substitution
1 7→ 131

2 7→ 1313112

3 7→ 131311213113
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Then the shift on the fixed point generated by 1 is conjugated to the translation by 1

on the torus C/(β2 + β − 2, β), where β is a root of x3 − x2 − x − 1. The figure 9
shows the Rauzy fractal with its domain exchange, and the picture 10 shows the tiling
corresponding to the torus.

Figure 9. Domain exchange of the irreducible substitution of example 5.4

Figure 10. Tiling of C for the example 5.4

5.4. β-invariant example. — Given any g-β-set Q, we can define the smallest set
Q′ such that βQ′ ⊂ Q′. The set obtained is still a g-β-set.

Lemma 5.5. — Let Q be the smallest β-invariant set containing a given g-β-set.
Then Q is a g-β-set.

Hence, if we take any g-β-set of non-empty interior in Oβ , we can complete it into
a g-β-set satisfying the hypothesis of theorem 2.16 and compute a substitution giving
this quasicrystal.

The following example has been obtained thanks to this lemma.
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Figure 11. Regular language describing a g-β-set given by lemma 5.5

Exemple 5.6. — For β the Tribonacci number and L the regular language defined
in figure 11, the smallest substitution giving the quasicrystal QL is the following sub-
stitution over 12 letters.

a 7→ g,

b 7→ fk,

c 7→ e,

d 7→ aj,

e 7→ hi,

f 7→ hb,

g 7→ d,

h 7→ ab,

i 7→ fc,

j 7→ fi,

k 7→ fj,

l 7→ lb.

There cannot exists a substitution with less letters, since the domain exchange has 12

pieces.

Figure 12. Rauzy fractal of the example 5.6
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5.5. Example of empty interior. — There exists examples of substitutions which
does not satisfy the conjecture 2.38 if the incidence matrix of the substitution is not
irreducible. Here is such a example.

Figure 13. Regular language describing a β-invariant g-β-set which is a
quasicrystal but not a model set, for β the Tribonnacci number.

Exemple 5.7. — Let β be the Tribonnacci number. The g-β-set defined in figure 13
is a quasicrystal and satisfy the hypothesis of the theorem 2.16. Hence, we can compute
the following substitution that describe the quasicrystal.

1 7→ 164,

2 7→ 24,

3 7→ 14,

4 7→ 5,

5 7→ 1,

6 7→ 34.

But this quasicrystal is not a model set. Indeed, the ideal of Oβ generated by the
quasicrystal is the whole Oβ since it contains 1, but it is easy to check that this g-β-
set has empty interior in Oβ, which mean that it is not a model set.

If we remove the letter 2 in this substitution, the incidence matrix becomes irre-
ducible, and the quasicrystal described by this new substitution becomes a model set,
as predicted by the conjecture 2.38.

Figure 14. Rauzy fractal of the example 5.7
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5.6. Examples with various shapes. — In this subsection, we show examples
of Rauzy fractals approximating various shapes. These examples has been obtained
using my implementation of the g-β-sets in Sage.

For β a Perron number, it is easy to approximate any bounded open subset of E−β
by a g-β-set with arbitrarly precision, using the following proposition.

Proposition 5.8. — Let β be a Perron number and let P ∈ E−β be an bounded open
set. If Σ ⊆ Q(β) is such that QOβ ,P ⊆ QΣ∗ (such Σ always exists), then the Hausdorff
distance between the g-β-set QLnΣ∗ and the set P tends to 0 when n→∞, where

Ln =
{
u0...un−1 ∈ Σn

∑n−1
k=0 ukβ

k ∈ P
}
.

This permits to prove the theorem 2.6. Indeed, any bounded set P ⊂ E−β is
arbitrarly approximated by open sets, hence by g-β-sets. Moreover, if β is a Pisot
number and if P contains 0, we can assume that such a g-β-set QL is a quasicrystal
and that there exists n ∈ N≥1 such that βnQ ⊂ Q, up to replace the language L by
L ∪ 0nΣ∗. Hence, we can apply the theorem 2.16, and this proves the theorem 2.6.

I have implemented in Sage a tool that takes a Perron number β and a shape (given
by its characteristic function), and gives the g-β-set described above, approximating
the shape with an arbitrarily chosen precision. The shape can be given by an image
or by inequalities for example.

Figure 15. Substitution over 328 letters whose Perron number is the
6th power of the Tribonnacci number. The minimal automaton

recognizing the language LQ of the g-β-set Q has 714 states, for β the
Tribonnacci number, and for the alphabet {0, 1}.
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Figure 16. Domain exchange with 18 pieces for the substitution
described in figure 15.

Figure 17. Rauzy fractals aproximating various shapes

See http://www.i2m.univ-amu.fr/~mercat.p/RauzyFractals for more details
about these examples and for others examples.

6. Discussion

In this section, I discuss some points that I would think interesting to develop.

6.1. Complexity of substitutions. — Given a g-β-set Q for a Perron number β
such that there exist a fixed point of a substitution for which Q = Qω, what is the
complexity of the substitution ? That is, what is the minimal number of letters of
such substitution and what is its Pisot number ?

http://www.i2m.univ-amu.fr/~mercat.p/RauzyFractals
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A first obvious remark is that the number of letters is at least the number of pieces
of the domain exchange. An interesting fact is that it doesn’t depends very much of
the complexity of the g-β-set but rather of the shape (this is not completely true). A
natural question is the following

Question . — Let β be a Pisot number and be Q a g-β-set. Is it always possible
to find a Pisot number λ ∈ Q(β) with E+

β = E+
λ and E−β = E−λ , and such that

there exists a substitution whose Perron number is λ, with a fixed point ω satisfying
Qω = Q, and such that the number of letters is the same than the number of pieces
of the domain exchange ?

I think that this is false, but I have no clue.
Experimentally, the number of letters decrease with n when we search the smallest

substitution for the Pisot number λ = βn. This is true most of the time, and partic-
ularly with complicated g-β-sets, but not completely true (there are examples where
it is not decreasing with n).

It would be interesting to understand what are the best Pisot numbers λ (i.e. the
ones for which there exists a substitution with the minimum number of letters), and
how to compute them.

6.2. Non-Pisot numbers. — For non-Pisot numbers, g-β-sets can still represent
any subset Qω arising from the fixed point ω of a substitution, but this subset is
no more a quasicrystal (except maybe for Salem numbers). If QL satisfy the finite
condition we can still compute a domain exchange coding the shift on σλ(QL), but
this condition is less practical than for Pisot numbers. Maybe this case can be better
understood using g-M -sets where M is a suitable matrix ?

For Perron numbers having at least a conjugate of modulus 1, we have to take care
of the space E0 =

∏
p∈P0

kp where P0 is the set of archimedian places for which β has
modulus one, and not only to the contracting space E− and the expanding one E+,
otherwise, the integer ring Oβ and the ring R are no more discrete. Lot of my tools
doesn’t work anymore in this case.

6.3. Definition of Rauzy fractal. — The Rauzy fractal is defined as the adher-
ence of a countable subset of E−λ . I think that this is not a good definition for the
following reasons :

— The quasicrystal σ+(Qω) associated to a fixed point ω of a substitution can
always be seen trivially as a cut-and-project set, because up to rescaling we
have

σ+(Qω) =
{
σ+(x) ∈ E+

λ x ∈ Oλ, σ−(x) ∈ σ−(Qω)
}
.

It would be nice if the Rauzy fractal R ⊂ E−λ was always a windows :

σ+(Qω) =
{
σ+(x) ∈ E+

λ x ∈ Oλ, σ−(x) ∈ R
}
.
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For any Rauzy fractal, I can construct example for which this is the case, but
this is not the case in general.

— The domain exchange on the Rauzy fractal comes from a real bijective domain
exchange on the quasicrystal without overlaps (it is bijective if we take a whole
bi-infinite fixed point, otherwise 0 may not have inverse, but every other element
has an inverse). We loose informations about the domain exchange by taking
the one defined on the Rauzy fractal. Maybe this wouldn’t be the case with a
right definition of Rauzy fractal ?

— We have seen that Rauzy fractals always have non-empty interior, and this
comes from the only fact that a Rauzy fractal is closed. The following question
naturally arise : Is there a particular topological property for a set σ−(Qω) ⊆
E− comparable to the closeness ? This could be a solution to solve conjec-
ture 2.38 by generalizing lemma 2.36. A good definition of Rauzy fractal could
help to do that.

I think that a good definition of Rauzy fractal could be given using Buchi automata,
because it is a natural generalization for g-β-sets and because it permits to represent
subsets of E− of non-empty interior and more precisely than by taking the adherence.

But maybe it is a better idea to consider directly the quasicrystal with the topology
induced by E− on the generated group.
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