
EXAMPLE OF FUCHSIAN GROUP OF SMALL
CRITICAL EXPONENT BUT WITH A DISCRETE ORBIT

OF POSITIVE DENSITY IN Z2

PAUL MERCAT

Abstract. We construct an example of subgroup Γ of SL(2,Z) of arbitrary
small critical exponent, but with an orbit of positive density in Z2 :

lim inf
T→∞

1

T 2
#

{(
x

y

)
∈ Γ

(
1

0

) ∥∥∥∥(x

y

)∥∥∥∥ < T

}
> 0.

The result is extended to every group of isometries of a Gromov-hyperbolic
space that verify a certain property P.
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Given a subgroup Γ of SL(2,R), one can look at the discrete orbit of a point

of R2. For example it could be the orbit of
(

1
0

)
under the action of SL(2,Z) : in

this case the orbit is exactly the set
{(

x
y

)
∈ Z2 x ∧ y = 1

}
. And one can look

at the growth rate of this orbit. For SL(2,Z)

(
1
0

)
one can check that we have

#

{(
x
y

)
∈ SL(2,Z)

(
1
0

) ∥∥∥∥(xy
)∥∥∥∥ ≤ R} ∼

R→+∞

6R2

π
.

Date: May 26, 2016.
2010 Mathematics Subject Classification. 20F65, 52C99, 20F67, 37C85.
Key words and phrases. Gromov-hyperbolic geometry, discrete groups, group of isometries,

Fuchsian group, conformal transformations, counting problems.
1
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We are mainly interested in the exponent that appears (2 for SL(2,Z)). Let us
denote it δeucl

Γ,v . For a vector v, we have more precisely

δeucl
Γ,v = lim sup

R→+∞

ln #
{
γ ∈ Γ ‖γv‖ ≤ R

}
R

.

But there is another natural action for a discrete subgroup Γ of SL(2,R). The
group Γ also act on the hyperbolic plane H2, and we can look at the exponential
growth rate of a discrete orbit in H2. This growth rate is usually called the critical
exponent of the group Γ, and we will denote it by δΓ. See [Coo] for more details.
For any point o ∈ H2, we have

δΓ = lim sup
R→+∞

ln #
{
γ ∈ Γ d(o, γo) ≤ R

}
lnR

,

where d(., .) is the hyperbolic distance of H2. By triangular inequality, this critical
exponent does not depends on o ∈ H2. For Γ = SL(2,Z), we have δΓ = 1.
The question is :

Is there a link between the growth rate δeucl
Γ,v and the critical exponent δΓ ?

The following theorem (from [Dal2]) gives a positive answer to this question in some
cases :

Theorem 0.1 (Dal’Bo). If v ∈ R2 is a eigenvector of a parabolic element of a
discrete subgroup Γ of SL(2,R) such that the orbit Γv is discrete, then we have

δeuclΓ,v = 2δΓ.

The example Γ = SL(2,Z) and v =

(
1
0

)
satisfy this theorem : v is an eigenvector

of the parabolic element
(

1 1
0 1

)
∈ SL(2,Z). This statement can be generalize to

groups of isometries acting on a CAT (−1) space and is a corollary of the theorem 4.2
in [Robl]. But we show in this article that the result does not hold anymore if we
does not assume that the vector v is an eigenvector for a parabolic element :

Theorem 0.2. For every ε > 0, there exists a subgroup Γ of SL(2,Z) such that
δΓ ≤ ε, but with δeuclΓ,v = 2.

See below for a more precise statement. The aim of this paper is to prove a
stronger version of this theorem and to give a generalization to groups of isometries
of a Gromov hyperbolic space. I thanks Pascal Hubert for this question.

0.1. Organisation of the paper. This paper is organized as follow : In section 1
we expose our two main results. The first one is about SL(2,Z) acting on H2, and
the other one is a generalization to any group of isometries of a Gromov-hyperbolic
space satisfying a certain property P that we present. In the section 2 we give
some tools to make our ping-pong strategy works, in order to control the critical
exponent. In the section 3 we construct a subgroup Γ of a group G, satisfying a list
of properties. In the section 4 we prove the second theorem (the most general one)
using the properties of the group Γ and the property P for the group G. The last
section 5 is devoted to the proof that SL(2,Z) acting on H2 satisfy the property P,
and this gives a proof of the first theorem as a corollary of the second one.
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1. Results

The aim of this paper is to prove the following theorem and a generalization.

Theorem 1.1. For any ε > 0, there exists a subgroup Γ of SL(2,Z) such that the

discrete orbit of
(

1
0

)
has positive density in Z2 :

lim inf
T→∞

1

T 2
#

{(
x
y

)
∈ Γ

(
1
0

) ∥∥∥∥(xy
)∥∥∥∥ < T

}
> 0,

and such that the critical exponent is smaller than ε :

lim sup
n→∞

1

2 ln(n)
ln
(
#
{
γ ∈ Γ ‖γ‖ < n

})
≤ ε.

This statement can be generalized to any group of isometries of a Gromov-
hyperbolic space, with the following correspondance :

H2 X proper Gromov-hyperbolic space
SL(2,Z) G discrete group of isometries of X

Γ < SL(2,Z) Γ < G(
1
0

)
P parabolic group fixing a point ∞ ∈ ∂X

Z2 G/P

‖.‖ e
1
2β∞(γ−1o,o)

Γ

(
1
0

)
discrete ∀R ∈ R,

{
γ ∈ G/P β∞(γ−1o, o) ≤ R

}
is finite.

This correspondance comes from the lemma 5.1 and lemma 5.2.

Remark 1.2. For γ ∈ G/P , the notation β∞(γ−1o, o) makes sense because P
stabilize ∞.

But to generalize the theorem, we will need some hypothesis on the groupe G
that are satisfied for SL(2,Z).We could prove the following weaker statement, using
a result of T. Roblin :

Theorem 1.3. Let X be a CAT (−1) space and G be a group of isometries of X
satisfying the hypothesis of theorem 4.2 in [Robl], and such that the convergence in
this theorem is toward a non-atomic measure having finite and non-zero mass. Let
o ∈ X and ∞ ∈ ∂X. Assume that the stabilizer of o is trivial and that the stabilizer
P of ∞ is non-trivial and that we have

∀R ∈ R,
{
γ ∈ G/P β∞(γ−1o, o) ≤ R

}
is finite.

Then, for every ε > 0, there exists a subgroup Γ < G such that δΓ ≤ ε and such
that

lim sup
R→∞

#
{
γ ∈ Γ/P β∞(γ−1o, o) ≤ R

}
#
{
γ ∈ G/P β∞(γ−1o, o) ≤ R

} ≥ 1− ε,

where Γ/P := {γP |γ ∈ Γ} ⊆ G/P denote the orbit of P under Γ.

This theorem gives a weaker conclusion (lim sup in place of lim inf) but is satisfied
for a large class of groups thanks to T. Roblin. We will not prove this result in
this paper, but it can be done by modifying slightly the prove of the theorem 1.6
below. In order to have the stronger conclusion, we will replace what is given by
the theorem of Roblin by the following property :
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Property 1.4 (Property P). Let X be a proper Gromov-hyperbolic space, o ∈ X,
and ∞ ∈ ∂X. Let G be a discrete group of isometries of X, and P be the maximal
parabolic subgroup of G stabilizing ∞. We say that (X,G,∞) has property P if we
have

∀R ∈ R,
{
γ ∈ G/P β∞(γ−1o, o) ≤ R

}
is finite,

and if there exists o : R+ → R+ ∪ {∞} such that for all ξ ∈ ∂X, there exists
µξ : R+ → R+ ∪ {∞} such that ∀r ∈ R+, ∀R ∈ R+,

#
{
γ ∈ G/P γ∞ ∈ B(ξ, r), β∞(γ−1o, o) ≤ R

}
#
{
γ ∈ G/P β∞(γ−1o, o) ≤ R

} ≤ µξ(r) + o(R)

where B(ξ, r) :=
{
y ∈ X (ξ|y) ≥ − ln(r)

}
, and with

lim
R→∞

o(R) = 0 and ∀ξ ∈ ∂X, lim
r→0

µξ(r) = 0.

The notation β∞(., .) stands for the Busemann function at∞, and (ξ|y) = (ξ|y)o
is the Gromov product of ξ and y with base point o.

This property says that the number of elements of G∞ in small balls is small
but with an uniform control. The function µξ can be compared to a measure (we
extends it to any Y ⊆ X below), and the sentence ∀ξ ∈ ∂X, limr→0 µξ(r) = 0
corresponds to say that the measure has no atom. If we replace the o(R) by an
o(R, ξ, r) that tends to 0 for every ξ ∈ ∂X and r > 0, the property can be verified
for many groups of isometries of CAT (−1) spaces using the result of T.Roblin. But
here we need more : we need this uniformity in order to do a limits exchange to
prove that the density of the orbit under the constructed group is big.

Remark 1.5. We can assume that the function o in the property P is strictly
decreasing even if it means replacing it by R 7→ 1/R+supr>R o(r). For a given ε >
0, the function R 7→ ε

2o(R) is then strictly increasing and tends to +∞. Therefore
this function is injective, and there exists a function g : R+ → R+ such that
∀k ∈ R+, g(k) ≤ R⇐⇒ k ≤ ε

2o(R) .
This will be usefull to construct a group with a big orbit.

Notation . For Y ⊆ X, we define

µ(Y ) := inf
{
µξ(r) ξ ∈ ∂X and r > 0 such that Y ⊆ B(ξ, r)

}
.

Then we have for all R > 0,

#
{
γ ∈ G/P γ∞ ∈ Y, β∞(γ−1o, o) ≤ R

}
#
{
γ ∈ G/P β∞(γ−1o, o) ≤ R

} ≤ µ(Y ) + o(R).

The following theorem is the main result of this paper. It is a generalization of
the theorem 1.1 since SL(2,Z) verifies the property P , as we show in section 5.

Theorem 1.6. Let (X,G,∞) satisfying the property P. Let o ∈ X. Assume that
the stabilizer of o is trivial and that the stabilizer P of ∞ is non-trivial. Then, for
every ε > 0, there exists a subgroup Γ < G such that δΓ ≤ ε and such that

lim inf
R→∞

#
{
γ ∈ Γ/P β∞(γ−1o, o) ≤ R

}
#
{
γ ∈ G/P β∞(γ−1o, o) ≤ R

} ≥ 1− ε,

where Γ/P := {γP |γ ∈ Γ} ⊆ G/P denotes the orbit of P under Γ.



EXAMPLE OF SMALL GROUP WITH BIG HOROBALL ORBIT 5

If we compare this theorem to the theorem 1.1, the last inequality generalizes
the fact that the orbit has positive density in Z2. The generalization of the linear
action of SL(2,Z) on R2 is the action of the group G on the set of horoballs of the
space X (or equivalently on G/P , for our matter), and the norm of vectors of R2

becomes the exponential of the Busemann function.
For X = H2 and G = SL(2,Z), all the hypothesis of this last theorem are

satisfied, as shown in section 5, and this gives the first theorem.

In all the following we assume that the hypothesis of this last theorem are verified:
X is a proper Gromov-hyperbolic space and ∂X will denote its boundary. ∞ ∈ ∂X
and o ∈ X are set, and G < Isom(X) is a discrete subgroup such that the stabilizer
of o is trivial and such that the stabilizer P of ∞ is non-trivial. And we assume
that (X,G,∞) satisfies the property P. In particular, we have

∃C, ∀γ ∈ G/P, β∞(γ−1o, o) ≥ C.

This guarantees that the stabilizer P of ∞ is a parabolic group, because for every
γ ∈ P , we have

β∞(γno, o) = nβ∞(γo, o), ∀n ∈ Z,

hence for every γ ∈ P\{id}, we must have β∞(γo, o) = 0, therefore γ is parabolic.

2. Ping-pong

In this section we give tools that permits to measure the level of a ping-pong, in
order to approach the triangular equality. This will permit to control the critical
exponent of the constructed group.

Notation . We denote by X = X ∪ ∂X the Gromov-hyperbolic space with its
boundary. For x, y ∈ X, we denote by (x|y) the Gromov product from o. For
x, y ∈ X, we have (x|y) = (x|y)o = 1

2 (d(o, x) + d(o, y)− d(x, y)) by definition. For
x, y ∈ X and ξ ∈ ∂X, we denote by βξ(x, y) := (ξ|x)y − (ξ|y)x the Busemann
function (that is the algebraic distance between two horocycles based at point ξ :
one passing through x and the other one passing through y).

For α ∈ R and x ∈ X, let

Xα
x :=

{
y ∈ X (x|y) ≥ 1−α

2 d(o, x)
}
.

and for γ ∈ G, let Xα
γ := Xα

γo. As we will see, these sets are usefull to make a
ping-pong.

Remark 2.1. We have γ
(
X\Xα

γ−1

)
⊆ X−αγ .

Definition 2.2. Let γ ∈ G, and let X− ⊆ X and X+ ⊆ X. We say that
(γ,X−, X+) is a ping-pong player of level α ∈ R if we have the inclusions
Xα
γ−1 ⊆ X−, Xα

γ ⊆ X+ and X− ∩X+ = ∅.

Properties 2.3. (1) The level of a ping-pong player is necessarily less than 1.

(2) If the level of a ping-pong player (γ,X−, X+) is positive or equal to zero,
then we have the inclusion γ (X\X−) ⊆ X+.
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(3) Let (γ,X−, X+) be a ping-pong player of level α and let y ∈ X\X−. Then
we have

d(γy, o) = d(γo, o) + d(y, o)− 2(γ−1o|y)

≥ αd(γo, o) + d(y, o).

(4) The inverse (γ−1, X+, X−) of a ping-pong player (γ,X−, X+) of level α is
also a ping-pong player of level α.

Definition 2.4. We say that ping-pong players
(
(γi, X

−
i , X

+
i )
)
i∈I are playing to-

gether if the sets X−i and X+
i are all pairwise disjoint.

Remark 2.5. A group generated by ping-pong players of non-negative level playing
together is usually called a Schottky group. It is a free group and it contains only
hyperbolic isometries.

We will see in section 4.1 that if moreover the levels of ping-pong players playing
together are greater than a given constant C > 0 and that the isometries are big
enough, then the critical exponent is small.

3. The construction

The idea is to construct a infinitely generated Schottky group with ping-pong
players of good level, and with one player for each point of G/P that we want to
keep. Using the property P , we can construct this group in such a way that we can
keep most of the points of G/P .
Let (γi)i∈N be an injective enumeration of the set G/P such that the sequence(
β∞
(
γi
−1o, o

))
i∈N is increasing. Let p ∈ P\{id} be any parabolic element fixing

∞, and let ε > 0.
We construct a subset I ⊆ N (corresponding to a subset of G/P ) and a sequence

of integers (ki)i∈I ∈ NI such that the group Γ generated by the elements

γi := γ′ip
ki , i ∈ I

satisfies a list of ten properties (see below), where γ′i is any element of G that
projects to γi in G/P .

Let
X0 :=

{
x ∈ X (x|∞) ≥ c

}
,

where c > 0 is chosen big enough to have µ(X0) < ε/2, and

X−i := X
−3/4

γ−1
i

,

X+
i :=

{
x ∈ X (x|γio) ≥ 1

8d(o, γio)− δ
}
,

where the number δ is such that the space X is δ-hyperbolic.

Remark 3.1. We have γi(X\X−i ) ⊆ X+
i .

We construct the sequence (ki)i∈I and the set I by induction, with the following
properties:

(1) i ∈ I ⇐⇒ γi∞ 6∈
⋃
j∈I
j<i

X+
j ∪X0.

(2) o 6∈
⋃
i∈I X

+
i and ∀i ∈ I, X−i ⊆ X0.

(3) ∀i, j ∈ I, i < j =⇒ 2d(γio, o) ≤ d(γjo, o).
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(4) We have the following inequality (strict if I is finite) :∑
i∈I

e−
ε
4d(γio,o) + ie−

ε
8d(γio,o) ≤ 1/4.

(5) ∀i ∈ I, ∞ 6∈ X−i .
(6) The sets X+

i , i ∈ I and X0 are all pairwise disjoint, and the sets X−i , i ∈ I
are pairwise disjoint.

(7) For all i ∈ I, (γi, X0, X
+
i ) is a ping-pong players of level 1/4.

(8) For all i 6= j ∈ I, (γiγ
−1
j , X+

j , X
+
i ) is a ping-pong player of level 1/4.

(9) We have the following inequality (strict if I is finite) :

µ(X0) +
∑
i∈I

µ(X+
i ) ≤ ε/2

(10) ∀i ∈ I, ∀γ ∈ G/P, γ∞ ∈ X+
i =⇒ β∞(γ−1o, o) > g(i) or γ = γi, where g is

the function defined on remark 1.5.

The properties 2, 3, 4, 7, 8 and 6 will permit to show that the group generated
by the γi, i ∈ I, is a Schottky group of arbitrary small critical exponent. And the
properties 1, 9 and 10 will guaranty that the orbit of P under Γ will have a positive
density in G/P .

3.1. Induction. Assume that the properties 2, 3, 4, 5, 6, 7, 8, 9, and 10 are satisfied,
and that the property 1 is true for i < n.

(1) If we have
γn∞ ∈

⋃
i∈I
i<n

X+
i ∪X0

then property 1 is also true for i = n.
Else assume that γn∞ 6∈

⋃
i∈I
i<n

X+
i ∪ X0. Then we add n to the set I :

I ← I ∪ {n} so the property 1 is verified for every i ≤ n.
(2) We have X−n −−−−→

kn→∞
{∞}, and X0 is a neighbourhood of ∞. So for kn large

enough we have X−n ⊆ X0. Moreover, for kn large enough we have o 6∈ X+
n

since d(γno, o) −−−−→
kn→∞

+∞. Hence the property 2 is true for kn large enough.

(3) We have d(γno, o) −−−−→
kn→∞

+∞, so the property 3 is true as soon as kn is large

enough.
(4) Property 4 is true for large enough kn because we have

lim
kn→∞

∑
i∈I

e−
ε
4d(γio,o) + ie−

ε
8d(γio,o) =

∑
i∈I\{n}

e−
ε
4d(γio,o) + ie−

ε
8d(γio,o) <

1

4
.

(5) We have

(∞|γ−1
n o) =

1

2

(
d(o, γno)− β∞(γ−1

n o, o)
)
≤ 1

2
(d(o, γno)− C).

So for kn large enough we have

(∞|γ−1
n o) <

1 + 3/4

2
d(o, γno),
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so ∞ is not in X−n = X
−3/4

γ−1
n

.

(6) We have X+
n −−−−→

kn→∞
{γn∞}, and

⋃
j∈I
j<n

X+
j ∪X0 is a closed set that does not

contain γn∞. Therefore for kn large enough we haveX+
n ∩

(⋃
j∈I
j<n

X+
j ∪X0

)
=

∅.
In a similar way, we have X−n −−−−→

kn→∞
{∞} and∞ 6∈

⋃
j∈I
j<n

X−j by previous

property, hence X−n ∩

(⋃
j∈I
j<n

X−j

)
= ∅ for kn large enough.

(7) Like for property 2 we have X3/4

γ−1
n
⊆ X0 for kn large enough, and we have

X
3/4
γn ⊆ X+

n by definition, therefore (γn, X0, X
+
n ) is a ping-pong player of

level 3/4 (so also of level 1/4).

(8) Let us show the inclusion X1/4

γiγ
−1
j

⊆ X+
i . Let x ∈ X

1/4

γiγ
−1
j

. We have

(x|γiγ−1
j o) ≥ 3

8
d(o, γiγ

−1
j o) ≥ 1

8
d(o, γio)

by property 3. We have o ∈ X\X+
j by property 2 so γ−1

j o ∈ X−j . Therefore
we have γ−1

j o ∈ X\X−i by property 6. Then by remark 2.1 we have γiγ−1
j o ∈

X
3/4
γi . Using the δ-hyperbolicity of X we have

(x|γio) ≥ min
{

(x|γiγ−1
j o), (γiγ

−1
j o|γio)

}
− δ

and we have min
{

(x|γiγ−1
j o), (γiγ

−1
j o|γio)

}
≥ 1

8d(o, γio). Therefore we have
x ∈ X+

i . The inclusion X1/4

γjγ
−1
i

⊆ X+
j is obtained by reversing the role of i

and j. Finally we have shown that (γiγ
−1
j , X+

j , X
+
i ) is a ping-pong player of

level 1/4.
(9) We can choose r ∈ R+ small enough such that

µ(X0) +
∑
i∈I
i<n

µ(X+
i ) + µ(B(γn∞, r)) < ε/2.

Then, using that Y +
n −−−−−→

kn→+∞
{γn∞}, we have Y +

n ⊆ B(γn∞, r) for kn large

enough.
(10) Let Jn =

{
j ∈ N j 6= n and β∞(γj

−1o, o) ≤ g(n)
}
. The set Jn is finite and

does not contain n. Hence the quantity supj∈Jn(γj∞|γn∞) is finite, and
moreover it does not depends on kn. Therefore we can choose kn big enough
to have

min

{
(γno|γn∞)− δ, 1

8
d(o, γno)− 2δ

}
> sup
j∈Jn

(γj∞ | γn∞).

Then, by δ-hyperbolicity we have for all j ∈ Jn,
(γj∞|γn∞) ≥ min {(γj∞|γno), (γno|γn∞)} − δ = (γj∞|γno)− δ,

and then we have
1

8
d(o, γno)− 2δ > (γj∞|γno)− δ,



EXAMPLE OF SMALL GROUP WITH BIG HOROBALL ORBIT 9

so γj∞ 6∈ X+
n .

By induction, we have constructed a set I ⊆ N and a sequence of integers (kn)n∈I
satisfying all the announced properties. We now define the group Γ as the group
generated by the isometries (γn)n∈I .

In the following section, we prove that this group Γ satisfies what we want using
the above properties.

4. Proof of the theorem 1.6

In this section, we prove that the group Γ constructed in the previous section
satisfy all the properties we wanted : we show that it is an infinitely generated
Schottky group of arbitrary small critical exponent and that the orbit of P under
Γ has positive density in G/P .

4.1. Critical exponent. The elements (γn, X
−
n , X

+
n ) are not good players enough,

because X−n is too small. But X−n cannot be big enough because it has to avoid
∞. It is the reason why we do not consider directly the Schottky group generated
by the elements γn, n ∈ I. We consider the same group with the bigger set of
generators

S =
{
γi i ∈ I

}
∪
{
γ−1
i i ∈ I

}
∪
{
γiγ
−1
j i 6= j ∈ I

}
,

and we consider only products that plays to ping-pong with good ping-pong players.
To simplify the notations, let
— Y −γn := X0

— Y +
γn := X+

n

— Y −
γ−1
n

:= X+
n

— Y +

γ−1
n

:= X0

— Y +

γnγ
−1
m

= X+
n

— Y −
γnγ

−1
m

= X+
m

for all n 6= m ∈ I. By properties 7 and 8 of the construction, we have that
∀γ ∈ S, (γ, Y −γ , Y

+
γ ) is a ping-pong player of level 1/4. And by property 6, we have

that ∀(γ, γ′) ∈ S2, Y +
γ ∩ Y −γ′ 6= ∅ ⇐⇒ Y +

γ = Y −γ′ .

Definition 4.1. Let w = w1w2...wn ∈ S∗ be a word over the alphabet S. We say
that the word w is reduced if for all 1 ≤ i < n we have Y −wi ∩ Y

+
wi+1

= ∅.
In others words, a reduced word is a product of elements such that every consec-

utive elements plays to ping-pong. The following lemma says that every element of
Γ can be written like that.

Lemma 4.2. Every element of the group Γ can be written as a reduced word.

Proof. Any element of Γ is obtained as a word over the alphabet
{
γi i ∈ I

}
∪{

γ−1
i i ∈ I

}
such that there is no subword of the form γiγ

−1
i or γ−1

i γi (it is the
usual definition of reduced word). We associate to such a word, a word over the
alphabet S, by replacing every occurrence of γiγ−1

j for i 6= j ∈ I by a single letter
of S. Let us show that the word obtained by this process is reduced. Let w1w2...wn
such a word. Then, for every 1 ≤ i < n we have two cases

— If Y +
wi+1

= X0, then we have wi+1 = γ−1
k for a k ∈ I. The letter wi

cannot be equal to some γl for a l ∈ I otherwise the word could be reduced.
Therefore we have Y −wi 6= X0, hence Y +

wi+1
∩ Y −wi = ∅.
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— If Y +
wi+1

= X+
k for some k ∈ I, then we have wi+1 = γk or wi+1 = γkγ

−1
l for

some l ∈ I\{k}. The letter wi is not equal to γ−1
k neither to γjγ−1

k for some
j ∈ I, otherwise the word could be reduced. Therefore we have Y −wi 6= X+

k ,
hence Y −wi ∩ Y

+
wi+1

= ∅.
�

Now, using the fact that good ping-pong players are playing together, we get the
following

Proposition 4.3. Let g1g2...gn ∈ S∗ be a reduced word. Then we have

d(g1g2...gno, o) ≥
1

4
(d(g1o, o) + d(g2o, o) + ...+ d(gno, o)) .

Proof. We show by induction on k ∈ N that

d(g1g2...gky, o) ≥
1

4
[d(g1o, o) + d(g2o, o) + ...+ d(gko, o)] + d(y, o)

for all y ∈ X\Y −gk .
If k = 0, the result is obvious.
Assume that the result is true for a k < n. For any y ∈ X\Y −gk , we have

d(gk+1y, o) ≥ 1
4d(gk+1o, o) + d(y, o) because (gk+1, Y

−
gk+1

, Y +
gk+1

) is a ping-pong
player of level 1/4. We have gk+1y ∈ Y +

gk+1
, and we have Y +

gk+1
∩ Y −gk = ∅ be-

cause the word is assumed reduced. Hence, we have gk+1y 6∈ Y −gk . Therefore we can
apply the induction hypothesis and we get

d(g1g2...gkgk+1y, o) ≥ 1

4
[d(g1o, o) + d(g2o, o) + ...+ d(gko, o)] + d(gk+1y, o)

≥ 1

4
[d(g1o, o) + d(g2o, o) + ...+ d(gko, o) + d(gk+1o, o)] + d(y, o).

The induction is proven, and by taking y = o, we end the proof of the lemma. �

Corollary 4.4. We have δΓ ≤ ε.

Proof. Let us show that the Poincaré series converges at ε. We have∑
γ∈Γ

e−εd(o,γo) =
∑

g1g2...gn∈S∗
reduced word

n∈N

e−εd(o,g1g2...gno)

≤
∑

g1g2...gn∈S∗
n∈N

e−
ε
4 (d(o,g1)+d(o,g2o)+...+d(o,gno))

=

+∞∑
i=0

∑
g∈S

e−
ε
4d(o,g)

n

.
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So it is enough to prove that
∑
g∈S e

− ε4d(o,g) < 1. We have∑
g∈S

e−
ε
4d(o,g) = 2

∑
i∈I

e−
ε
4d(o,γi) + 2

∑
i∈I

∑
j∈I
j<i

e−
ε
4d(o,γiγ

−1
j )

≤ 2
∑
i∈I

e−
ε
4d(o,γi) + 2

∑
i∈I

∑
j∈I
j<i

e−
ε
8d(o,γi)

≤ 2
∑
i∈I

e−
ε
4d(o,γi) + ie−

ε
8d(o,γi)

≤ 1/2

by properties 3 and 4.
�

This proves that the constructed group has arbitrary small critical exponent
since ε > 0 can be chosen as small as we want.

4.2. Positive density of the orbit. In this subsection, we prove that the orbit
of the constructed group Γ has positive density in the orbit of G. More precisely,
we show that

lim inf
R→+∞

#
{
γ ∈ Γ/P β∞(γ−1o, o) ≤ R

}
#
{
γ ∈ G/P β∞(γ−1o, o) ≤ R

} ≥ 1− ε.

In order to prove that, let’s remarks that we have ∀i ∈ I, γi∞ ∈ X+
i by prop-

erty 5. Hence, we can write

Γ/P =
{
γ ∈ G/P γ∞ 6∈ X0 and ∀i ∈ I, (γ = γi or γ∞ 6∈ X+

i )
}
,

and, we have
#
{
γ ∈ Γ/P β∞(γ−1o, o) ≤ R

}
#
{
γ ∈ G/P β∞(γ−1o, o) ≤ R

}
≥ 1−

#
{
γ ∈ G/P γ∞ ∈ X0, β∞(γ−1o, o) ≤ R

}
#
{
γ ∈ G/P β∞(γ−1o, o) ≤ R

}
−
∑
i∈I

#
{
γ ∈ (G/P ) \{γi} γ∞ ∈ X+

i , β∞(γ−1o, o) ≤ R
}

#
{
γ ∈ G/P β∞(γ−1o, o) ≤ R

}
≥ 1− µ(X0)− o(R)−

∑
i∈I

g(i)≤R

(
µ(X+

i ) + o(R)
)

≥ 1− µ(X0)−
∑
i∈I

µ(X+
i )−

(
ε

2o(R)
+ 2

)
o(R)

≥ 1− ε− 2o(R).

So the lim infR→+∞ is greater than or equal to 1− ε.

5. Property P for SL(2,Z)

In this section we show that X = H2 and G = SL(2,Z) verify the property P.
This gives a proof of the theorem 1.1, by using the theorem 1.6 and lemma 5.5.
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In the following, we identify ∂X with R = R ∪ {∞}. For all γ ∈ SL(2,Z), we
have γ∞ ∈ Q ∪ {∞}. The parabolic group at ∞ is the subgroup P generated by(

1 1
0 1

)
. The following lemma permits to characterize the set G/P .

Lemma 5.1. We have

G/P = SL(2,Z)

/(
1 1
0 1

)
' SL(2,Z)

(
1
0

)
=

{(
x
y

)
∈ Z2 x ∧ y = 1

}
.

Proof. Given a vector
(
x
y

)
∈ Z2 such that x∧y = 1, we get a matrix γ =

(
x u
y v

)
∈

SL(2,Z) (and hence we get an element of G/P) by taking the Bézout coefficients

(u, v) ∈ Z2 of x, y : xv − yu = 1. We get back the vector
(
x
y

)
from an element

of G/P by taking the image of the vector
(

1
0

)
(which is well defined because P

stabilize the vector
(

1
0

)
). �

The following lemma gives a way to compute the Buseman function.

Lemma 5.2. For all γ ∈ SL(2,Z) and for o = i ∈ H2, we have

β∞(γ−1o, o) = 2 ln

∥∥∥∥γ (1
0

)∥∥∥∥ ,
where

∥∥∥∥(xy
)∥∥∥∥ =

√
x2 + y2 is the Euclidean norm of R2.

Proof. Let γ =

(
a b
c d

)
∈ SL(2,Z). Then we have

γ−1i =
di− b
−ci+ a

=
−ab− cd+ i

a2 + c2
.

So we have

β∞(γ−1i, i) =

∫ 1

1
a2+c2

dy

y
= ln(a2 + c2) = 2 ln

(∥∥∥∥(ac
)∥∥∥∥) = 2 ln

(∥∥∥∥γ (1
0

)∥∥∥∥) .
�

The following lemma give a majoration of the number of rationnals in a given
intervalle of R.

Lemma 5.3. Let I be a bounded intervalle of R. We have we have for all n ≥ 1

#
{p
q ∈ Q p

q ∈ I, 0 < |q| ≤ n
}
≤ n(n+ 1)

2
|I|+ n ≤ n2 |I|+ n.

Proof. For all q ∈ N>0,

#
{
p ∈ Z p

q ∈ I
}
≤ q |I|+ 1.

By summing this from q = 1 to n we get the result. �

We do the same for the intervalle X0 ∩ R :
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Lemma 5.4. For all c ∈ R+ and n ∈ R+, we have

#
{
p
q ∈ Q p

q ∈ R\[−c, c], p2 + q2 ≤ n2
}
≤ 2n2

√
c2 + 1

+
n√
c2 + 1

≤ 2n2

√
c2 + 1

+ n.

Proof. We have p
q ∈ R\[−c, c]⇐⇒ q2c2 ≤ p2. And we have q2c2 ≤ p2 and p2 +q2 ≤

n2 that gives |q| ≤ n√
1+c2

. Then we have p2 ≤ n2 − q2 ≤ n2, so we obtain the
expected inequality. �

The following lemma says that the set SL(2,Z)

(
1
0

)
has a positive density in

Z2.

Lemma 5.5. There exists C > 0 such that for all n ∈ N,

#

{(
x
y

)
∈ Z2 x ∧ y = 1,

∥∥∥∥(xy
)∥∥∥∥ ≤ n} ≥ Cn2.

This result is well know, but we give a proof for completeness.

Proof. Let us do a coarse sieve. We have the equality{(
x
y

)
∈ Z2 x ∧ y = 1

}
= Z2\

⋃
p prime

pZ2.

Moreover, we have

#

{(
x
y

)
∈ Z2 x2 + y2 ≤ n2

}
≥ #

{(
x
y

)
∈ Z2 x2 ≤ n2/2 and y2 ≤ n2/2

}
≥ (

√
2n− 1)2,

and we have

#

{(
x
y

)
∈ pZ2

∥∥∥∥(xy
)∥∥∥∥ ≤ n} = #

{(
x
y

)
∈ Z2

∥∥∥∥(xy
)∥∥∥∥ ≤ n/p}

≤ #

{(
x
y

)
∈ Z2 x2 ≤ n2/p2 and y2 ≤ n2/p2

}
≤ (2n/p+ 1)2

So we have

#

{(
x
y

)
∈ Z2 x ∧ y = 1,

∥∥∥∥(xy
)∥∥∥∥ ≤ n}

≥ (
√

2n− 1)2 −
∑
p prime
p≤n

(2n/p+ 1)2

≥

2−
∑

p prime

4

p2

n2 − 4n
∑
p prime
p≤n

1

p
−
(

2
√

2 + 1
)
n.

We can verify that

2−
∑

p prime

4

p2
≥ 2−

∑
p∈{2,3,5,7,11,13}

1

p2
−

+∞∑
n=17

1

n2
> 0,
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and we have ∑
p prime
p≤n

1

p
∼

n→+∞
ln lnn = o

n→+∞
(n).

So we can find C > 0 small enough to have the inequality that we want for all
n ∈ N. �

Remark 5.6. In fact we have #

{(
x
y

)
∈ Z2 x ∧ y = 1,

∥∥∥∥(xy
)∥∥∥∥ ≤ n} ∼ 6n2

π .

Now we can prove what we wanted :

Proposition 5.7. (H2,∞, SL(2,Z)) verify the property P.

Proof. Let o : R 7→ 2
CR , where C is the constant of the lemma 5.5. Let ξ ∈ ∂X. If

ξ 6=∞, let µξ : r 7→ 2
C |B(ξ, r)|, and if ξ =∞ let µ∞ : r 7→ 4

C
√

1+ 1
4 |R\B(∞,r)|2

.

Then we have
#
{
γ ∈ G/P γ∞ ∈ B(ξ, r), β∞(γ−1o, o) ≤ R

}
#
{
γ ∈ G/P β∞(γ−1o, o) ≤ R

}
≤

2#
{p
q ∈ Q p

q ∈ B(ξ, r), p2 + q2 ≤ e4R
}

#

{(
x
y

)
∈ Z2 x ∧ y = 1, x2 + y2 ≤ e4R

}
≤ µξ(r) + o(R),

and we have limR→∞ o(R) = 0 and ∀ξ ∈ ∂X, limr→0 µξ(r) = 0. �
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