Rauzy fractals, one dimensional Meyer sets, $\beta\text{-numeration}$ and automata

Paul MERCAT

28/11/2017 Zero Entropy System

Paul MERCAT

Example of substitution

Let's take the following substitution over the alphabet $\{a,b,c\}$:

$$s: \left\{ egin{array}{l} a\mapsto ab\ b\mapsto ca\ c\mapsto a \end{array}
ight.$$

Then by iterating the letter a we get an infinite fixed point :

$$s(a) = ab$$

 $s^2(a) = abca$
 $s^3(a) = abcaaab$

. . .

 $s^\infty(\mathtt{a})=$ abcaaababbcaabcaabcaaababcaaababcaaabab \ldots

★週 ▶ ★ 周 ▶ ★ 周 ▶ 二 周

Self-similar tiling of \mathbb{R}_+

If we replace letters of this fixed point by intervalles of convenient lengths, we get a self-similar tiling of $\mathbb{R}_+.$

To get such a self-similar tiling of \mathbb{R}_+ , the lengths of each intervalles must satisfy the equality

$${}^{t}M_{s} \cdot \begin{pmatrix} I_{a} \\ I_{b} \\ I_{c} \end{pmatrix} = \beta \begin{pmatrix} I_{a} \\ I_{b} \\ I_{c} \end{pmatrix},$$

where $M_s = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ is the incidence matrix of the substitution and β is the Perron eigenvalue of M_s . Hence we can assume that the lengths $l_i, i \in \{a, b, c\}$ live in $\mathbb{Q}(\beta)$.

▲御▶ ▲周▶ ▲周▶ 三国

Introduction

Quasicrystal of \mathbb{R}_+

If we take for example

$$l_{a}=1, \quad l_{b}=\beta-1, \quad l_{c}=\beta^{2}-\beta-1,$$

we get the following subset Q of $\mathbb{Q}(\beta)$.

$$Q = \left\{0, 1, \beta, \beta^2 - 1, \beta^2, \beta^2 + 1, \beta^2 + 2, \beta^2 + \beta + 1, \beta^2 + \beta + 2, \ldots\right\}$$

This set have very strong properties since we have :

Proposition

Q is a β -invariant Meyer set of \mathbb{R}_+ .

But what is a Meyer set?

Paul MERCAT

Introduction

Meyer sets are a mathematical model for quasicrystals.

Definition

- A Meyer set of \mathbb{R}_+ is a set $Q \subset \mathbb{R}_+$ such that
 - Q is a Delone set of \mathbb{R}_+ ,
 - Q Q is a Delone set of \mathbb{R} .

Definition

- Q is a **Delone set** of E if
 - Q is uniformly discrete

$$\exists \epsilon > 0, \ orall (x,y) \in Q^2, B(x,\epsilon) \cap B(y,\epsilon) = \emptyset,$$

• Q is relatively dense in E

$$\exists R > 0, \ E \subseteq \bigcup_{x \in Q} B(x, R).$$

< 行り

Rauzy fractal

The quasicrystal Q is a part of $\mathbb{Q}(\beta)$, hence we can look at the action of the Galois group. Here, β has two complexes conjugated as conjugates, hence we have an embedding

 $\sigma: \mathbb{Q}(\beta) \ \hookrightarrow \ \mathbb{C} \ ,$

by choosing one of the complex conjugates.

Proposition

The set $\sigma(Q) \subseteq \mathbb{C}$ is bounded.

We call the closure $\overline{\sigma(Q)}$ a Rauzy fractal.

Introduction

The Rauzy fractal $\overline{\sigma(Q)} \subset \mathbb{C}$

Coloring the Rauzy fractal

Moreover, we can color in red the points of $\sigma(Q)$ that are left bound of an interval of length 1 (i.e. coming from letter a), in green the points that are left bound of an intervalle of length $\beta - 1$ (i.e. coming from letter b), and the other ones, for $\beta^2 - \beta - 1$, in blue.

We can also color in the same way by considering the right bound rather than the left one.

Proposition

Let $u = s^{\infty}(a)$. Then, the subshift $(\overline{S^{\mathbb{Z}}u}, S)$ is measurably conjugated to a domain exchange on the Rauzy fractal $\overline{\sigma(Q)}$, for the Haar measure.

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ =

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ =

Generalization to any substitution

If s is any substitution over a alphabet A, everything generalizes :

- fixed point : Up to replace s by a power, s has a fixed point ω .
- self-similar tiling : We get a self-similar tiling of ℝ₊ or ℝ by replacing letters by intervals of lengths *I_a*, *a* ∈ *A* given by a Perron left eigenvector of the incidence matrix.
- quasicrystal : We get a set $Q_{\omega} \subset \mathbb{R}$ by taking the bounds of intervals of this self-similar tiling, and up to rescaling we have $Q_{\omega} \subset \mathbb{Q}(\beta)$ where β is the Perron eigenvalue of the incidence matrix M_s . If β is a Pisot number, Q_{ω} is a Meyer set.
- Rauzy fractal : Q_ω is a subset of Q(β), therefore we can embed it into a natural contracting space E^c_β where it is a pre-compact subset.
- **Domain exchange** : If the substitution satisfies the strong coïncidence condition, then we can color the Rauzy fractal $\sigma_c(Q_\omega)$ in order to define a domain exchange conjugated to the shift.

Introduction

General definitions of contracting space and Rauzy fractal

There are natural contracting and expanding spaces for the multiplication by β on a number field $k = \mathbb{Q}(\beta)$. Call *P* the set of places of *k* (i.e. equivalence classes of absolute values), and let

$${\mathcal P}_e := ig\{ v \in {\mathcal P} \ ig| \ |eta|_v > 1 ig\} \, ext{ and } \, {\mathcal P}_c := ig\{ v \in {\mathcal P} \ ig| \ |eta|_v < 1 ig\}.$$

The contracting space is $E_{\beta}^{c} := \prod_{v \in P_{c}} k_{v}$ and the expanding one is $E_{\beta}^{e} := \prod_{v \in P_{e}} k_{v}$, where k_{v} denotes the completion of k for the absolute value v. We denote by $\sigma_{c} = \prod_{v \in P_{c}} \sigma_{v} : \mathbb{Q}(\beta) \hookrightarrow E_{\beta}^{c}$ where $\sigma_{v} : \mathbb{Q}(\beta) \hookrightarrow k_{v}$ is a choice of one natural embedding.

Definition

We call **Rauzy fractal** the adherence of $\sigma_c(Q_\omega)$ in E_β^c .

For the previous example, where β is root of $x^3 - x^2 - x - 1$, we have $E_{\beta}^e = \mathbb{R}$ (there is one real place) and $E_{\beta}^c = \mathbb{C}$ (there is one complex place).

▶ < 등 > < 등 >

Rauzy fractals can approximate any shape

Theorem

For any Pisot number β and for any $P \subset E_{\beta}^{c}$, bounded and containing 0, there exists substitutions whose Rauzy fractals approximate arbitrarily P, for the Hausdorff distance, and whose Perron numbers are powers of β . Moreover, the proof is constructive.

The Hausdorff distance between two subsets $A \subseteq E$ and $B \subseteq E$ of a metric space E is

$$d(A,B) = \max\left(\sup_{a\in A}\inf_{b\in B}d(a,b), \sup_{b\in B}\inf_{a\in A}d(a,b)\right).$$

Main results

Rauzy fractals aproximating various shapes

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < 二 = < < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ = < □ =

g- β -sets : a nice description of quasicrystals by automata

Definition (Main tool)

A set $Q \subseteq \mathbb{Q}(\beta)$ is a *g*- β -set if we have

$$Q = Q_{L,\beta} = \left\{ \sum_{k=0}^n a_k \beta^k \mid n \in \mathbb{N}, a_0 ... a_n \in L \right\},\$$

where $\Sigma \subset \mathbb{Q}(\beta)$ is a finite alphabet and $L \subseteq \Sigma^*$ is a regular language.

Proposition

If ω is a fixed point of a substitution, then Q_{ω} is a g- β -set.

The aim of the following will be to give a reciprocal to this proposition.

Main results

g- β -set coming from a substitution

For the example

$$s: \left\{ \begin{array}{l} a \mapsto ab \\ b \mapsto ca \\ c \mapsto a \end{array} \right.$$

the mirror of the language *L*, recognized by the following automaton, define a g- β -set which is a quasicrystal coming from the substitution *s*, for β the Tribonnacci number.

Paul MERCAT

Rauzy fractals, one dimensional Meyer se

/ 37

Stability of the set of g- β -sets

Properties (Properties of g-sets)

If β is an algebraic number without conjugate of modulus one, and if Q_1 and Q_2 are two g- β -sets, then

- $Q_1\cup Q_2,\ Q_1\cap Q_2$ and $Q_1ackslash Q_2$ are g-eta-sets,
- $Q_1 + Q_2$ is a g- β -set,
- $\forall t \in \mathbb{Q}(\beta)$, $Q_1 + t$ is a g- β -set,
- $\forall c \in \mathbb{Q}(\beta)$, cQ_1 is a g- β -set,
- $\forall k \geq 1, n \geq 1$, a g- β^k -set is a g- β^n -set.

Moreover, everything is computable, and emptyness and inclusion are decidable.

Hence, it is easy to approximate any shape by g- β -sets.

Main result : Characterization of Meyer sets coming from substitutions

It is easy to prove that Rauzy fractals can approximate any shape with the previous properties of g- β -sets and with the following theorem.

Theorem

Let β be a Pisot number, and let $Q \subseteq \mathbb{Q}(\beta)$ a β -invariant Meyer set. Then, the Meyer set Q comes from a substitution if and only if it is a g- β -set that contains 0.

We have already seen that these conditions are necessary. Let us show that these are sufficient, and how to construct such substitution.

β -expansion algorithm in a β -invariant Meyer set

Let Q be a Meyer set and β be a Pisot number with $\beta Q \subset Q$ and $0 \in Q$. Then we can define the following algorithm that gives an unique finite β -expansion of any element of Q.

The expansion of x is given by the successive elements t_0 .

With the previous algorithm, we define the language

$$L_Q := \big\{a_0...a_n \in \Sigma_Q^* \ \big| \ a_0...a_n \text{ expansion of } x \text{ given by the algorithm } \big\} 0^*$$

over the finite alphabet

$$\Sigma_Q := \left\{ \inf\{t \ge 0 | x - t \in \beta Q\} \mid x \in Q \right\}.$$

In others word, L_Q is the unique subset of Σ_Q^* containing the empty word ϵ , such that $Q = Q_{L_Q}$ and such that

$$a_0...a_n \in L_Q \iff \begin{cases} a_0 = \min \{ t \in \Sigma_Q \mid \sum_{k=0}^n a_k \beta^k \in \beta Q + t \} \\ a_1...a_n \in L_Q \end{cases}$$

Proposition

The following two sentences are equivalent.

- Q comes from a substitution.
- L_Q is a regular language.

Hence, to prove the main theorem, it is enough to prove the following

The direct part is obvious. To prove the converse, we have to construct the language L_Q from any regular language L such that $Q = Q_L$.

Step 1/3 : get a regular language over the alphabet Σ_Q

Let L be a regular language over an alphabet $\Sigma \subset \mathbb{Q}(eta)$ such that $Q = Q_L$.

Lemma (Change of the alphabet)

The following language is regular

$$L_{Q,\Sigma_Q} := \left\{a_0...a_n \in \Sigma_Q^* \mid n \in \mathbb{N}, \sum_{k=0}^n a_k \beta^k \in Q\right\},$$

and we have $Q_{L_{Q,\Sigma_Q}} = Q$.

Proof.

$$L_{Q,\Sigma_Q} = Z(p_1(L^{rel} \cap \Sigma_Q^* imes L0^*)) ext{ where } Z: L \mapsto igcup_{n \in \mathbb{N}} L0^{-n},$$

$$L^{rel} = \left\{ (u, v) \in (\Sigma_Q \times \Sigma)^* \mid \sum_{k=0}^n (u_k - v_k) \beta^k = 0 \right\}.$$

This last language is regular thanks to the main result of my paper « Semi-groupes fortement automatiques ».

Paul MERCAT

Lemma (Stabilization by suffix)

The greatest language $L' \subset L_{\mathcal{Q}, \Sigma_\mathcal{Q}}$ such that

 $u \in L' \Longrightarrow$ every suffix of u is in L'

Proof

is a regular language, and we have $Q = Q_{L'}$.

Proof.

Take a deterministic automaton recognizing the mirror of L_{Q,Σ_Q} . Remove every non final state. Then this new automaton recognize the mirror of L'.

And we have $L_Q \subseteq L' \subseteq L_{Q,\Sigma_Q}$, hence $Q = Q_{L'}$.

Step 3/3 : minimal words in lexicographic order

Lemma (Minimal words in lexicographic order describing Q)

We have the equality

$$L_Q = L' \setminus p_1(L' \times L' \cap L^{rel} \cap L^>),$$

where

$$L^{rel} := \left\{ (u, v) \in (\Sigma_Q \times \Sigma_Q)^* \mid \sum_{k=0}^n (u_k - v_k) \beta^k = 0 \right\}$$

and

$$L^> := \left\{ (u,v) \in (\Sigma_Q imes \Sigma_Q)^* \ \Big| \ u > v \ \textit{for the lexicographic order}
ight\},$$

where we choose the natural order on Σ_Q , given by the embedding into the expanding space $E_{\beta}^e = \mathbb{R}$.

Hence L_Q is regular, and this proves the theorem.

Proof of last lemma.

- L' × L' ∩ L^{rel} ∩ L[>] is the couple of words of same length, giving the same element of Q, and with the left one strictly less than the right one for the lexicographic order.
- Hence L'\p₁(L' × L' ∩ L^{rel} ∩ L[>]) is the set of elements of L' which are minimal in lexicographic order among the words of L' of same length describing the same point of Q.
- We deduce the equality with L_Q : the language is still stable by suffix and the first letter is the minimal one, as in the definition of L_Q .
- The language L[>] is easily seen to be regular : we can recognize it with an automaton having two states.
- The language *L^{rel}* is regular, thanks to my article « Semi-groupes fortement automatiques ».

Example of g- β -set for β the Tribonnacci number

Proof

Let's take the g- $\beta\text{-set}$ defined by

for $\beta^3 = \beta^2 + \beta + 1$. The regular language *L* described by this automaton is

 $L = 0^* 1^* \cup 0^* 1^+ 0100\{0,1\}^*.$

This g- β -set satisfy every hypothesis of the theorem, hence we can compute a substitution from it.

Corresponding substitution whose Perron number is β

$1\mapsto 28,12,13$	$13\mapsto 29,14$	
$2\mapsto 29,1,5$	$14\mapsto 29,1,27$	$23 \mapsto 23, 20$
$3\mapsto 29,1,8,13$	$15\mapsto 32,11,27$	$20 \mapsto 20, 15$
$4\mapsto 4,13$	$16\mapsto 29,19$	$27 \mapsto 29, 10$
$5\mapsto 29,3,9$	$17\mapsto 4,27$	$20 \mapsto 22$
$6\mapsto 32,11,9$	$18\mapsto 7$	$29 \mapsto 23$
$7\mapsto 49$	$19\mapsto 28,6$	$30 \mapsto 24$
$8\mapsto 29,3,10,13$	$20\mapsto 33,35$	$31 \mapsto 20$
$9\mapsto 29,2$	$21\mapsto 29,34$	$32 \mapsto 20, 21$
$10\mapsto 29,3,13$	$22\mapsto 17$	$33 \mapsto 31, 21$
$11\mapsto 30,26$	$23\mapsto 18$	$34 \mapsto 29$
$12\mapsto 32,11,10,13$	$24\mapsto 19$	$55 \mapsto 50$

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

Rauzy fractal

Proof

Construction of a domain exchange

 $-\beta^2 + 2\beta$, $\beta^2 - \beta - 1$, $\beta - 1$, 1, $-\beta^2 + 2\beta + 1$, $\beta^2 - \beta$, β Domain exchange on the model set defined by the unit disk window, and the integer ring \mathcal{O}_{β} where β is the Tribonnacci number.

★週 ▶ ★ 思 ▶ ★ 思 ▶ … ほ

Another application of g- β -sets

Let s and h be the substitutions

$$s: \left\{ \begin{array}{ccc} 1 \mapsto 2 \\ 2 \mapsto 3 \\ 3 \mapsto 12 \end{array} \right. \qquad h: \left\{ \begin{array}{ccc} 1 \mapsto 12 \\ 2 \mapsto 3 \\ 3 \mapsto 4 \\ 4 \mapsto 5 \\ 5 \mapsto 1 \end{array} \right. \right.$$

Proof

and let $R_s \subseteq \mathbb{C}$ and $R_h \subseteq \mathbb{C}$ be their Rauzy fractals.

Proposition

 R_s is a countable union of homothetic transformations of R_h , union a set of dimension less than two.

Projecting a substitution on another with same β

We define the projection of a language on another by

$$\operatorname{Proj}(L,L') = \left\{ u \in L' \mid \sum_{i=0}^{|u|-1} u_i \beta^i \in Q_L \right\} = Z(p_1(L' \times L0^* \cap L^{\operatorname{rel}}))$$

Proposition

There exists regular languages A and B such that

$$\operatorname{Proj}(0^{3}L_{s},L_{h})=AL_{h}\cup B$$

with spectral radius of B less than β .

Figure – Minimal automata of L_s and L_h respectively

Computation of the dimension

The box dimension of the part of dimension less than two is

$$\dim_{MB}(\sigma_{-}(\mathcal{Q}_{L_M})) = 2\frac{\log(\gamma)}{\log(\beta)} \approx 1.94643460326525...$$

where $\gamma \approx 1.31477860592584...$ is the greatest root of $x^{13} - x^{12} - x^{10} + x^9 - 2x^4 + x^3 - 1$ and β is the smallest Pisot number.

Theorem

Let $\overline{\beta}$ be a complex conjugate of the smallest Pisot number β , and let $L \subseteq \Sigma^*$ be a language over the alphabet $\Sigma = \{0, 1\}$ such that the elements of $\sigma_-(Q_L) = \left\{ \sum_{i=0}^{|u|-1} u_i \overline{\beta}^i \mid u \in L \right\} \subseteq \mathbb{C}$ are uniquely represented for a given length (i.e. $\forall u, v \in L, \left(|u| = |v| \text{ and } \sum_{i=0}^{|u|-1} u_i \overline{\beta}^i = \sum_{i=0}^{|v|-1} v_i \overline{\beta}^i \right) \Longrightarrow u = v$). Then we have $\dim_{MB}(\sigma_-(Q_L)) = \frac{\log(\gamma)}{\log(1/|\overline{\beta}|)} = 2\frac{\log(\gamma)}{\log(\beta)}$, where γ is the spectral radius of the minimal automaton of L.

Zoom in the Rauzy fractal of s

