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Abstract. — Up to words reversal and relabelling, there exists an unique substitu-
tion associated to the smallest Pisot number with a minimal number of letters. This
is the substitution s : 1 7→ 2, 2 7→ 3, 3 7→ 12. We study the Rauzy fractal of this sub-
stitution and show that it is the union of a countable number of Hokaiddo tiles and a
fractal of dimension strictly less than 2 which is completely explicit. We complete the
picture by showing that these Hokkaido tiles are arranged in three different manners
to form tiles which are all pairwise disjoint. We also give an efficient algorithm to
draw a zoom on a Rauzy fractal. And we show that the symbolic system of the sub-
stitution s is measurably isomorphic to a nice domain exchange with 4 pieces. The
tools used in this article, using regular languages, are very general and can be easily
adapted to study Rauzy fractals of any substitution associated to a Pisot number,
and other fractals associated to algebraic numbers without conjugate of modulus one.
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1. Introduction and main result

The smallest Pisot number β (also called the plastic number) is the greatest root of
the polynomial X3−X − 1. This number is approximately 1.3247179572447460260...

and has two conjugated complex conjugates of modulus strictly less than one. It is
easy to check that, up to letters permutation, the substitutions

s :

1 7→ 2

2 7→ 3

3 7→ 12

and ts :

1 7→ 2

2 7→ 3

3 7→ 21

are the only ones on three letters to be associated to the smallest Pisot number β. And
we get one of these two substitutions from the other one, by words reversal. Therefore,
the study of one of these two substitutions is enough to understand completely both.
In particular, they have the same Rauzy fractal, which looks like the following (see
figure 1).

Figure 1. Rauzy fractal of the substitution s : 1 7→ 2, 2 7→ 3, 3 7→ 12
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This Rauzy fractal is an interesting object that can be colored in order to define
a domain exchange (see figure 2) which is measurably conjugated to a translation
on the torus T2, and which is also measurably conjugated to the symbolic system
generated by the substitution. A conjecture called the Pisot conjecture states that
such conjugacies exist for every Pisot irreducible substitution.

Figure 2. Domain exchange of s

A well-known fact about Rauzy fractals is that it always has non-empty interior.
But in this picture, we don’t see very well this fact. Let us zoom in this Rauzy fractal
in order to see what looks like the non-empty interior parts (see picture 3).

Figure 3. Zoom in the Rauzy fractal of the substitution s : 1 7→ 2, 2 7→ 3, 3 7→ 12

The observation made by Timo Jolivet is that inside the Rauzy fractal of s, we
recognize a well-known fractal called the Hokkaido fractal, and which is the Rauzy
fractal of another substitution.

The Hokkaido fractal is the Rauzy fractal of the substitution

h :



1 7→ 12

2 7→ 3

3 7→ 4

4 7→ 5

5 7→ 1

.
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Figure 4. The Hokkaido fractal

The name Hokkaido has been given by Shigeki Akiyama in reference to the Japanese
island with the same name. This substitution h naturally occurs when we look at
β-expansion for the smallest Pisot number β. It is studied in various papers like
for example [AL], [Ei Ito], [EIR], and [Sieg. Thusw.]. There is a natural domain
exchange on the Rauzy fractal of h which is measurably isomorphic to the symbolic
system generated by h, and this domain exchange is exactly what we get if we induce
the domain exchange for s on one of the small Hokkaido tile that occurs in the Rauzy
fractal of s (see figure 10).

In this article, we will prove the observation of Timo Jolivet and we will give even
a more precise description of the Rauzy fractal of s. The first step to do that will
be to show that we can decompose the Rauzy fractal of the substitution s as the
union of a fractal of dimension less than two and a countable union of homothetic
transformations of the Hokkaido fractal (see pictures 5 and 6).

Figure 5. Part of dimension < 2
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Figure 6. Countable union of Hokkaido tiles

We show more precisely that in the countable union of Hokkaido fractals, there are
three types of arrangements that are all pairwise disjoint.

Figure 7. Three types of arrangements of Hokkaido tiles

Moreover, these three arrangements are finite unions of homothetic transformations
of the Hokkaido fractal (see figure 8), and one of them is exactly a single homothetic
transformation of the Hokkaido fractal.

Figure 8. Links between the three different shapes
The second is a disjoint union of three time the third, and the third is a

disjoint union of two times the first (up to a set of measure 0)
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More precisely, what we show is the following.

Theorem 1.1. — Let Rs ⊆ C and H ⊆ C be respectively the Rauzy fractals of the
substitutions

s :


1 7→ 2

2 7→ 3

3 7→ 12

, h :



1 7→ 12

2 7→ 3

3 7→ 4

4 7→ 5

5 7→ 1

.

Then we have
Rs = M ∪

⋃
i∈N

(Hi ∪ Si ∪ Ti) ,

where for every i ∈ N
— Hi is a homothetic transformation of H,
— Si and Ti are respectively homothetic transformations of S and T , where S and

T are finite unions of homothetic transformations of H,
— M is a fractal of dimension less than 2 (The exact Minkowski-Bouligand di-

mension is 2 log(γ)
log(β) ≈ 1.94643460326525... where γ ≈ 1.31477860592584... is the

greatest root of x13 − x12 − x10 + x9 − 2x4 + x3 − 1 and β is the smallest Pisot
number.),

— M ⊆ C\Rs,
and Hi, Si, Ti, i ∈ N are all pairwise disjoints.

Figure 9. Rauzy fractal with the occurrences of the first type of
arrangement — σ−(QB1C1Lh) — in black, the occurrences of the second
type of arrangement — σ−(QB2C2Lh) — in purple, the third type of
arrangement — σ−(QB3C3Lh) — in dark-yellow, and the part of

dimension less than two in gray
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The three types of shape appearing in the Rauzy fractal of s give three domain
exchanges when we induce the symbolic system of s on one of the occurrence in the
Rauzy fractal Rs:

Figure 10. Induction of the domain exchange of s on each type of arrangement

We will not prove this fact, but it can be achieved and computed using tools
of [Mercat2].

The domain exchange that we get on the first type of shape is the same as the one
we get from the Hokkaido substitution h. And it is interesting to remark that the
domain exchange that we get on the third type of arrangement is naturally measurably
isomorphic to a translation on the torus T2 (in particular, this third shape tile the
plane). And this toral translation is the same as the one we get from s:

Proposition 1.2. — There is a domain exchange with four domains on the third
type of shape σ−(QL3), where L3 is defined in figure 18. This domain exchange
is measurably isomorphic to a translation on the torus T2, and is also measurably
isomorphic to the symbolic system of the substitution s.

Hence this gives a much simpler geometrical representation than the natural one
for the symbolic system of the substitution s.

And as for Hokkaido, we can get (using [Mercat2]) these domain exchange from
substitutions, but with more letters:
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s2 :



a 7→ ha

b 7→ hfdejhab

c 7→ hfc

d 7→ hfchfd

e 7→ ei

f 7→ hab

g 7→ eifdg

h 7→ hfdej

i 7→ fdej

j 7→ fdg

s3 :



1 7→ 3

2 7→ 1

3 7→ 34

4 7→ 15

5 7→ 32

.

In particular, the natural coloring of the Rauzy fractal of this last substitution s3

gives a decomposition of the third type of arrangement as an union of five Hokkaido
tiles that are disjoint up to a set of Lebesgue measure zero. We will show that
arrangements of the second type are also finite unions of Hokkaido tiles.

Remark 1.3. — Computations and drawings have been done using the Sage mathe-
matical software (see http: // www. sagemath. org for more details), with additional
tools developed by the author and available here: https: // trac. sagemath. org/
ticket/ 21072 . Unfortunately, these tools are not easy to install and are not well
documented yet. A worksheet with the computations of this article is available here:
https: // old. i2m. univ-amu. fr/ ~mercat. p/ SmallestPisotSubstitution. htm

The tools used in this article are very general and could be used to study Rauzy frac-
tals of a large class of substitutions. Similar tools are developed in [Sieg. Thusw.],
where they are able to decide a lot of topological properties of the Rauzy fractal of a
given substitution. The computation of the dimension of the boundary of the Rauzy
fractal is done using ideas of [Lalley]. In his article, Lalley gives an algorithm to
compute the Hausdorff dimension of some sets by describing them by a finite graph.
The same can be done to describe the boundary of a Rauzy fractal and to compute
its dimension.

I thank Timo Jolivet to tell me about the observation that an Hokkaido tile appears
inside the Rauzy fractal of the substitution s, and I also thank him to ask me if there is
an efficient way to zoom in a Rauzy fractal. And I thank the referee [NAME ?] to ask
me questions about the induction of the symbolic system of s: it made me discover the
nice domain exchange with four pieces of the figure 10 which is measurably isomorphic
to the symbolic system of s.

2. Definitions and notations

In this section, we present some tools and notations used to prove the main theo-
rem 1.1. In particular, we recall what is a Rauzy fractal.

http://www.sagemath.org
https://trac.sagemath.org/ticket/21072
https://trac.sagemath.org/ticket/21072
https://old.i2m.univ-amu.fr/~mercat.p/SmallestPisotSubstitution.htm
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2.1. Substitutions. — Let A be an finite alphabet. We denote by A∗ :=
⋃
n∈NA

n

the set of finite words over the alphabet A. A substitution over the alphabet A is
a word morphism from A∗ to A∗, for the concatenation of words. A substitution is
completely determined by images of letters of the alphabet.

2.2. Incidence matrix. — We call incidence matrix of a substitution s over n
letters {a1, a2, ..., an}, the matrix Ms ∈Mn(Z) such that

Mei =
(
|s(ai)|aj

)n
j=1

where (ei)
n
i=1 is the canonical basis of Rn, and |s(ai)|aj is the number of occurrences

of letter aj in the word s(ai). For example, the incidence matrix of the substitution
s defined above is

Ms =

0 0 1

1 0 1

0 1 0

 .

2.3. Periodic points. — If we have a substitution over an alphabet A, we can
iterate the substitution starting from a letter of A. For example, for the alphabet
A = {1, 2, 3, 4, 5}, for the substitution h : 1 7→ 12, 2 7→ 3, 3 7→ 4, 4 7→ 5, 5 7→ 1, and for
the letter 1, we get the words

1, 12, 123, 1234, 12345, 123451, 12345112, 12345112123, 123451121231234, ...

This gives a sequence of words where a word contains the previous one as prefix.
Hence, it converges, for the usual topology on set of words, to an infinite word that
we call a fixed point of the substitution h. A periodic point of a substitution is
a fixed point of some power of the substitution. Such periodic point always exists.
For the substitution s defined above, we have three infinite words that are periodic
points:

1223233122331231212232331231212233121223...
2331231212233121223122323312312122312232...
3121223122323312122323312233123121223122...

If we consider bi-infinite words, there are 6 periodic points.

2.4. Broken line. — Take a periodic point u = u1u2u3... of a substitution over
n letters {a1, a2, ..., an}. To a finite word v over the alphabet {a1, a2, ..., an}, we
associated a vector of Zn called abelianisation: Ab(v) := (|v|ai)

n
i=1 where |v|ai is

the number of occurrences of letter ai in the word v. We call discrete line associated
to the periodic point u, the set of points of Zn

Du =
{

Ab(v) v finite prefix of u
}
.
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Remark 2.1. — The discrete line Du associated to a fixed point u of a substitution
s is Ms-invariant:

MsDu ⊆ Du.

Proof. — For all word v, we have Ms Ab(v) = Ab(s(v)). If v is a prefix of u, then
s(v) also.

2.5. Rauzy fractal. — A Rauzy fractal is a geometric object giving informations
about the substitution and its dynamical system. Let us give a precise definition.
Let s be a substitution over n letters such that Ms have an unique eigenvalue β of
modulus greater than one. We call expanding space the eigenspace (which is a line)
associated to this greatest eigenvalue.

Proposition 2.2. — Let u be a periodic point of s, then Du is at bounded distance
of the expanding space.

The discrete line can be naturally mapped to Q(β), by taking a left eigenvector tw
of the incidence matrixMs for the greatest eigenvalue β, and applying the application

ϕ :
Rn → Q(β)

X 7→ twX
. It is a natural map to consider since it gives a self-similar tiling

in the expanding space R: for any word v ∈ A∗, we have

ϕ(Ab(s(v)) = ϕ(Ms Ab(v)) = βϕ(Ab(v)),

so the set ϕ(Du) is invariant by multiplication by β if u is a fixed point of s. We denote
by σ+ : Q(β) → R the unique Galois embedding such that σ+(β) > 1. We denote
by σ− the product of the other Galois embeddings, modulo the complex conjugation.
The contracting space is the codomain of σ−.

We call Rauzy fractal of s, and we denote by Rs, the adherence of a projection
on the contracting space of the discrete line Du for some periodic point u. More
precisely

Rs = σ−(ϕ(Du)).

For the substitutions s and h defined above, the contracting spaces are C, because
there is only one other embedding Q(β) → C, corresponding to the two conjugated
complex conjugates. Hence, we have Rs ⊆ C and Sh ⊆ C.

For an irreducible substitution for an unit Pisot number, the Rauzy fractal can be
seen as the adherence of a projection along the expanding space (i.e. the eigenspace
for the Pisot eigenvalue) onto some hyperplane. When it is not irreducible, we project
along a bigger space, in order to have something bounded.

2.6. Minkowski-Bouligand dimension. — We say that a set S ⊆ C has
Minkowski-Bouligand dimension δ if we have

δ = lim
ε→0

log(Ncovering(ε))

log(1/ε)
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where Ncovering(ε) is the minimal number of balls of radius ε necessary to cover S.
We denote by dimMB(S) the dimension of S if it exists. In this definition, we can
replace Ncovering(ε) by Npacking(ε) which is the maximal number of disjoint balls of
radius ε centered on points of S. This gives an equivalent definition since we have,
for all ε > 0,

Ncovering(2ε) ≤ Npacking(ε) ≤ Ncovering(ε/2).

If we denote by dimH(S) the Hausdorff dimension of S, we have

dimH(S) ≤ lim inf
ε→0

log(Ncovering(ε))

log(1/ε)
.

Hence, the Minkowski-Bouligand dimension is always greater than the Hausdorff di-
mension, when it exists. Contrarily to the Hausdorff dimension, the Minkowski-
Bouligand dimension has the following property

dimMB(S) = dimMB(S),

where S denotes the adherence of S ⊆ C.

3. Regular languages and efficient zoom on a Rauzy fractal

An alphabet Σ is a finite set whose elements are called letters. A language is a
set of finite words over an alphabet.

3.1. Regular languages and automata. — A language L over an alphabet Σ is
regular if and only if the set of languages

{
u−1L u ∈ Σ∗

}
is finite, where

u−1L =
{
v ∈ Σ∗ uv ∈ L

}
.

Remark 3.1. — This definition is not the usual one, but it is an useful characteri-
zation due to Myhill–Nerode.

An automaton is a quintuple (Σ, Q, T, I, F ), where
— Σ is a finite set called alphabet,
— Q is a finite set whose elements are called states,
— T ⊆ Q× Σ×Q is the set of transitions,
— I ⊆ Q is the set of initial states,
— F ⊆ Q is the set of final states.

We say that a language L ⊆ Σ∗ is recognized by an automaton A = (Σ, Q, T, I, F ),
or that the language of A is L, if words of L are labels of paths from I to F following
the set of transitions. More precisely,

L =
{
u ∈ Σ∗ ∃(qi)|u|i=0 ∈ Q|u|+1, q0 ∈ I, q|u| ∈ F, and ∀i ∈ J1, |u|K, (qi−1, ui, qi) ∈ T

}
Theorem 3.2. — A language is regular if and only if it is recognized by an automa-
ton.
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A proof of this result can be found in [Carton]. An automaton is deterministic
if it has a single initial state and if for each state and each letter it has at most one
transition from this state labeled by this letter. Given a regular language, there exists
a canonical deterministic automaton recognizing this language. We call minimal au-
tomaton of a language L ⊆ Σ∗ the deterministic automaton recognizing the language
L and having the minimal number of states. This automaton exists, is unique, and
there is a natural bijection between its set of states and the set

{
u−1L u ∈ Σ∗

}
\{∅}.

The set of regular languages Reg(Σ) over an alphabet Σ has a lot of properties:

Properties 3.3. — We have
— ∅ ∈ Reg(Σ),

— {ε} ∈ Reg(Σ), where ε is the empty word,
— ∀a ∈ Σ, {a} ∈ Reg(Σ),
— ∀A,B ∈ Reg(Σ), we have A∪B ∈ Reg(Σ), A∩B ∈ Reg(Σ) and A\B ∈ Reg(Σ),
— ∀A,B ∈ Reg(Σ), we have AB ∈ Reg(Σ), where AB =

{
uv ∈ Σ∗ (u, v) ∈ A×B

}
,

— ∀A ∈ Reg(Σ), we have A∗ ∈ Reg(Σ), where

A∗ =
{
u1u2...un ∈ Σ∗ (u1, u2, ..., un) ∈ An, n ∈ N

}
,

— ∀L ∈ Reg(Σ), σ(L) ∈ Reg(Σ′), where σ : Σ∗ → Σ′∗ is a word morphism,
— ∀L ∈ Reg(Σ′), σ−1(L) ∈ Reg(Σ), where σ : Σ∗ → Σ′∗ is a word morphism,
— ∀L ∈ Reg(Σ), tL =

{
tu u ∈ L

}
∈ Reg(Σ), where tu is the word reversal of

u,
— If 0 ∈ Σ, ∀L ∈ Reg(Σ), Z(L) =

{
u ∈ Σ∗ ∃n ∈ N, u0n ∈ L

}
0∗ ∈ Reg(Σ),

— ∀L ∈ Reg(Σ), Pref(L) =
{
u ∈ Σ∗ u prefix of a word of L

}
∈ Reg(Σ),

— ∀L ∈ Reg(Σ), ∀A ⊆ Σ, SA(L) =
{
u ∈ L ∃v ∈ AN, ∀n ∈ N, uvn ∈ L

}
∈

Reg(Σ), where vn is the prefix of length n of v.
Moreover, every of these operations on regular languages are computable, and non-
emptiness, inclusion and equality of regular languages are decidable.

Remark 3.4. — The operation Z increase the language by adding words with more
or less ending zeros, Pref(L) is the set of prefix of words of L, and SA(L) is the
sub-language of L of words that can be prolongated infinitely many times by adding a
letter of A and staying in L.

Remark 3.5. — These properties characterize the set of regular languages. Indeed,
by the Kleene’s theorem, the set of regular languages is also the smallest set of lan-
guages containing finite languages and invariant by union, complement, product and
star operation.

Proof. — Most of these properties of regular languages are very classical. See [Carton]
for proof of these results. The two last properties can be shown using the character-
ization of regular languages by deterministic automata: we can construct automata
for the new languages by keeping the same set of states, the same transitions and the
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same initial state, but changing the set of final states. In the last property, we have
to keep a final state in the set of final states if and only if there is a path labeled in A
from this state to a cycle labeled in A and composed only of final states. This gives
an automaton recognizing the language SA(L). In the other property, we assume
that the automaton has only accessible and co-accessible states (i.e. there exists a
path from the state to a final state, and there exists a path from the initial state
to the state). This can always been achieved up to removing non-accessible and
non-co-accessible states. Then, we take the whole set of states as set of final states:
the new automaton recognize the language Pref(L). To compute the language Z(L)

from a regular language L, take an automaton recognizing L, with final states F , and
take as new set of final states

{
q ∈ F 0∗ ∈ Lq

}
, where Lq is the language of the

state q, that is the language of the automaton where we change the initial state to
q. The concatenation of the language recognized by this automaton with 0∗ is Z(L).
Hence Z(L) is regular and computable from any regular language L ⊆ Σ∗.

For more details about regular languages, see [Carton] and [Khou. Nero.].

Notation . — In this article, initial states of automata are the bold circles. Final
states are represented by double circles.

3.2. Representation of Rauzy fractals using regular languages. — Given a
substitution s, we can naturally associate a graph, whose vertices are letters of the
substitution, and with an edge from letter i to letter j for each j appearing in s(i).
The data of this graph is equivalent to the data of the incidence matrix. If moreover
we add labels on these edges, we can completely encode a discrete line. For example,
the following automaton represent the union of discrete lines for the three periodic
points of s.

Figure 11. Automaton representing the union of discrete lines of s

1

2xM
3

xM

xM
xM+e1

If we start with vector e1 =

1

0

0

 and follow all the paths in this automaton, we

get all the points of the union of discrete lines. In order to represent Rauzy fractals,
we will project this to Q(β). The previous automaton becomes

Figure 12. Automaton representing the union of discrete lines of s
projected on Q(β)

1

20
3

0

0
1
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Remark 3.6. — This automaton is a variant of what we usually call the prefix au-
tomaton, with abelianized labels. It corresponds to the Dumont-Thomas numeration
(see [BS]).

In general, a discrete line of a substitution σ is always represented in this way by
a regular language over the alphabet

{
Ab(u) u strict prefix of σ(l) for a letter l

}
,

where Ab : u 7→ (|u|l)letter l is the abelianisation. We consider the consider the image
of this language under the natural mapping ϕ from ZA to Q(β) given by an eigenvector
of the incidence matrix for the Perron eigenvalue β. If L is such regular language, the
mapping of the discrete line onto Q(β) is obtained by

ϕ(Du) =QtL =
{∑|u|−1

i=0 uiβ
i u ∈ tL

}
.

We obtain the Rauzy fractal with σ−(QtL), where σ− : Q(β)→ C is a chosen Galois
embedding. We also denote Qu =

∑|u|−1
i=0 uiβ

i. And for an infinite word u ∈ ΣN, we
will denote σ−(Qu) =

∑+∞
i=0 uiσ−(βi)=

∑+∞
i=0 uiσ−(β)i. There are several reasons to

consider the mirror tL rather than directly the language L. One of them is that it
permits to zoom efficiently on a Rauzy fractal.

3.3. Efficient zoom on Rauzy fractals. — Using an automaton recognizing the
transposed of the language that we naturally get from a substitution, it is possible
to compute efficiently the zoom on a Rauzy fractal. Indeed, when we browse paths
in such automaton, we can know that this path u will not give a point in the chosen
drawing area for most of paths. Because for a word uv we have

Quv = Qu + β|u|Qv

and we have

‖σ−
(
β|u|Qv

)
‖ ≤ ‖σ−(β)‖|u|

1− ‖σ−(β)‖
−−−−→
|u|→∞

0

for any word v ∈ Σ∗.
Hence, we can compute efficiently the intersection of the set{

σ−(Qu) u ∈ L, |u| ≤ n
}
,

with a given window, for any regular language L. And this set converges (for the
Hausdorff metric), when n tends to infinity, to σ−(QL), hence we can approximate
any Rauzy fractal and compute efficiently a zoom on it.

4. Relations language and countable union of Hokkaido

In this section, we present a natural decomposition of the Rauzy fractal of the
substitution 1 7→ 2, 2 7→ 3, 3 7→ 12 as the union of a fractal of dimension less than
two, and a countable union of Hokkaido tiles (i.e. tiles obtained from the Hokkaido
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fractal by homothetic transformations). In order to do this, we need a tool: the
relations language.

4.1. Relations language. — Let β be the minimal Pisot number and Σ = {0, 1}.
We call relations language the following language over the alphabet Σ× Σ.

Lrel =
{

(u, v) ∈ (Σ× Σ)∗
∑|u|−1
i=0 uiβ

i =
∑|v|−1
i=0 viβ

i
}
.

Theorem 4.1. — Lrel is a regular language.

This result is a particular case of a result of Ch. Frougny (see [Frou. Sak.]
and [Frou. Pel.]), and a more general version of this theorem is proven in [Mercat],
but we give a proof here for completeness. This language permits to know what are
the different β-expansions of one given algebraic integer. It will permits to know
what are the common points of two discrete lines described by two different regular
languages.

Proof. — The first observation is that we have

Lrel = σ−1(L0),

where σ : (Σ × Σ)∗ → Σ′
∗, with Σ′ = {−1, 0, 1}, is the word morphism such that

∀(a, b) ∈ Σ× Σ, σ(a, b) = a− b, and L0 is the language

L0 =
{
u ∈ Σ′

∗ ∑|u|−1
i=0 uiβ

i = 0
}
.

Hence, we have Lrel is regular ⇐⇒ L0 is regular ⇐⇒
{
u−1L0 u ∈ Σ′

∗} is finite.
And we have for all u ∈ Σ′

∗,

u−1L0 =
{
v ∈ Σ′

∗
uv ∈ L0

}
=

{
v ∈ Σ′

∗ ∑|u|−1
i=0 uiβ

i + β|u|
∑|v|−1
i=0 viβ

i = 0
}

=
{
v ∈ Σ′

∗ ∑|u|−1
i=0 uiβ

i−|u| +
∑|v|−1
i=0 viβ

i = 0
}
.

Hence u−1L0 is completely determined by
∑|u|−1
i=0 uiβ

i−|u|.
For β the smallest Pisot number, let σ+ : Q(β) → R and σ− : Q(β) → C be two

Galois embedding of the number field Q(β), with σ+(β) = β and σ−(β) = β, where
β is a complex conjugate of β. Then, we have the following

Theorem 4.2. — (σ+ × σ−)(Z[β]) is a lattice of R× C.

See [Lang] for more details about this theorem. We have Su =
∑|u|−1
i=0 uiβ

i−|u| ∈
Z[β] because 1/β = β2− 1. Let us show now that (σ+× σ)(Su) is bounded, for every
relevant u. For all u ∈ Σ′

∗, we have

|σ+ (Su)| =

∣∣∣∣∣∣
|u|−1∑
i=0

uiβ
i−|u|

∣∣∣∣∣∣ ≤
|u|−1∑
i=0

βi−|u| <
1

β − 1
.
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If moreover we assume that u−1L0 6= ∅, we have for some v ∈ u−1L0

|σ− (Su)| =

∣∣∣∣∣∣−σ−
|v|−1∑

i=0

viβ
i

∣∣∣∣∣∣ ≤
|v|−1∑
i=0

∣∣β∣∣i < 1

1−
∣∣β∣∣ .

Therefore the set (σ+ × σ−)(Su) is bounded in R × C, uniformly in u, as soon as
u−1L0 6= ∅. Hence, by the theorem 4.2, the set

{
Su u ∈ Σ′

∗ such that u−1L0 6= ∅
}

is finite. This proves that the set
{
u−1L0 u ∈ Σ′

∗} is finite. Hence L0 is regular,
therefore Lrel also.

Remark 4.3. — The minimal automaton of the language Lrel has 179 states.

We call projection of a regular language L ⊆ Σ∗ onto another regular language
L′ ⊆ Σ∗, the language

Proj(L,L′) = Z(p2(Lrel ∩ Z(L)× Z(L′))),

where Z is defined in properties 3.3, and p2 : (Σ × Σ)∗ → Σ∗ is the word morphism
such that ∀(a, b) ∈ Σ× Σ, p2(a, b) = b.

Remark 4.4. — We call the language Proj(L,L′) a projection onto the language L′

because it corresponds to describe the elements of QL with words of the language Z(L′)

(which is the language L′ where we allow to add or to remove zeros at the end):

Proj(L,L′) =
{
u ∈ Z(L′) Qu ∈ QL

}
.

Of course, L′ may not be large enough to describe all the elements of L, and we have

QProj(L,L′) = QL ∩QL′ .

Proof of the remark. — We have

u ∈ Proj(L,L′) ⇐⇒ ∃n ∈ N, u0n ∈ p2(Lrel ∩ Z(L)× Z(L′))

⇐⇒ ∃n ∈ N, ∃v ∈ Z(L), (v, u0n) ∈ Lrel and u ∈ Z(L′)

⇐⇒ Qu ∈ QL and u ∈ Z(L′).

Lemma 4.5. — For all regular languages L ⊆ Σ∗ and L′ ⊆ Σ∗, the languages Z(L)

and Proj(L,L′) are regular. We have the inclusion Proj(L,L′) ⊆ Z(L′), and we have
the equivalence

Proj(L,L′) = Z(L′) ⇐⇒ QL′ ⊆ QL.
Moreover, Z(L) and Proj(L,L′) are computable from L and L′.

Remark 4.6. — Hence, it is decidable to check if we have QA ⊆ QB for any regular
languages A and B over the alphabet Σ.
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Proof. — The language Proj(L,L′) is regular and computable from any regular lan-
guages L and L′ since it is obtained by computable operations on regular languages.
And we have Proj(L,L′) ⊆ Z(L′) by construction. By the remark 4.4, we have
Proj(L,L′) = Z(L′) ⇐⇒ QL ∩ QL′ = QProj(L,L′) = QZ(L′) = QL′ ⇐⇒ QL′ ⊆ QL.

4.2. Countable union of Hokkaido. — The following theorem is a first step in
order to prove the main theorem 1.1. It says that the Rauzy fractal that we want to
study can be naturally decomposed into a fractal part of dimension less than two and
another part which is a countable union of Hokkaido tiles.

Theorem 4.7. — Let Rs ⊆ C and H ⊆ C be respectively the Rauzy fractals of the
substitutions

s :


1 7→ 2

2 7→ 3

3 7→ 12

, h :



1 7→ 12

2 7→ 3

3 7→ 4

4 7→ 5

5 7→ 1

.

Then we have

Rs = M ∪
⋃
i∈N

Hi,

where for every i ∈ N
— Hi is a homothetic transformation of H,
— M is a fractal of dimension less than 2 (The exact Minkowski-Bouligand di-

mension is 2 log(γ)
log(β) ≈ 1.94643460326525... where γ ≈ 1.31477860592584... is the

greatest root of x13 − x12 − x10 + x9 − 2x4 + x3 − 1 and β is the smallest Pisot
number.),

— M ⊆ C\Rs.

This last assumption says that the adherence of M is the boundary of Rs. Hence,
this decomposition of Rs is canonical in some sense.

Remark 4.8. — It can be shown that this countable union of Hokkaido tiles is exactly
the interior of the Rauzy fractal Rs, if we replace the Hokkaido tiles by their interior.

Proof. — Let Ls be the language coming from the substitution s, and Lh be the
language coming from the substitution h. We have Ls ⊂ Σ∗ and Lh ⊂ Σ∗ where
Σ = {0, 1}.
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Figure 13. Minimal automata of Ls and Lh respectively
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We have Rs = σ−(QLs
) and H = σ−(QLh

), where σ− : Q(β) → C is a Galois
embedding of the number field Q(β) (i.e. σ− is a field morphism with σ−(β) = β,
where β is a complex conjugate of β).

There are a lot of languages L ⊂ Σ∗ satisfying QLs
= QL. Let us construct such a

language L, with the property that L ⊆ Lh. But for that, we have to replace Ls by
03Ls in order to have Q03Ls

= β3QLs
⊆ QLh

.
Let

L = Proj(03Ls, Lh),

where Proj is defined in the subsection 4.1. Then we have:

Lemma 4.9. — The language L is regular and we have QL = Q03Ls
and L ⊆ Lh.

Proof. — The fact that L is regular and included in Lh comes from lemma 4.5. The
same lemma permits to show the equality QL = Q03Ls

by checking (by computer)
that we have Proj(L, 03Ls) = Z(03Ls) and Proj(03Ls, L) = Z(L).

Remark 4.10. — The minimal automaton of the language L has 197 states.

Now that we have a language that describes Rs and which is included in Lh, the
decomposition of Rs as a countable union of Hokkaido tiles and a fractal of dimension
less than two will come from the following decomposition of the language L.

Lemma 4.11. — We have

L = LM ∪ Z(ALh) (where the union is disjoint),

where LM and A are computable regular languages over the alphabet Σ, with

dimMB(σ−(QLM
)) = 2

log(γ)

log(β)
≈ 1.94643460326525...

where γ ≈ 1.31477860592584... is the greatest root of x13−x12−x10 +x9−2x4 +x3−1

and β is the smallest Pisot number.

Remark 4.12. — The regular language A describes exactly where are the Hokkaido
tiles: QA is the set of points where a Hokkaido tile appear in β

3
Rs. For the languages

A and LM constructed in the proof, the minimal automaton recognizing A has 197

states and the minimal automaton recognizing LM has 191 states.
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Figure 14. Minimal automaton of the language L
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Remark 4.13. — It could be shown that σ−(QALh
) = σ−(QL) ∩ R̊s and that

σ−(QLM
) = σ−(QL) ∩ ∂Rs.

Proof. — This decomposition of L can be read on the minimal automaton AL of L.
Indeed, this automaton has this form:

Lot of states
1

1

1
0

0

0

s0 0
1

0

S

More precisely, there is a sub-automaton S of AL which is exactly the minimal
automaton of Lh (see picture 13), except that it has no initial state. And there is no
transition leaving from this sub-automaton, and the remaining of the automaton AL.
We get the language A by removing transitions from state s0 which is the only state
of S having two leaving transitions, and by replacing the set of final states by {s0}.
In other words, we get an automaton recognizing A by replacing the sub-automaton
S by the one drawn on figure 15.

Figure 15

0 40 12 30 00

Then we get LM as the complementary of Z(ALh) in L.
We obviously have that LM and A are computable regular languages and that

L = LM ∪ Z(ALh) with a disjoint union. To check the remaining of the lemma, we
will use the following theorem.

Theorem 4.14. — Let β be a complex conjugate of the smallest Pisot number β,
and let L ⊆ Σ∗ be a language over the alphabet Σ = {0, 1} such that the elements of
σ−(QL) =

{∑|u|−1
i=0 uiβ

i
u ∈ L

}
⊆ C are uniquely represented for a given length

(i.e. ∀u, v ∈ L,
(
|u| = |v| and

∑|u|−1
i=0 uiβ

i
=
∑|v|−1
i=0 viβ

i
)

=⇒ u = v).
Then we have

dimMB(σ−(QL)) =
log(γ)

log(1/
∣∣β∣∣) = 2

log(γ)

log(β)
,

where γ is the spectral radius of the minimal automaton of L.

Proof. — Let Ln =
{
u ∈ L |u| = n

}
, and for all u ∈ L, let xu =

∑|u|−1
i=0 uiβ

i
. Then

we have σ−(QL) =
{
xu u ∈ L

}
, and we have the following
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Lemma 4.15. — There exists a constant C > 0 such that for all n ∈ N and for all
u 6= v ∈ Ln, |xu − xv| ≥ C

∣∣β∣∣n.
Proof. — For all n ∈ N, we have the inclusion{

xu − xv (u, v) ∈ (Ln)2
}
⊆
{∑n−1

i=0 aiβ
i

a ∈ {−1, 0, 1}n
}
.

Hence, it is enough to prove that the set S =
{∑n−1

i=0 aiβ
i−n

a ∈ {−1, 0, 1}n
}

is
uniformly discrete to prove the lemma, thanks to the hypothesis that elements are
uniquely represented for a given length. This follows from theorem 4.2, because
σ+(S) ⊆ Z[β], and the set σ+(S) =

{∑n−1
i=0 aiβ

i−n a ∈ {−1, 0, 1}n
}

is bounded in

R (by 1
β−1 ), where σ+ is the Galois embedding of Q(β) such that σ+(β) = β.

Using this lemma, we have that the balls B(xu,
1
2C
∣∣β∣∣n), u ∈ Ln, are all pairwise

disjoints, hence we have

Npacking

(
1

2
C
∣∣β∣∣n) ≥ #Ln,

where Npacking is defined of subsection 2.6, applied here to the set σ−(QL). Therefore,
we have

lim inf
ε→0

log(Npacking(ε))

log(1/ε)
≥ lim
n→∞

log(#Ln−1)

log
(

2
C

∣∣β∣∣−n) =
log(γ)

log(1/
∣∣β∣∣) .

To prove the other inequality, let’s consider for all n ∈ N, and u ∈ Ln, the open
ball

Bu = B

(
xu,

2
∣∣β∣∣n

1−
∣∣β∣∣
)
⊆ C.

Up to replace L by the language Pref(L), which is a regular language with the same
spectral radius, we have that for all n ∈ N, the set of balls

{
Bu u ∈ Ln

}
is a

covering of σ−(QL), hence we have

Ncovering

(
2
∣∣β∣∣n

1−
∣∣β∣∣
)
≤ #Ln,

where Ncovering is defined on subsection 2.6. And we have #Ln ∼ Cγn for some
constant C > 0. Therefore, we have

lim sup
ε→0

log(Ncovering(ε))

log(1/ε)
≤ lim
n→∞

log(#Ln+1)

log

(
1−|β|

2

∣∣β∣∣−n) =
log(γ)

log(1/
∣∣β∣∣) .

Hence, we have dimMB(σ−(QL)) = log(γ)

log(1/|β|) . This ends the proof of the theo-

rem 4.14.
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We can check (by computer) that the spectral radius of the minimal automaton
of LM is γ ≈ 1.31477860592584... which is the greatest root of the polynomial x13 −
x12 − x10 + x9 − 2x4 + x3 − 1. And the language LM satisfy the hypothesis of the
theorem 4.14, because it is included in Lh which comes from a substitution. Hence,
we have

dimMB(σ−(QLM
)) = dimMB(σ−(QLM

)) = 2
log(γ)

log(β)
≈ 1.94643460326525...

This ends the proof of the lemma 4.11.

The proof of the second property of the theorem 4.7 follows from this lemma 4.11.
Indeed, let

M = β
−3
σ−(QLM

), ∀a ∈ A, Ha = β
−3
(
Qa + β

|a|
Rh

)
.

We have that σ−(QA) ⊆ σ−(QM ), because ∀u ∈ A, ∃v ∈ LM , u = v0. Hence we have
Rs = M ∪

⋃
a∈AHa, where Ha is homothetic to the Hokkaido tile, and A is countable.

And we have that M is a fractal of dimension 2 log(γ)
log(β) ≈ 1.94643460326525... where

γ ≈ 1.31477860592584... is the greatest root of x13 − x12 − x10 + x9 − 2x4 + x3 − 1

and β is the smallest Pisot number. It remains to prove the last property. For this
we use the lemma 6.6. We prove this lemma 6.6 later because it uses a new tool: the
extended relations language Lrel∞. Using this lemma we can check that

σ−(QM ) ⊆ σ−(QLh
)\σ−(Q03Ls

) ⊆ C\β3
Rs

by computing

B = Lh\p1(S{0}×Σ(Lrel∞ ∩ Lh0∗ × Pref(03Ls0
∗)))

and checking (by computer) that

LM ⊆ p1(S{0}×Σ(Lrel∞ ∩ LM0∗ × Pref(B0∗))),

and this proves the wanted property.

5. Extended relations language and three types of shapes

In this section, we do the second step of the proof of the main theorem 1.1. We
have shown in the previous section that the Rauzy fractal Rs that we want to study
is the union of a fractal of dimension less than two and a countable union of Hokkaido
tiles. In this section, we show that these Hokkaido tiles are organized in three different
manners that we will describe explicitly. In order to do that, we need a new tool: the
extended relations language.
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5.1. Extended relations language. — Let β be a complex conjugate of the min-
imal Pisot number β and Σ = {0, 1}.

We call extended relations language the following language over the alphabet
Σ× Σ.

Lrel∞ =


(u, v) ∈ (Σ× Σ)∗ ∃(u′, v′) ∈ (Σ× Σ)N, with (u, v) prefix of (u′, v′)

and
∞∑
i=0

(u′i − v′i)β
i

= 0

 .

Theorem 5.1. — Lrel∞ is a regular language.

The proof is very similar to the proof of the theorem 4.1.

Proof. — The first observation is that we have

Lrel∞ = σ−1(L∞),

where σ : (Σ × Σ)∗ → Σ′
∗, with Σ′ = {−1, 0, 1}, is the word morphism such that

∀(a, b) ∈ Σ× Σ, σ(a, b) = a− b, and L∞ is the language

L∞ =
{
u ∈ Σ′

∗ ∃u′ ∈ Σ′N extending u,
∑∞
i=0 u

′
iβ
i

= 0
}
.

Hence, we have Lrel∞ is regular⇐⇒ L∞ is regular⇐⇒
{
u−1L∞ u ∈ Σ′

∗} is finite.
And we have for all u ∈ Σ′

∗,

u−1L∞ =
{
v ∈ Σ′

∗
uv ∈ L∞

}
=

{
v ∈ Σ′

∗ ∃w ∈ Σ′N,
∑|u|−1
i=0 uiβ

i
+ β

|u|∑|v|−1
i=0 viβ

i
+

β
|u|+|v|∑∞

i=0 wiβ
i

= 0

}

=

{
v ∈ Σ′

∗ ∃w ∈ Σ′
N
,

|u|−1∑
i=0

uiβ
i−|u|

+

|v|−1∑
i=0

viβ
i
+ β

|v|
∞∑
i=0

wiβ
i

= 0

}
.

Hence u−1L∞ is completely determined by Su =
∑|u|−1
i=0 uiβ

i−|u|
.

Let σ+ : Q(β) → R and σ− : Q(β) → C be the two Galois embeddings of the
number field Q(β) such that σ−(β) = β and σ+(β) = β.

We have Su ∈ Z[β] because 1/β = β
2 − 1. Let us show now that (σ+ × σ−)(Su) is

bounded, for every relevant u. For all u ∈ Σ′
∗, we have

|σ+ (Su)| =

∣∣∣∣∣∣
|u|−1∑
i=0

uiβ
i−|u|

∣∣∣∣∣∣ ≤
|u|−1∑
i=0

βi−|u| ≤ 1

β − 1
.

If moreover we assume that u−1L∞ 6= ∅, we have for some v ∈ u−1L∞ and some
w ∈ Σ′N,

|σ− (Su)| =

∣∣∣∣∣∣−σ−
|v|−1∑

i=0

viβ
i
+ β

|v|
∞∑
i=0

wiβ
i

∣∣∣∣∣∣ ≤
∞∑
i=0

∣∣β∣∣i =
1

1−
∣∣β∣∣ .
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Therefore the set (σ+ × σ−)(Su) is bounded in R × C, uniformly in u, as soon as
u−1L∞ 6= ∅. Hence, by the theorem 4.2, the set

{
Su u ∈ Σ′

∗ such that u−1L∞ 6= ∅
}

is finite. This proves that the set
{
u−1L∞ u ∈ Σ′

∗} is finite. Hence L∞ is regular,
therefore Lrel∞ also.

Remark 5.2. — The minimal automaton of the language Lrel∞ has 179 states.

5.2. Description of the three types of shapes. — In this subsection, we de-
scribe the three types of shapes appearing in the main theorem 1.1, and we show
that these shapes are finite unions of Hokkaido tiles. These shapes are described by
automata of the figures 16, 17 and 18. This means that the ith shape is σ−(QLi

)

where Li is the language of the ith automaton. The figure 7 show the sets σ−(QLi
).

Figure 16. Minimal automaton of the regular language L1 describing
the first type of shape
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Figure 17. Minimal automaton of the regular language L2 describing
the second type of shape
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Figure 18. Minimal automaton of the regular language L3 describing
the third type of shape
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As we can see in figures 16, 17 and 18, the three types of shapes are not trivially
unions of finitely many Hokkaido tiles, but we prove it now.

5.2.1. First type of shape. — The first shape is a Hokkaido tile:

Proposition 5.3. — Let L1 be the regular language recognized by the automaton of
the figure 16. We have

QL1 = β4QLh
+ 1.

Proof. — We have β4QLh
+ 1 = Q1000Lh

. Hence, by lemma 4.5, the equality is
obtained by checking that we have Proj(1000Lh, L1) = Z(L1) and Proj(L1, 1000Lh) =

Z(1000Lh).

It gives us that σ−(QL1) = β
4
H + 1, where H = σ−(QLh

) is the Hokkaido tile.

5.2.2. Second type of shape. — The second type of shape is a disjoint union of three
homothetic transformations of the third type of shape, up to a set of Lebesgue measure
zero (see figure 8). The following proposition permits to prove that we have the union:

Proposition 5.4. — Let L2 be the regular language recognized by the automaton of
the figure 17. We have

L2 = {ε, 03, 06}L3,

where L3 is the regular language recognized by the automaton of the figure 18.

Proof. — Easy verification.

Hence, we get that σ−(QL2
) = σ−(QL3

) ∪ β3
σ−(QL3

) ∪ β6
σ−(QL3

).
In order to prove the disjointness in measure of the union, we use the lemma 6.6.

For every A 6= B ∈ {L2, 0
3L2, 0

6L2}, we check (by computer) that we have

p1(S{0}×{0,1}(Lrel∞ ∩A0∗ × Pref(B0∗))) = ∅,

and it gives us that σ−(QA)∩σ−(QB) = ∅. Hence, the tiles βiσ−(QL3), for i ∈ {0, 3, 6}
intersect only in their boundary. But we will see that the boundary of some homoth-
etic transformations of σ−(QL3

) is included in the boundary of Rs, hence it has zero
Lebesgue measure. Indeed, it is known that boundaries of Rauzy fractals of primitive
substitutions always has zero Lebesgue measure, see for example [Milt. Thus.].

5.2.3. Third type of shape. — The third type of shape is a disjoint union of two
Hokkaido tiles, up to a set of measure zero (see figure 8). We start by proving that
we have the union:

Proposition 5.5. — Let L3 be the regular language recognized by the automaton of
the figure 18. We have

L3 = Z(0000010000Lh) ∪ 100000000L1.
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Proof. — Easy verification.

Hence, σ−(QL3
) is the union of the two Hokkaido tiles β

10
H+β

5
and β

13
H+β

9
+1.

In order to prove the disjointness in measure of this union, we use the lemma 6.6,
like for the second type of shape. It permits to prove that the two tiles intersect only
in their boundary, but it is known that the boundary of the Hokkaido tile has zero
Lebesgue measure.

5.3. Construction of the three types of shapes. — The aim of this subsection
is to explain how the automata of the figures 16, 17 and 18 have been obtained.
This is not clear from the construction that these shapes satisfy what we expect, but
we can check it after having computed them explicitly. Hence, this subsection is not
useful for the proof of the main theorem 1.1 since these automata have been given
explicitly. In order to describe the three types of shapes formed by Hokkaido tiles
glued together in the Rauzy fractal Rs, we need a way to know if the adherences
of two given Hokkaido tiles have a non-empty intersection. This is done using the
extended relations language. Let

ϕ(L) = ALh ∩ p2(SΣ×Σ(Z(L)× Z(ALh) ∩ Lrel∞))Σ∗,

This application gives the union of Hokkaido tiles whose adherences intersect the
adherence of the set described by L. See lemma 6.10 for more details. Hence, the
idea to construct the languages L1, L2 and L3 is to choose an Hokkaido tile in the
shape that we see when we zoom in the fractal, and then apply the function ϕ until
it cover the whole shape. Unfortunately, this strategy doesn’t work: the set doesn’t
stop to grow when applying ϕ. But we can get it work thanks to the following.

We define an equivalence relation on A by

u ∼′ v ⇐⇒ uRh ∩ vRh 6= ∅,

and let ∼ be the transitive closure of ∼′.

Lemma 5.6. — If uvwRh ∩ uwRh 6= ∅ and if for all n ∈ N, uvnw ∈ A, then

∀n ∈ N, uvnw ∼ uw.

Proof. — For all u, v, w ∈ Σ∗, we have uvRh∩uwRh 6= ∅ ⇐⇒ vRh∩wRh 6= ∅. Hence,
we have for all n ∈ N,

uvn+1wRh ∩ uvnwRh 6= ∅.
The result follows by transitivity of ∼.

Using the function ϕ and the lemma 5.6, we have found three different shapes
that are formed by Hokkaido tiles glued together, and that doesn’t intersect any
other Hokkaido tile. These shapes are drawn on the figure 7 and correspond to the
automata of the figures 16, 17 and 18. We show in the following that no other shape
appears.
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6. Proof of the theorem 1.1

In this section, we show that the countable union of Hokkaido tiles given by the
theorem 4.7 is organised as a pairwise disjoint countable union of homothetic trans-
formations of the three types of tiles described in the previous section. This will
terminates the proof of the main theorem 1.1. We want to show the following theo-
rem.

Theorem 6.1. — Let A be the regular language given by the theorem 4.7. Then, we
have

QALh
= QB1C1Lh∪B2C2Lh∪B3C3Lh

,

where B1, B2, B3, C1, C2, C3 are regular languages such that

∀i ∈ {1, 2, 3}, QCiLh
= QLi ,

where L1, L2 and L3 are respectively the language recognized by the automaton of the
figure 16, 17 and 18. And we have

— ∀i ∈ {1, 2, 3}, ∀u 6= v ∈ Bi, σ−(QuCiLh
) ∩ σ−(QvCiLh

) = ∅,
— ∀i 6= j ∈ {1, 2, 3}, ∀u ∈ BiCi,∀v ∈ BjCj , σ−(QuLh

) ∩ σ−(QvLh
) = ∅.

Moreover, everything is computable.

The language Bi describes where are the tiles of type i, and σ−(CiLh) is the shape
of type i.

In order to prove this theorem, we start by constructing the languages Bi, Ci,
i ∈ {1, 2, 3}, and then we show that these languages satisfy the required properties.

6.1. Construction of the languages B1, B2, B3, C1, C2 and C3. — In this
part, we explain how to compute the languages given in the theorem 6.1. This is not
clear from the construction that these languages satisfy what we expect, but we can
check it after having computed them explicitly, and this is what we do in the next
subsection 6.2. The first step is to consider the languages C1, C2 and C3 recognized
by the automata of the figure 19.
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Figure 19. Minimal automata of regular languages C1, C2 and C3 respectively
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These languages comes from the three different shapes computed and described in
the previous section. We can verify that we have

∀i ∈ {1, 2, 3}, QCiLh
= QLi .

In order to compute languages B1, B2 and B3 describing the occurrence in the
Rauzy fractal of tiles of each type, we do the following. Let QA be the set of states of
the minimal automaton recognizing the language A, and for a state q, let Lq be the
language of the state (that is the language of the automaton where we replace the
initial state by q). Let’s consider the sets

Fi =
{
q ∈ QA Proj(Lq, Ci) = Z(Ci)

}
=
{
q ∈ QA QCi

⊆ QLq

}
for i ∈ {1, 2, 3}. Then, we define Di as the language of the minimal automaton of
A where we replace the set of final states by Fi. The minimal automaton of D1 has
192 states and the minimal automata of D2 and D3 have 191 states. These languages
are not yet the right ones, because they describe tiles that are not disjoint: there are
for example tiles of type 3 included in tiles of type 2. In order to get disjoint tiles,
we start by projecting the concatenation of these languages with Lh on ALh, and we
consider that tiles of type 2 are not included in tiles of other types and that tiles of
type 3 are not included in tiles of type 1 with this description. Let

E2 = Proj(D2C2Lh, ALh),

E3 = Proj(D3C3Lh, ALh)\E2,

E1 = Proj(D1C1Lh, ALh)\(E2 ∪ E3).

Then Ei describes the union of tiles of type i occurring in the Rauzy fractal of s. We
can convince ourself of it by drawing it, and we can check that E1∪E2∪E3 = Z(ALh).
The minimal automata of E1, E2 and E3 have 205 states.
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Then, we compute regular languages A1, A2 and A3 such that for all i ∈
{1, 2, 3}, Z(Ei) = Z(AiLh). This is done in the same way that for the construction
of the language A from the language L: we recognize a sub-automaton of Ei corre-
sponding to Hokkaido. Minimal automata of A1, A2 and A3 have 205 states. The
last step is done in the same way as for the construction of languages Di. Let Qi be
the set of states of the minimal automaton of the language Ai, and let

Fi =
{
q ∈ Qi Proj(LqLh, Li) = Z(Li)

}
=
{
q ∈ Qi QLi ⊆ QLqLh

}
,

for i ∈ {1, 2}, and

F3 =
{
q ∈ Qi Proj(Lq, C3) = Z(C3)

}
=
{
q ∈ Qi QC3

⊆ QLq

}
.

We get an automaton recognizing the language Bi by replacing final states of the
minimal automaton of Ai by Fi deprived of its final states. Minimal automata of B1,
B2 and B3 have 200, 191 and 191 states respectively.

Remark 6.2. — This construction is weird, but we can check in the following sub-
section that it works!

6.2. Proof of the theorem 6.1. — To prove the theorem 6.1, we take the lan-
guages B1, B2, B3, C1, C2 and C3 constructed above and we check that these lan-
guages satisfy every of the wanted properties.

Checking that we have

QALh
= QB1C1Lh∪B2C2Lh∪B3C3Lh

,

is easy, using the lemma 4.5.
The following lemma permits to show the disjointness of adherences of tiles of the

same type.

Lemma 6.3. — We have for all i ∈ {1, 2, 3}, and (u, v) ∈ Bi × Bi, σ−(QuCiLh
) ∩

σ−(QvCiLh
) 6= ∅ if and only if

∃(u′, v′) ∈ CiLh×CiLh, (uu′, vv′) ∈ SΣ×Σ(Lrel∞∩(Bi Pref(Z(CiLh))×Bi Pref(Z(CiLh))))

Hence, if we check that

SΣ×Σ(Lrel∞ ∩ ((Bi Pref(CiLh)×(Bi Pref(CiLh))\(((Bi×Bi)∩∆) Pref(CiLh×CiLh)))) = ∅,

it shows that any two different tiles of the same type that appear in QALh
have disjoint

adherences. This checking is done by computer. In order to prove the lemma 6.3,
we will need the two following lemmas. The following lemma gives a characterization
of the adherence of σ−(QL) for a regular language L. It will be useful to check
algorithmically if tiles have disjoint adherences.

Lemma 6.4. — For a regular language L ⊆ Σ∗, we have

x ∈ σ−(QL) ⇐⇒ ∃u ∈ ΣN, σ−(Qu) = x and ∀n ∈ N, un ∈ Pref(Z(L)),

where un is the prefix of length n of u.
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Proof. — The right-to-left implication is easy: Let u ∈ ΣN such that σ−(Qu) = x and
∀n ∈ N, un ∈ Pref(Z(L)). Then, by definition of Pref(L), ∀n ∈ N, ∃vn ∈ Σ∗, unvn ∈
Z(L). We have Qunvn ∈ QL and σ−(Qunvn) = σ−(Qun

) + β
n
σ−(Qvn) −−−−→

n→∞
x,

therefore x ∈ σ−(QL).
To prove the other implication, we use the fact that L is regular by considering an

automaton recognizing Pref(Z(L)). We can assume that all states of this automaton
are co-reachable (that is there exists a path from the state, to a final state), up to
remove the non-co-reachable ones. Then every state of the automaton is final since
the language is stable by prefix. Then, using the fact that every word of Pref(Z(L))

is extendable by 0 ∈ Σ, we have the identity

σ−(QLi) =
⋃
i

t−→j

βσ−(QLj ) + t,

where Li is the language of the state i of the automaton (that is the language of the
automaton where we take i as initial state). If we take the adherence, we get

σ−(QLi) =
⋃
i

t−→j

βσ−(QLj ) + t,

for all state i. Hence, if x ∈ σ−(Li), we can consider a transition i
t−→ j in the

automaton such that x−t
β
∈ σ−(Lj). By recurrence, there exists for all n ∈ N,

(ti)
n−1
i=0 ∈ Σn such that x =

∑n−1
i=0 tiβ

i
+ β

n
y where y ∈ σ−(QLj

) for some state j.
Hence, we get an infinite word u ∈ ΣN such that x = σ−(Qu). And for all n ∈ N, we
have un ∈ Pref(L) since every state of the automaton is final.

Here is an useful corollary of this lemma.

Corollary 6.5. — For two regular languages A and B ⊆ Σ∗, we have

x ∈
⋃
u∈A

σ−(QuB)

⇐⇒ ∃u ∈ A, ∃v ∈ ΣN, σ−(Quv) = x and ∀n ∈ N, vn ∈ Pref(Z(B)),

where vn is the prefix of length n of u.

The following lemma permits to end the proof of the theorem 4.7.

Lemma 6.6. — For A and B regular languages over an alphabet Σ ⊆ Z[β] containing
0, and for all u ∈ A, we have the equivalence

σ−(Qu) ∈ σ−(QB) ⇐⇒ u ∈ p1(S{0}×Σ(Lrel∞ ∩A0∗ × Pref(B0∗)))
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Proof. — For u ∈ A, we have the equivalence

σ−(Qu) ∈ σ−(QB)

⇐⇒ ∃v ∈ ΣN, σ−(Qu) = σ−(Qv) and

∀n ∈ N, vn ∈ Pref(B0∗) (by lemma 6.4)

⇐⇒ ∃v ∈ ΣN, ∀n ∈ N, ∃k ∈ N, (u0k, vn) ∈ Lrel∞ ∩A0∗ × Pref(B0∗)

⇐⇒ ∃v ∈ Σ∗, ∃v′ ∈ ΣN, ∀n ∈ N, (u0n, vv′n) ∈ Lrel∞ ∩A0∗ × Pref(B0∗)

⇐⇒ ∃v ∈ Σ∗, (u, v) ∈ S{0}×Σ(Lrel∞ ∩A0∗ × Pref(B0∗))

⇐⇒ u ∈ p1(S{0}×Σ(Lrel∞ ∩A0∗ × Pref(B0∗)))

where vn is the prefix of length n of v.

The following lemma reduce the problem of knowing if the adherences of σ−(QA)

and σ−(QB) intersect, where A and B are regular languages, to a calculation with
regular languages.

Lemma 6.7. — Let A and B be two regular languages. Then we have

σ−(QA) ∩ σ−(QB) = ∅ ⇐⇒ SΣ×Σ(Lrel∞ ∩ Pref(Z(A))× Pref(Z(B))) = ∅.

Proof. — We have the equivalences

(u, v) ∈ SΣ×Σ(Lrel∞ ∩ Pref(Z(A))× Pref(Z(B)))

⇐⇒ ∃(u′, v′) ∈ (Σ× Σ)N, ∀n ∈ N, (uu′n, vv
′
n) ∈ Lrel∞ ∩ Pref(Z(A))× Pref(Z(B))

⇐⇒ ∃(u′, v′) ∈ (Σ× Σ)N, ∀n ∈ N, ∃(u′′, v′′) ∈ (Σ× Σ)N, Quu′
nu

′′ = Qvv′nv′′

and ∀n ∈ N, (uu′n, vv
′
n) ∈ Pref(Z(A))× Pref(Z(B))

⇐⇒ ∃(u′, v′) ∈ (Σ× Σ)N, Quu′ = Qvv′ and

∀n ∈ N, (uu′n, vv
′
n) ∈ Pref(Z(A))× Pref(Z(B))

where u′n and v′n are respectively the prefix of length n of u′ and v′. Hence, by
lemma 6.4, we have the wanted equivalence.

Remark 6.8. — Hence, if A and B are regular languages, we can test algorithmically
if we have σ−(QA) ∩ σ−(QB) = ∅ or not.

The following generalization is also useful.

Lemma 6.9. — Let A, B, C and D be four regular languages. Then we have(⋃
u∈A

σ−(QuB)

)
∩

(⋃
u∈C

σ−(QuD)

)
= ∅

⇐⇒ SΣ×Σ(Lrel∞ ∩ APref(Z(B))× C Pref(Z(D))) = ∅.

We can now prove the lemma 6.3.
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proof of lemma 6.3. — Let (u, v) ∈ Bi ×Bi. We have

∃(u′, v′) ∈ CiLh × CiLh,
(uu′, vv′) ∈ SΣ×Σ(Lrel∞ ∩ (Pref(Z(BiCiLh))× Pref(Z(BiCiLh))))

⇐⇒ ∃(u′, v′) ∈ (Σ× Σ)N, Quu′ = Qvv′ (by proof of lemma 6.7)

and every prefix of (uu′, vv′) is in Pref(Z(BiCiLh))× Pref(Z(BiCiLh))

⇐⇒ σ−(QuCiLh
) ∩ σ−(QvCiLh

) 6= ∅. (by lemma 6.4)

Now it only remains to prove that tiles of different types always have disjoint
adherences. This is done by checking (by computer) that we have

∀i ∈ {1, 3}, Z(ϕ(Bi Pref(Z(CiLh)))) = Z(BiCiLh),

and

Z(ϕ(B2C2Lh)) = Z(B2C2Lh),

where ϕ is defined by

ϕ(L) = ALh ∩ p2(SΣ×Σ(Z(L)× Z(ALh) ∩ Lrel∞))Σ∗,

where A = B1C1 ∪ B2C2 ∪ B3C3. This gives the wanted disjointness thanks to the
following lemma.

Lemma 6.10. — For every regular languages L1 and L2 ⊆ Σ∗, we have

u ∈ ϕ(L1 Pref(Z(L2)))

⇐⇒ ∃a ∈ A, u ∈ aLh and σ−(QaLh
) ∩

⋃
u∈L1

σ−(uQL2
) 6= ∅.

Hence, the equality ϕ(Bi Pref(Z(CiLh))) = BiCiLh proves that a copy of Hokkaido
in the set

{
aLh a ∈ A

}
, whose adherence intersect the adherence of a tile of the

set
{
bCiLh b ∈ Bi

}
, is necessarily in

{
aLh a ∈ BiCi

}
. Therefore, the adherence

of tiles of type i doesn’t intersect any adherence of a copy of Hokkaido which is in a
tile of an other type. And the equality ϕ(B2C2 Pref(Z(Lh))) = B2C2Lh proves that
the adherence of a copy of Hokkaido which is in a tile of type 2 doesn’t intersect any
adherence of copy of Hokkaido which is in a tile of an other type. As tiles of type
2 and 3 are described as finite union of Hokkaido copies (i.e. the languages C2 and
C3 are finite), this proves that the adherences of two tiles of different types doesn’t
intersect.
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Proof of lemma 6.10. — We have

u ∈ ϕ(L)

⇐⇒ ∃a ∈ A, u ∈ aLh and u ∈ p2(SΣ×Σ(Pref(Z(L))× Pref(Z(ALh)) ∩ Lrel∞))Σ∗

⇐⇒ ∃a ∈ A, u ∈ aLh and ∃v ∈ Σ∗,∃w ∈ Σ∗, w prefix of u,

(v, w) ∈ SΣ×Σ(Pref(Z(L))× Pref(Z(ALh)) ∩ Lrel∞)

⇐⇒ ∃a ∈ A, u ∈ aLh and ∃v ∈ Σ∗,∃w ∈ Σ∗, w prefix of u,∃(v′, w′) ∈ (Σ× Σ)N,

σ−(Qvv′) = σ−(Qww′) and ∀n ∈ N, (vv′n, ww′n) ∈ Pref(Z(L))× Pref(Z(aLh))

⇐⇒ ∃a ∈ A, u ∈ aLh and σ−(QaLh
) ∩ σ−(QL) 6= ∅.

The theorem 6.1 almost finish the proof of the main theorem 1.1. In order to have
the equality

Rs = σ−(QLM
) ∪

⋃
u∈B1

σ−(QuL1
) ∪

⋃
u∈B2

σ−(QuL2
) ∪

⋃
u∈B3

σ−(QuL3
),

we need to check that σ−(QB1∪B2∪B3
) ⊆ σ−(QLM

). This is true up to replace M
by M ∪ B1 ∪ B2 ∪ B3. We can verify (thanks to theorem 4.14 applied to B1, to B2

and to B3) that doing this doesn’t change the dimension of σ−(QLM
). Hence, the

theorem 1.1 is proven.

Figure 20. Zoom in the countable union of Hokkaido tiles, with
arrangements of type 1 in black, arrangements of type 2 in red, and

arrangements of type 3 in yellow
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7. Proof of measurable conjugacies

The aim of this section is to prove the proposition 1.2. The proof is based
on [Aky. Me.], following ideas of [Arnoux Ito 2001]. Let’s start by proving that
we have the domain exchange that we see in the figure 10 on the third type of shape.

Lemma 7.1. — There is a domain exchange with four domains on σ−(QL3
), where

L3 is the language defined in figure 18, for the translations {β6
, β

7
, β

8
, β

6
(1+β−β2

)}.

Proof. — We consider domains (σ−(QMi))i∈{1,2,3,4} where the languages M1, M2,
M3 are defined in the figure 21.

Figure 21. Minimal automata of the languages M1, M2, M3 and M4
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We can check that we have M1 ∪M2 ∪M3 ∪M4 = L3, so the domains cover the
third type of shape σ−(QL3

). And we can check that the domains are disjoint up
to a set of measure zero using the lemma 6.6: we can check (by computer) that the
language

p1(S0×{0,1}(Lrel∞ ∩A0∗ × Pref(B0∗)))

is empty, so σ−(QA) ∩ σ−(QB) = ∅, for every A 6= B ∈ {M1,M2,M3,M4}.
The domain M1 corresponds to the translation β

6
= β

3
+ β

4
, the domain M2

corresponds to the translation β
8
, the domain M3 corresponds to the translation

β
6
(1 + β − β2

) = β4 and the domain M3 corresponds to the translation β
7

= β
2
(1 +

β + β
2
). It is not difficult to see that the languages N1, N2, N3 and N4 defined in

the figure 23 satisfy QM1
+ β3 + β4 = QN1

, QM2
+ β8 = QN2

, QM3
+ β4 = QN3

and
QM4

+ β7 = QN4
.
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Figure 22. Zoom in the Rauzy fractal, with arrangements of type 1 in
black, arrangements of type 2 in purple, arrangements of type 3 in

dark-yellow, and the part of dimension < 2 in gray

Figure 23. Minimal automata of the languages N1, N2, N3 and N4

0
50

1 150 2

6
1

3

0

1
4 00

0

7 08 09 010 011 112 113 114 00

0 1301 120 2 81
3

0

7
14 05 0

6
0

009 010 011 00 1

0

5
0

1 191

2

6
1

10
0

3

0
14 0

0

0

7
0

8
0

9 00

11 012 013 014 015 016 117 018 00

0
50

1 190
2

6
1

3

0

1
4 00

0

7 08 09 010 0
11

0
12 201

13 114 115 116 117 0
18

1
0

1 1

We can check (by computer, using lemma 4.5) that QN1∪N2∪N3∪N4 = QL3 , so
the domains still cover the shape after translations. And we check that the domains
after translations are pairwise disjoint, like for the domains not translated. The only
difference is that one of the language computed is not empty but contains a finite
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number of words (corresponding to the point β5): this is because β
5 ∈ σ−(QN1

) ∩
σ−(QN3).

Lemma 7.2. — Let Γ0 be the discrete additive subgroup of C generated by {β6
(1−

β), β
6
(β − β2

)}. The natural quotient map π0 : C→ C/Γ0 gives a measurable conju-
gacy between the domain exchange described in the previous lemma and the translation
by β6 on the torus C/Γ0 ' T2.

Proof. — Let us show that Γ0 is a fundamental domain for the action of the group
Γ0. The fact that Γ0 +σ−(QL3

) = C can be obtained by checking that QL3
−β5 comes

from the substitution s3 defined in the introduction. And this also gives the fact that
the boundary has zero Lebesgue measure. And the fact that the various translates of
the tile are disjoint in measure can be checked as above, using the lemma 6.6.

To end the proof of the proposition 1.2, it is known that the substitution s sat-
isfy the Pisot conjecture, and it suffices to remark that the toral translation that
we naturally get from the substitution s is the same as the one we consider here
(see [Arnoux Ito 2001] for more details). Indeed, the translations of the domain
exchange of s are 1, β and β

2
, so the group of differences is the group β−6Γ0, so we

get the translation by 1 on the torus C/γ−6Γ0, which is equivalent to the translation
by β6 on the torus C/Γ0. This ends the proof of the proposition 1.2.

Figure 24. Tiling of C with the third type of shape, for the action of Γ0

Pierre Arnoux tolds me about an observation of Julien Bernat that a big Hokkaido
tile appears inside the union of three translated copies of the substitution associated
to the minimal Pisot number. The tools used in this article allow us to prove this
observation, and we can decompose the union as set of dimension less than two union
a countable union Hokkaido tiles, like in theorem 4.7.
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Figure 25. Three translated (by 0, β
2 − 1 and β − 1) copies of the

Rauzy fractal of s, with the countable union of Hokkaido tiles
corresponding to the union in black.
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