Rauzy fractals can approximate any shape

Paul MERCAT

30 septembre 2016

Example of substitution

Let's take the following substitution over the alphabet $\{a,b,c\}$:

$$s: \left\{ \begin{array}{l} a \mapsto ab \\ b \mapsto ca \\ c \mapsto a \end{array} \right.$$

Then by iterating the letter a we get a fixed point :

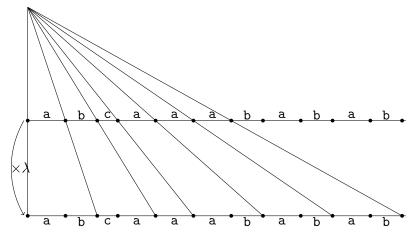
$$s(a) = ab$$

 $s^2(a) = abca$
 $s^3(a) = abcaaab$

 $s^{\infty}(\mathtt{a}) = \mathtt{a}$ bcaaababcaabbcaaababcaaababcaaabab...

Self-similar tiling of \mathbb{R}_+

If we replace letters of this fixed point by intervalles of convenient lengths, we get a self-similar tiling of \mathbb{R}_+ .





To get such a self-similar tiling of \mathbb{R}_+ , the lengths of each intervalles must satisfy the equality

$$M_{s} \cdot \begin{pmatrix} I_{a} \\ I_{b} \\ I_{c} \end{pmatrix} = \lambda \begin{pmatrix} I_{a} \\ I_{b} \\ I_{c} \end{pmatrix},$$

where
$$M_s = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 is the incidence matrix of the substitution and

 λ is the Perron eigenvalue of M_s . Hence we can assume that the lengths $I_i, i \in \{a, b, c\}$ live in $\mathbb{Q}(\lambda)$.

Quasicrystal of \mathbb{R}_+

If we take for example

$$I_a = 1, I_b = \lambda - 1, I_c = \lambda^2 - \lambda - 1,$$

we get the following subset Q of $\mathbb{Q}(\lambda)$.

$$Q = \{0, 1, \lambda, \lambda^{2} - 1, \lambda^{2}, \lambda^{2} + 1, \lambda^{2} + 2, \lambda^{2} + \lambda + 1, \lambda^{2} + \lambda + 2, ...\}$$

This set have very strong properties since we have :

Proposition

Q is a λ -invariant Meyer set of \mathbb{R}_+ .

But what is a Meyer set?

Meyer sets are a mathematical model for quasicrystals.

Definition

A **Meyer set** of \mathbb{R}_+ is a set $Q \subset \mathbb{R}_+$ such that

- Q is a Delone set of \mathbb{R}_+ ,
- Q-Q is a Delone set of \mathbb{R} .

Definition

Q is a Delone set in E if

Q is uniformly discrete

$$\exists \epsilon > 0, \ \forall (x, y) \in Q^2, B(x, \epsilon) \cap B(y, \epsilon) = \emptyset,$$

• Q is relatively dense in E

$$\exists R > 0, \ E \subseteq \bigcup_{x \in Q} B(x, R).$$

Rauzy fractal

The quasicrystal Q is a part of $Q(\lambda)$, hence we can look at the action of the Galois group. Here, λ has two complexes conjugated as conjugates, hence we have an embedding

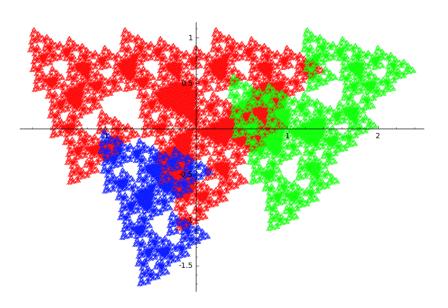
$$\sigma: \mathbb{Q}(\lambda) \to \mathbb{C}$$
,

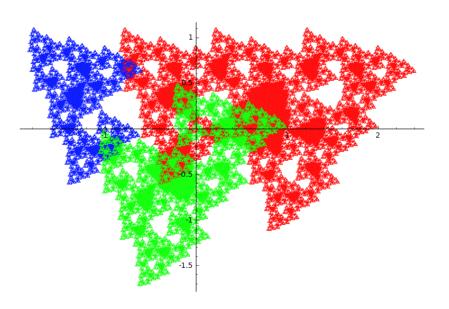
by choosing one of the conjugates.

Proposition

The set $\sigma(Q) \subseteq \mathbb{C}$ is bounded. It's adherence is called a **Rauzy fractal**.

Moreover, we can color in red the points of $\sigma(Q)$ that are left bound of an interval of length 1 (i.e. coming from letter a), in green the points that are left bound of an intervalle of length $\lambda-1$ (i.e. coming from letter b), and the other ones, for $\lambda^2-\lambda-1$, in blue.





If we color points in function of right bounds of intervals, and no more left bounds, we get the second coloration. We get a domain exchange which completely encode the substitution, and in particular the shift in the quasicrystal.

Generalization to any substitution

If s is any substitution over a alphabet A, everything generalizes :

- fixed point : Up to replace s by a power, s has a fixed point ω .
- self-similar tiling: We get a self-similar tiling of \mathbb{R}_+ or \mathbb{R} by replacing letters by intervals of lengths I_a , $a \in A$ given by a Perron eigenvector of the incidence matrix.
- quasicrystal : We get a set $Q_{\omega} \subset \mathbb{R}$ by taking the bounds of intervals of this self-similar tiling, and up to rescaling we have $Q_{\omega} \subset \mathbb{Q}(\lambda)$ where λ is the Perron eigenvalue of the incidence matrix M_s . If λ is a Pisot number, Q_{ω} is a quasicrystal.
- Rauzy fractal : Q is a subset of $\mathbb{Q}(\lambda)$, therefore we can embed it into a natural contracting space E_{λ}^- where it is a pre-compact subset. And we can color it in order to define a domain exchange describing the shift on the fixed point.

General definitions of contracting spaces and Rauzy fractals

There are natural contracting and expanding spaces for the multiplication by β on a number field $k = \mathbb{Q}(\beta)$. Call P the set of places of k (i.e. equivalence classes of absolute values), and let

$$P_+ := \left\{ v \in P \ \big| \ \left| \beta \right|_v > 1 \right\} \text{ and } P_- := \left\{ v \in P \ \big| \ \left| \beta \right|_v < 1 \right\}.$$

The contracting space is $E_{\beta}^- := \prod_{v \in P_-} k_v$ and the expanding one is $E_{\beta}^+ := \prod_{v \in P_+} k_v$, where k_v denotes the completion of k for the absolute value v. We denote by σ_- some embedding into E_{β}^- .

Definition

We call **Rauzy fractal** the adherence of $\sigma_{-}(Q_{\omega})$ in E_{β}^{-} .

For the previous example, where λ is root of x^3-x^2-x-1 , we have $E_{\lambda}^+=\mathbb{R}$ (there is one real place) and $E_{\lambda}^-=\mathbb{C}$ (there is one complex place).

Rauzy fractals can approximate any shape

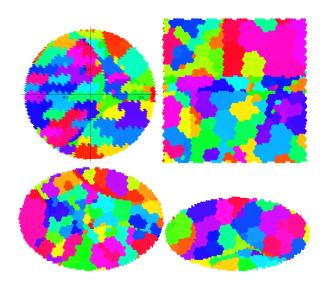
Theorem

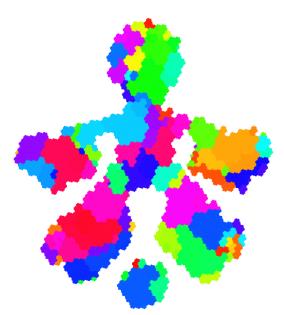
For any Pisot number β and for any $P \subset E_{\beta}^-$, bounded and containing 0, there exists substitutions whose Rauzy fractals approximate arbitrarily P, for the Hausdorff distance, and whose Perron numbers are powers of β . Moreover, the proof is constructive.

The Hausdorff distance between two subsets $A \subseteq E$ and $B \subseteq E$ of a metric space E is

$$d(A, B) = \max \left(\sup_{a \in A} \inf_{b \in B} d(a, b), \sup_{b \in B} \inf_{a \in A} d(a, b) \right).$$

Rauzy fractals aproximating various shapes





g- β -sets : a nice description of quasicrystals by automata

Definition (Main tool)

A set Q is a g- β -set if we have $Q = Q_L$ for

$$Q_L = \left\{ \sum_{k=0}^n a_k \beta^k \mid n \in \mathbb{N}, \ a_0 ... a_n \in L \right\},\,$$

where $\Sigma \subset \mathbb{Q}(\beta)$ is a finite alphabet and $L \subseteq \Sigma^*$ is a regular language.

Proposition

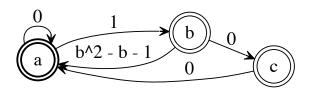
If ω is a fixed point of a substitution, then Q_{ω} is a g- β -set.

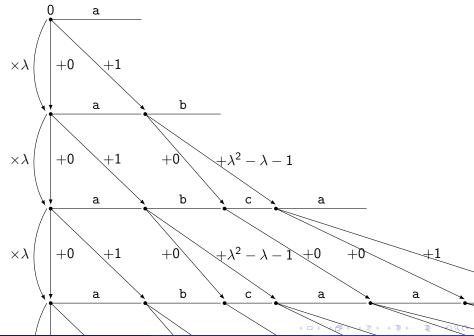
g- β -set coming from a substitution

For the example

$$s: \left\{ \begin{array}{l} a \mapsto ab \\ b \mapsto ca \\ c \mapsto a \end{array} \right.$$

the mirror of the language L, recognized by the following automaton, define a g- β -set which is a quasicrystal coming from the substitution s, for β the Tribonnacci number.





Stability of the set of g- β -sets

Properties (Properties of g- β -sets)

If Q_1 and Q_2 are two g- β -sets, then

- $Q_1 \cup Q_2$, $Q_1 \cap Q_2$ and $Q_1 \backslash Q_2$ are g- β -sets,
- $Q_1 + Q_2$ is a g- β -set,
- $\forall t \in \mathbb{Q}(\beta)$, $Q_1 + t$ is a g- β -set,
- $\forall c \in \mathbb{Q}(\beta)$, cQ_1 is a g- β -set.

Hence, it is easy to approximate any shape by $g-\beta$ -sets.

-> See demonstration in Sage.

Can we get a substitution from a g- β -set?

The main theorem

It is easy to prove that Rauzy fractals can approximate any shape with the properties of g- β -sets and with the following theorem.

Theorem

Let β be a Pisot number. A subset $Q \subset \mathbb{Q}(\beta)$ comes from a fixed point of a substitution whose Perron number is β , if and only if

- Q is a quasicrystal (i.e. a Meyer set),
- $\beta Q \subseteq Q$,
- \bullet $0 \in Q$,
- Q is a g- β -set.

We have already seen that these conditions are necessary. Let us show that these are sufficient.

β -expansion algorithm in a β -invariant quasicrystal

Let Q be a quasicrystal and β be a Pisot number with $\beta Q \subset Q$ and $0 \in Q$. Then we can define the following algorithm that gives an unic finite β -expansion of any elements of Q.

```
Data: x \in Q

Result: coefficients t_0 of a \beta-expansion of x

while x \neq 0 do

\begin{array}{c|c} x \leftarrow x - t0 \text{ for } t0 = \inf\{t \geq 0 | x - t \in \beta Q\}; \\ x \leftarrow x/\beta; \\ \text{print } t_0; \end{array}
```

The expansion of x is given by the successive elements t_0 .

With the previous algorithm, we define the language

$$L_Q := \left\{ a_0...a_n \in \Sigma_Q^* \mid a_0...a_n \text{ expansion of } x \text{ given by the algorithm } \right\} 0^*$$

over the finite alphabet

$$\Sigma_Q := \left\{ \inf\{t \ge 0 | x - t \in \beta Q\} \mid x \in Q \right\}.$$

In others word, L_Q is the unic subset of Σ_Q^* containing the empty word ϵ , such that $Q=Q_{L_Q}$ and such that

$$a_0...a_n \in L_Q \iff \left\{ egin{array}{l} a_0 = \min \left\{ t \in \Sigma_Q \mid \sum_{k=0}^n a_k \beta^k \in \beta Q + t
ight\} \ a_1...a_n \in L_Q \end{array}
ight.$$

Proposition

The following two sentences are equivalent.

- Q comes from a substitution.
- L_O is a regular language.

Hence, to prove the main theorem, it is enough to prove the following

Lemma

We have the equivalence between :

- L_Q is a regular language.
- Q is a g- β -set.

The direct part is obvious. To prove the converse, we construct the language L_Q from any regular language L such that $Q = Q_L$. Let's do it!

Step 1/3 : get a regular language over the alphabet $\Sigma_{\mathcal{Q}}$

Let L be a regular language over an alphabet $\Sigma \subset \mathbb{Q}(\beta)$ such that $Q = Q_L$.

Lemma (Change of the alphabet)

The following language is regular

$$L_{Q,\Sigma_Q} := \left\{ a_0...a_n \in \Sigma_Q^* \ \middle| \ n \in \mathbb{N}, \ \sum_{k=0}^n a_k \beta^k \in Q
ight\},$$

and we have $Q_{L_{Q,\Sigma_{Q}}} = Q$.

Proof.

$$L_{Q,\Sigma_Q} = Z(p_1(L^{rel} \cap \Sigma_Q^* \times L0^*)) \text{ where } Z: L \mapsto \bigcup_{n \in \mathbb{N}} L0^{-n},$$

$$L^{rel} = \{(u, v) \in (\Sigma_Q \times \Sigma)^* \mid \sum_{k=0}^n (u_k - v_k) \beta^k = 0\}.$$

This last language is regular thanks to the main result of my paper « Semi-groupes fortement automatiques ».

Step 2/3 : stabilization by suffix

Lemma (Stabilization by suffix)

The greatest language $L' \subset L_{Q,\Sigma_Q}$ such that

 $u \in L' \Longrightarrow \text{ every suffix of } u \text{ is in } L'$

is a regular language, and we have $Q = Q_{L'}$.

Proof.

Take a deterministic automaton recognizing the mirror of L_{Q,Σ_Q} .

Remove every non final state.

Then this new automaton recognize the mirror of L'.

And we have $L_Q \subseteq L' \subseteq L_{Q,\Sigma_Q}$, hence $Q = Q_{L'}$.

Step 3/3: minimal words in lexicographic order

Lemma (Minimal words in lexicographic order describing Q)

We have the equality

$$L_Q = L' \backslash p_1(L' \times L' \cap L^{rel} \cap L^{>}),$$

where

$$L^{rel} := \left\{ (u, v) \in (\Sigma_Q \times \Sigma_Q)^* \mid \sum_{k=0}^n (u_k - v_k) \beta^k = 0 \right\}$$

and

$$L^>:=\left\{(u,v)\in (\Sigma_Q imes \Sigma_Q)^*\ \middle|\ u>v\ ext{for the lexicographic order}
ight\},$$

where we choose the natural order on Σ_Q , given by the embedding into the expanding space $E_{\beta}^{+} = \mathbb{R}$.

Hence L_O is regular, and this proves the theorem.

Proof of last lemma.

- $L' \times L' \cap L^{rel} \cap L^{>}$ is the couple of words of same length, giving the same element of Q, and with the left one strictly less than the right one for the lexicographic order.
- Hence $L' \setminus p_1(L' \times L' \cap L^{rel} \cap L^>)$ is the set of elements of L' which are minimal in lexicographic order among the words of L' of same length describing the same point of Q.
- We deduce the equality with L_Q : the language is still stable by suffix and the first letter is the minimal one, as in the definition of L_Q .
- The language $L^>$ is easily seen to be regular : we can recognize it with an automaton having two states.
- The language L^{rel} is regular, thanks to my article « Semi-groupes fortement automatiques ».



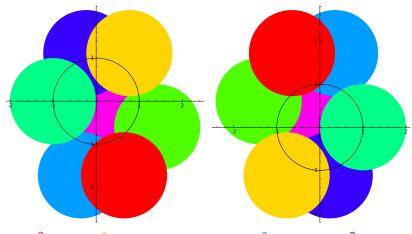
Others things I could speak about

There is still a lot to say about g- β -sets :

- details of my implementation in Sage and how make the computations efficiently,
- examples of computations with Sage,
- construction of a domain exchange on a g- β -set or on a model set,
- proof of stability properties of g- β -sets,
- other proof of the main theorem,
- a nice topology on g- β -sets which permits to decide if we have a model set or not,
- examples of substitutions that describe the list of Pisot numbers of a given quadratic field,
- questions, conjectures and things to develop,
- a simple proof that Rauzy fractals always have non-empty interior.

But maybe Nicolas wants to eat?

Construction of a domain exchange

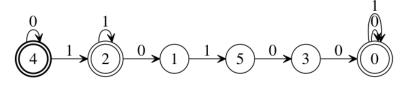


$$-2\beta^2 + 2\beta$$
, $\beta^2 - \beta - 1$, $\beta - 1$, 1 , $-\beta^2 + 2\beta + 1$, $\beta^2 - \beta$, β

Domain exchange on the model set defined by the unit disk window, and the integer ring \mathcal{O}_{β} where β is the Tribonnacci number.

Example of g- β -set for β the Tribonnacci number

Let's take the g- β -set defined by



for $\beta^3 = \beta^2 + \beta + 1$. The regular language L described by this automaton is

$$L = 0^*1^+0100\{0,1\}^*.$$

This g- β -set satisfy every hypothesis of the theorem, hence we can compute a substitution from it.

Corresponding substitution whose Perron number is β

$1\mapsto 28,12,13$	$13 \mapsto 29, 14$	25 25 20
$2\mapsto 29,1,5$	$14 \mapsto 29, 1, 27$	$25 \mapsto 25, 20$
$3 \mapsto 29, 1, 8, 13$	$15 \mapsto 32, 11, 27$	$26 \mapsto 28, 15$
$4 \mapsto 4,13$	$16 \mapsto 29, 19$	$27 \mapsto 29, 16$
$5\mapsto 29,3,9$	$17 \mapsto 4,27$	$28 \mapsto 22$
$6\mapsto 32,11,9$	$18 \mapsto 7$	$29 \mapsto 23$
7 → 49 ´	$19 \mapsto 28, 6$	30 → 24
$8 \mapsto 29, 3, 10, 13$	$20 \mapsto 33,35$	$31 \mapsto 26$
$9 \mapsto 29, 2$	$21 \mapsto 29,34$	$32 \mapsto 28, 21$
$10 \mapsto 29, 3, 13$	$22 \mapsto 17$	$33 \mapsto 31,21$
$11 \mapsto 30,26$	$23 \mapsto 18$	$34 \mapsto 29$
$12 \mapsto 32 \ 11 \ 10 \ 13$	$24 \mapsto 19$	$35 \mapsto 30$

Rauzy fractal

