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Introduction

Example of substitution

Let’s take the following substitution over the alphabet {a, b, c} :

s :


a 7→ ab
b 7→ ca
c 7→ a

Then by iterating the letter a we get an infinite fixed point :

a
s(a) = ab
s2(a) = abca
s3(a) = abcaaab

...
s∞(a) = abcaaabababcaabcaabcaaababcaaababcaaabab...
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Introduction

Self-similar tiling of R+

If we replace letters of this fixed point by intervalles of convenient lengths,
we get a self-similar tiling of R+.
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Introduction

la lb lc la la la lb la lb la lb

To get such a self-similar tiling of R+, the lengths of each intervalles must
satisfy the equality

tMs ·

 la
lb
lc

 = β

 la
lb
lc

 ,

where Ms =

 1 1 1
1 0 0
0 1 0

 is the incidence matrix of the substitution and

β is the Perron eigenvalue of Ms . Hence we can assume that the lengths
li , i ∈ {a, b, c} live in Q(β).
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Introduction

Quasicrystal of R+

If we take for example

la = 1, lb = β − 1, lc = β2 − β − 1,

we get the following subset Q of Q(β).
la

0
lb

1
lc

β
la

β2 − 1
la

β2
la

β2 + 1 β2 + 2

Q =
{
0, 1, β, β2 − 1, β2, β2 + 1, β2 + 2, β2 + β + 1, β2 + β + 2, ...

}
This set have very strong properties since we have :

Proposition
Q is a β-invariant Meyer set of R+.

But what is a Meyer set ?
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Introduction

Meyer sets are a mathematical model for quasicrystals.

Definition
A Meyer set of R+ is a set Q ⊂ R+ such that

Q is a Delone set of R+,
Q − Q is a Delone set of R.

Definition
Q is a Delone set of E if

Q is uniformly discrete

∃ε > 0, ∀(x , y) ∈ Q2,B(x , ε) ∩ B(y , ε) = ∅,

Q is relatively dense in E

∃R > 0, E ⊆
⋃
x∈Q

B(x ,R).
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Introduction

Rauzy fractal

The quasicrystal Q is a part of Q(β), hence we can look at the action of
the Galois group. Here, β has two complexes conjugated as conjugates,
hence we have an embedding

σ : Q(β) ↪→ C ,

by choosing one of the complex conjugates.

Proposition

The set σ(Q) ⊆ C is bounded.

We call the closure σ(Q) a Rauzy fractal.
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Introduction

The Rauzy fractal σ(Q) ⊂ C
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Introduction

Coloring the Rauzy fractal

Moreover, we can color in red the points of σ(Q) that are left bound of an
interval of length 1 (i.e. coming from letter a), in green the points that are
left bound of an intervalle of length β − 1 (i.e. coming from letter b), and
the other ones, for β2 − β − 1, in blue.

la lb lc la la la lb la lb la lb

We can also color in the same way by considering the right bound rather
than the left one.

la lb lc la la la lb la lb la lb

Proposition

Let u = s∞(a). Then, the subshift (SZu,S) is measurably conjugated to a
domain exchange on the Rauzy fractal σ(Q), for the Haar measure.
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Introduction

Generalization to any substitution

If s is any substitution over a alphabet A, everything generalizes :
fixed point : Up to replace s by a power, s has a fixed point ω.
self-similar tiling : We get a self-similar tiling of R+ or R by
replacing letters by intervals of lengths la, a ∈ A given by a Perron left
eigenvector of the incidence matrix.
quasicrystal : We get a set Qω ⊂ R by taking the bounds of intervals
of this self-similar tiling, and up to rescaling we have Qω ⊂ Q(β)
where β is the Perron eigenvalue of the incidence matrix Ms . If β is a
Pisot number, Qω is a Meyer set.
Rauzy fractal : Qω is a subset of Q(β), therefore we can embed it
into a natural contracting space E c

β where it is a pre-compact subset.
Domain exchange : If the substitution satisfies the strong
coïncidence condition, then we can color the Rauzy fractal σc(Qω) in
order to define a domain exchange conjugated to the shift.
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Introduction

General definitions of contracting space and Rauzy fractal

There are natural contracting and expanding spaces for the multiplication
by β on a number field k = Q(β). Call P the set of places of k (i.e.
equivalence classes of absolute values), and let

Pe :=
{
v ∈ P |β|v > 1

}
and Pc :=

{
v ∈ P |β|v < 1

}
.

The contracting space is E c
β :=

∏
v∈Pc

kv and the expanding one is
E e
β :=

∏
v∈Pe

kv , where kv denotes the completion of k for the absolute
value v . We denote by σc =

∏
v∈Pc

σv : Q(β) ↪→ E c
β where

σv : Q(β) ↪→ kv is a choice of one natural embedding.

Definition
We call Rauzy fractal the adherence of σc(Qω) in E c

β .

For the previous example, where β is root of x3 − x2 − x − 1, we have
E e
β = R (there is one real place) and E c

β = C (there is one complex place).
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Main results

Rauzy fractals can approximate any shape

Theorem
For any Pisot number β and for any P ⊂ E c

β , bounded and containing 0,
there exists substitutions whose Rauzy fractals approximate arbitrarily P ,
for the Hausdorff distance, and whose Perron numbers are powers of β.
Moreover, the proof is constructive.

The Hausdorff distance between two subsets A ⊆ E and B ⊆ E of a metric
space E is

d(A,B) = max
(
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

)
.
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Main results

Rauzy fractals aproximating various shapes
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Main results

g-β-sets : a nice description of quasicrystals by automata

Definition (Main tool)

A set Q ⊆ Q(β) is a g-β-set if we have

Q = QL,β =
{∑n

k=0 akβ
k n ∈ N, a0...an ∈ L

}
,

where Σ ⊂ Q(β) is a finite alphabet and L ⊆ Σ∗ is a regular language.

Proposition
If ω is a fixed point of a substitution, then Qω is a g-β-set.

The aim of the following will be to give a reciprocal to this proposition.
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Main results

g-β-set coming from a substitution

For the example

s :


a 7→ ab
b 7→ ca
c 7→ a

the mirror of the language L, recognized by the following automaton, define
a g-β-set which is a quasicrystal coming from the substitution s, for β the
Tribonnacci number.

a

0
b1

b^2 - b - 1
c

0
0
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Main results
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Main results

Stability of the set of g-β-sets

Properties (Properties of g-β-sets)

If β is an algebraic number without conjugate of modulus one, and if Q1
and Q2 are two g-β-sets, then

Q1 ∪ Q2, Q1 ∩ Q2 and Q1\Q2 are g-β-sets,
Q1 + Q2 is a g-β-set,
∀t ∈ Q(β), Q1 + t is a g-β-set,
∀c ∈ Q(β), cQ1 is a g-β-set,
∀k ≥ 1, n ≥ 1, a g-βk -set is a g-βn-set.

Moreover, everything is computable, and emptyness and inclusion are
decidable.

Hence, it is easy to approximate any shape by g-β-sets.
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Main results

Main result :
Characterization of Meyer sets coming from substitutions

It is easy to prove that Rauzy fractals can approximate any shape with the
previous properties of g-β-sets and with the following theorem.

Theorem
Let β be a Pisot number, and let Q ⊆ Q(β) a β-invariant Meyer set. Then,
the Meyer set Q comes from a substitution if and only if it is a g-β-set that
contains 0.

We have already seen that these conditions are necessary. Let us show that
these are sufficient, and how to construct such substitution.
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Proof

β-expansion algorithm in a β-invariant Meyer set

Let Q be a Meyer set and β be a Pisot number with βQ ⊂ Q and 0 ∈ Q.
Then we can define the following algorithm that gives an unique finite
β-expansion of any element of Q.

Data: x ∈ Q
Result: coefficients t0 of a β-expansion of x
while x 6= 0 do

x ← x − t0 for t0 = inf{t ≥ 0|x − t ∈ βQ};
x ← x/β;
print t0 ;

end

la lb lc la la la lb la lb la lb

The expansion of x is given by the successive elements t0.
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Proof

With the previous algorithm, we define the language

LQ :=
{
a0...an ∈ Σ∗Q a0...an expansion of x given by the algorithm

}
0∗

over the finite alphabet

ΣQ :=
{
inf{t ≥ 0|x − t ∈ βQ} x ∈ Q

}
.

In others word, LQ is the unique subset of Σ∗Q containing the empty word
ε, such that Q = QLQ and such that

a0...an ∈ LQ ⇐⇒
{

a0 = min
{
t ∈ ΣQ

∑n
k=0 akβ

k ∈ βQ + t
}

a1...an ∈ LQ
.

Proposition
The following two sentences are equivalent.

Q comes from a substitution.
LQ is a regular language.
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Proof

Hence, to prove the main theorem, it is enough to prove the following

Lemma
We have the equivalence between :

LQ is a regular language.
Q is a g-β-set.

The direct part is obvious. To prove the converse, we have to construct the
language LQ from any regular language L such that Q = QL.
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Proof

Step 1/3 : get a regular language over the alphabet ΣQ

Let L be a regular language over an alphabet Σ ⊂ Q(β) such that Q = QL.

Lemma (Change of the alphabet)

The following language is regular

LQ,ΣQ
:=
{
a0...an ∈ Σ∗Q n ∈ N,

∑n
k=0 akβ

k ∈ Q
}
,

and we have QLQ,ΣQ
= Q.

Proof.

LQ,ΣQ
= Z (p1(Lrel ∩ Σ∗Q × L0∗)) where Z : L 7→

⋃
n∈N

L0−n,

Lrel =
{

(u, v) ∈ (ΣQ × Σ)∗
∑n

k=0(uk − vk)βk = 0
}
.

This last language is regular thanks to the main result of my paper
« Semi-groupes fortement automatiques ».
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Proof

Step 2/3 : stabilization by suffix

Lemma (Stabilization by suffix)

The greatest language L′ ⊂ LQ,ΣQ
such that

u ∈ L′ =⇒ every suffix of u is in L′

is a regular language, and we have Q = QL′ .

Proof.
Take a deterministic automaton recognizing the mirror of LQ,ΣQ

.
Remove every non final state.
Then this new automaton recognize the mirror of L′.
And we have LQ ⊆ L′ ⊆ LQ,ΣQ

, hence Q = QL′ .
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Proof

Step 3/3 : minimal words in lexicographic order

Lemma (Minimal words in lexicographic order describing Q)

We have the equality

LQ = L′\p1(L′ × L′ ∩ Lrel ∩ L>),

where

Lrel :=
{

(u, v) ∈ (ΣQ × ΣQ)∗
∑n

k=0(uk − vk)βk = 0
}

and

L> :=
{

(u, v) ∈ (ΣQ × ΣQ)∗ u > v for the lexicographic order
}
,

where we choose the natural order on ΣQ , given by the embedding into the
expanding space E e

β = R.

Hence LQ is regular, and this proves the theorem.
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Proof

Proof of last lemma.

L′ × L′ ∩ Lrel ∩ L> is the couple of words of same length, giving the
same element of Q, and with the left one strictly less than the right
one for the lexicographic order.
Hence L′\p1(L′ × L′ ∩ Lrel ∩ L>) is the set of elements of L′ which are
minimal in lexicographic order among the words of L′ of same length
describing the same point of Q.
We deduce the equality with LQ : the language is still stable by suffix
and the first letter is the minimal one, as in the definition of LQ .
The language L> is easily seen to be regular : we can recognize it with
an automaton having two states.
The language Lrel is regular, thanks to my article « Semi-groupes
fortement automatiques ».
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Proof

Example of g-β-set for β the Tribonnacci number

Let’s take the g-β-set defined by

for β3 = β2 + β + 1. The regular language L described by this automaton is

L = 0∗1∗ ∪ 0∗1+0100{0, 1}∗.

This g-β-set satisfy every hypothesis of the theorem, hence we can
compute a substitution from it.
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Proof

Corresponding substitution whose Perron number is β

1 7→ 28, 12, 13
2 7→ 29, 1, 5
3 7→ 29, 1, 8, 13
4 7→ 4, 13
5 7→ 29, 3, 9
6 7→ 32, 11, 9
7 7→ 49
8 7→ 29, 3, 10, 13
9 7→ 29, 2
10 7→ 29, 3, 13
11 7→ 30, 26
12 7→ 32, 11, 10, 13

13 7→ 29, 14
14 7→ 29, 1, 27
15 7→ 32, 11, 27
16 7→ 29, 19
17 7→ 4, 27
18 7→ 7
19 7→ 28, 6
20 7→ 33, 35
21 7→ 29, 34
22 7→ 17
23 7→ 18
24 7→ 19

25 7→ 25, 20
26 7→ 28, 15
27 7→ 29, 16
28 7→ 22
29 7→ 23
30 7→ 24
31 7→ 26
32 7→ 28, 21
33 7→ 31, 21
34 7→ 29
35 7→ 30
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Proof

Rauzy fractal
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Proof

Construction of a domain exchange

-2 -1 1 2

-2

-1

1

2

-2 -1 1 2

-2

-1

1

2

−β2 + 2β, β2 − β − 1, β − 1, 1, −β2 + 2β + 1, β2 − β, β
Domain exchange on the model set defined by the unit disk window, and

the integer ring Oβ where β is the Tribonnacci number.
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Proof

Another application of g-β-sets

Let s and h be the substitutions

s :


1 7→ 2
2 7→ 3
3 7→ 12

h :


1 7→ 12
2 7→ 3
3 7→ 4
4 7→ 5
5 7→ 1

and let Rs ⊆ C and Rh ⊆ C be their Rauzy fractals.

Proposition
Rs is a countable union of homothetic transformations of Rh, union a set of
dimension less than two.
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Proof

Projecting a substitution on another with same β

We define the projection of a language on another by

Proj(L, L′) =
{
u ∈ L′

∑|u|−1
i=0 uiβ

i ∈ QL

}
= Z (p1(L′ × L0∗ ∩ Lrel))

Proposition
There exists regular languages A and B such that

Proj(03Ls , Lh) = ALh ∪ B

with spectral radius of B less than β.

Figure – Minimal automata of Ls and Lh respectively
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Proof

Computation of the dimension

The box dimension of the part of dimension less than two is

dimMB(σ−(QLM )) = 2
log(γ)

log(β)
≈ 1.94643460326525...

where γ ≈ 1.31477860592584... is the greatest root of
x13 − x12 − x10 + x9 − 2 x4 + x3 − 1 and β is the smallest Pisot number.

Theorem

Let β be a complex conjugate of the smallest Pisot number β, and let
L ⊆ Σ∗ be a language over the alphabet Σ = {0, 1} such that the elements
of σ−(QL) =

{∑|u|−1
i=0 uiβ

i
u ∈ L

}
⊆ C are uniquely represented for a

given length (i.e.
∀u, v ∈ L,

(
|u| = |v | and

∑|u|−1
i=0 uiβ

i
=
∑|v |−1

i=0 viβ
i
)

=⇒ u = v).

Then we have dimMB(σ−(QL)) = log(γ)

log(1/|β|) = 2 log(γ)
log(β) , where γ is the

spectral radius of the minimal automaton of L.
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Proof

Zoom in the Rauzy fractal of s
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