
The cat-bat map, the figure-eight knot, and the
five orbifolds

Pierre Dehornoy

One of the most famous ways to construct examples hyperbolic 3-manifolds is by
Dehn filling the complement of the figure-eight knot in the 3-sphere. Indeed William
Thurston showed that all but 11 fillings give rise to hyperbolic 3-manifolds [16,
Chap 4]. For these exceptions, one may wonder which manifolds are obtained. Since
the figure-eight knot is fibered with fiber a once-punctured torus, and since the as-
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sociated monodromy map is the so-called1 cat-bat map (2 1
1 1) : R2/Z2 → R2/Z2,

the 0-surgery yields the mapping torus of the cat-bat map. If you ask a software like
Regina2, she will tell you that the ±1-, ±1/2-, and ±1/3-surgeries yield the unit
tangent bundle to the some hyperbolic 2-orbifolds and that the ±1/4-surgeries yield
a graph-manifold.

One can rephrase the previous observation as follows. Denote by M the map-
ping torus of the cat-bat map, equipped with the suspension flow φ t

susp. The cat-bat
map has a unique fixed point, coming from the point (0,0) in R2. Call γ1 the or-
bit of φ t

susp corresponding to this unique fixed point. Write M (γ1,b/a) for the
3-manifold obtained by Dehn surgery3 on γ1 with slope b/a. Then M (γ1,b/a) is
hyperbolic, except when b/a = 0,±1,± 1

2 ,±
1
3 ,±

1
4 , and for b/a = ±1,± 1

2 ,±
1
3 the

manifold is the unit tangent bundle to a hyperbolic orbifold.
One can further use Regina to explore surgeries on other orbits of the suspension

flow of the cat-bat map. For example, the cat-bat map has two orbits of period 2
(corresponding to the points (3/5,1/5) and (1/5,2/5) in R2/Z2). Denote by γ2 the
orbit of the suspension flow going through any of these two order 2-points, then
M (γ2,b/a) is unit tangent bundle to a hyperbolic orbifold for b/a =±1 and ± 1

2 .
Our goal is to picture these five exceptional surgeries as explicitly as possible.

Denote by Opqr the hyperbolic triangular orbifold which is a sphere with three cone
points of angles 2π/p,2π/q,2π/r and by T1Opqr its unit tangent bundle which is a
3-manifold, see Section 1.1.

Theorem 1. The manifold M (γ1,b/a) is

• T1O237 when b/a =±1,
• T1O245 when b/a =±1/2,
• T1O334 when b/a =±1/3;

The manifold M (γ2, p/q) is

• T1O246 when b/a =±1,
• T1O344 when b/a =±1/2.

As explained above, a software like Regina can easily prove Theorem 1. Our
point is to explain how one can see these surgeries. We do it in the reverse direction
as we now explain: like any unit tangent bundle, each of the five manifolds T1Opqr
we are interested in carries a geodesic flow, that we denote by (φ t

pqr)t∈R. Since

1 Boris Hasselblatt noticed, in Chapter 3 “Hyperbolic dynamical systems” of the Handbook of
Dynamical Systems 1A, that it is not clear whether Arnold’s picture of a cat is the oldest picture of
that map. Another possibility is Avez’ bat. Another possibility is to speak of the auThomorphism
of the torus, since René Thom seems to have noticed his properties before Arnold and Avez. We
stick to the cat-bat.
2 This is what Andy Hammerlindl did, and that originates this note.
3 We use Rolfsen’s convention for the surgery coefficient b/a, meaning the meridian of the new
plain torus is homologous to aℓ+ bm, where ℓ is a longitude –given here by following γ1 along
the invariant stable direction– and m a meridian. In particular the denominator of the slope is the
number of intersection points between the old and the new meridians.
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the orbifolds we study are good and hyperbolic (i.e. quotients of the hyperbolic
plane), the geodesic flow is of Anosov type. For each of these geodesic flows we
find a genus-1-Birkhoff section, that is, a surface with boundary S which is a torus,
which is bounded by orbits of φ t

pqr, whose interior is transverse to φ t
pqr, and which

intersects all orbits of φ t
pqr in bounded time. In that case there is a well-defined

first-return map on the interior of S along φ t
pqr. When contracting each boundary

component of S into a point, we obtain a well-defined map fS̄ : S̄ → S̄. The facts that
φ t

pqr is of Anosov type with coorientable invariant foliations and that S is of genus
1 together imply that fS̄ is of Anosov type. Therefore it is conjugated to a linear
map of the torus. A careful analysis then shows that fS̄ has exactly one fixed point.
It turns out that, up to conjugacy, there is only one such map of the torus, namely
the cat-bat map. This implies that the surgery on T1Opqr along the orbits which are
the boundary of the surface S with an appropriate direction (which depends on the
shape of S around ∂S) yields the manifold M. Thanks to the above argument, the
technical property we explain and which implies Theorem 1 is

Proposition 1. 1. For (p,q,r) = (2,3,7) (resp. (2,4,5),(3,3,4)), the geodesic flow
φ t

pqr on T1Opqr admits a genus-one Birkhoff section Spqr with one boundary com-
ponent and boundary direction (1,1) (resp. (2,1),(3,1)), such that the induced
first-return map on S̄pqr has exactly one fixed point.

2. For (p,q,r) = (2,4,6) (resp. (3,4,4)), the geodesic flow φ t
pqr on T1Opqr admits

a genus-one Birkhoff section Spqr with two boundary components on the same
periodic orbit and boundary direction (2,2) (resp. (4,2)), such that the induced
first-return map on S̄pqr has exactly one fixed point.

The strategy we follow is not really new. It goes back to Fried, Ghys, Hashiguchi,
Brunella who already observed and used the fact that some geodesic flows admit
surgeries that yield suspensions of toral automorphism [8, 9, 11, 3]. The first case
of Theorem 1 was explicitly stated about 10 years ago [4] (and probably known to
some experts even earlier). The third case was suggested by Pierre Will, see [7] for a
connection with complex hyperbolic geometry. It was explained using different and
less direct techniques (computations of linking numbers) in a recent note [6]. The
second, fourth and fifth cases were suggested by Andy Hammerlindl. These cases
use new variants of the constructions of [4].

Acknowledgments. This note emerged from discussions with Andy Hammerlindl
during the Matrix event “Dynamics, Foliation, and Geometry III” at the mathemat-
ical research institute Matrix. I thank Andy for these motivating discussions, as
well as Andy and Jessica Purcell for organising this very nice event, and Matrix for
hosting it. The 334- and 344-cases were also discussed with Neige Paulet, I thank
her for her remarks. I also thank the referee for several suggestions that improve
the readability of the paper. I acknowledge support from ANR Gromeov ANR-19-
CE40-0007, and I thank Michele Triestino for leading it.
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1 Hyperbolic orbifolds, geodesic flows, and Birkhoff sections

1.1 Hyperbolic triangular orbifolds and their unit tangent bundles

Let p,q,r be three integers satisfying 1/p + 1/q + 1/r < 1. In the hyperbolic
plane H2, there is a triangle PQR whose angles are π/p,π/q,π/r, respectively.
Consider the group Γpqr of hyperbolic isometries generated by the rotations of re-
spective angles 2π/p,2π/q,2π/r around P,Q,R. The action of Γpqr on H2 is proper
and cocompact. A fundamental domain is obtained by taking the union of PQR with
its mirror image by the symmetry around any of its sides.

The quotient H2/Γpqr is a hyperbolic triangular orbifold; we denote it by Opqr.
It is homeomorphic to a sphere. Metrically all points but the projections of P,Q,R
admit neighborhoods isometric to hyperbolic discs. The projections of P,Q,R admit
neighborhoods isometric to the quotient of a hyperbolic disc by rotations of respec-
tive order p,q,r.

The unit tangent bundle to the hyperbolic plane T1H2 is the circle bundle over H2

made of length 1 tangent vectors. It is homeomorphic to D2 ×S1. Since isometries
also act on tangent vectors, the action of Γpqr extends to T1H2. Note that a rotation r
of order k on a 2-dimensional disc D2 acts by screw-motion on the unit tangent
bundle T1D2. Thus the quotient T1D2/⟨r⟩ is a 3-manifold where the fiber of the
cone point has Seifert invariant (k,1): regular fibers wind k times along the singular
fiber, and make one meridional turn around it (right).
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This implies that the quotient T1H2/Γpqr is an actual 3-manifold; we denote it
by T1Opqr. It is Seifert fibered by the fibers of the points of Opqr. Regular points
have regular fibers, and the three cone points have singular fibers of Seifert invari-
ants (p,1),(q,1),(r,1) respectively. We refer to Jose Maria Montesinos’ beautiful
book [14] for more on orbifolds and their unit tangent bundles.

1.2 Geodesic flows and anosovity

The geodesic flow on T1H2 is the flow whose orbits are tangent vectors to di-
rected geodesics, travelled at unit speed. Namely, if γ(t) denotes a geodesic trav-
elled at speed 1, the geodesic flow at time t sends (γ(0), γ̇(0)) to φ t((γ(0), γ̇(0)) =
(γ(t), γ̇(t)). The action of the geodesic flow commutes with the action of any Fuch-
sian group, so it descends to a well-defined flow (φ t

pqr)t∈R on T1Opqr, also called
the geodesic flow. Its orbits are lifts of geodesics of Opqr. Note that when a geodesic
on Opqr goes into a cone point of even order, it makes a U-turn. When it goes through
a cone point of odd order, it continues straight.

The geodesic flows on compact quotients of T1H2 are the oldest known examplex
of Anosov flows [1]. We give here the topological definition which is better suited
to our purpose. It was only recently shown by Mario Shannon that, for transitive
flows in dimension 3, this definition yields the same flows as the classical defini-
tion [15]. A 3-dimensional flow is topologically Anosov if there are two transverse
2-dimensional foliations F s and F u that are invariant under the flow, and such that
in every leaf of F s (resp. F u) orbits converge exponentially fast in positive (resp.
negative) time. The foliations F s and F u are called stable and unstable foliations
respectively. Note that being topologically Anosov only depends on the underlying
1-dimensional foliation, but not of the actual time-parametrization of the orbits.
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In the case of the geodesic flow on a quotient of the hyperbolic plane, F s corre-
sponds to the vectors tangent to those geodesics that have the same positive extrem-
ity in H2, while F u corresponds to the vectors tangent to those geodesics that have
the same negative extremity.

In general, there is a dichotomy depending on whether the invariant foliations
are coorientable or not. All the flows we consider here have coorientable invariant
foliations. This implies in particular that following a periodic orbit, one sees two
stable and two unstable half-leaves on each side, and these never get permuted when
following the orbit.

1.3 Birkhoff sections, first-return maps, and (pseudo-)Anosov maps

For M a compact 3-manifold, and (φ t)t∈R a flow with no fixed point on M, a
Birkhoff section for (M,φ t) is the image of an immersed compact surface with
boundary i : (S,∂S)→ M such that

1. the restriction of i to the interior of S is an embedding and its image is transverse
to the orbits of φ t ;

2. the restriction of i to the boundary of S is a submersion on finitely many periodic
orbits;

3. every orbit of φ t intersects S in bounded time.
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Note that (2) implies that several boundary components may be mapped on the
same periodic orbit of φ t . Also it allows a given boundary component to wrap sev-
eral times around a periodic orbit in the longitudinal direction.

In order to better study the behavior around the boundary, it is convenient to
blow-up the boundary orbits as follows: given a Birkhoff section S, denote by M∂S
the 3-manifold with toric boundary obtained by blowing up the (finitely many) pe-
riodic orbits of φ t on which the boundary of S maps. Each boundary component
of M∂S is a torus that corresponds to the blow-up of a periodic orbit. Topologically,
M∂S is the same as the complement of a tubular neighborhood of ∂S. However, as-
suming φ t to be smooth, it extends to a smooth flow on ∂M∂S, denoted by φ̂ t . The
interior of S then embeds into M∂S. The Birkhoff section S is called ∂ -strong4 if S◦

extends into a compact surface with boundary Ŝ in M∂S such that every boundary
component of Ŝ is a curve in ∂M∂S that is transverse to the extended flow φ̂ t . Note
that a Birkhoff section can always be perturbed into a ∂ -strong Birkhoff section.

Starting from a point in Ŝ and following φ̂ t there is a first-return time on Ŝ and
a induced first-return map fŜ : Ŝ → Ŝ which is a homeomorphism. Blowing down
every boundary component of Ŝ into a point, we obtain a compact surface S̄ with no
boundary, and a map fS̄ : S̄ → S̄, which is still a homeomorphism5.

Let γ be a periodic orbit of φ t on which lie c boundary components of S. Then the
boundary torus of M∂S corresponding to γ contains c components of ∂ Ŝ which are
parallel. These c curves then give c points in S̄, which form a periodic orbit for fS̄
of period c.

When φ t is Anosov with coorientable invariant foliations, there are two canon-
ical directions on the boundary components of ∂M∂S given by the trace of the sta-
ble/unstable directions and the meridians. These directions allow to describe every
boundary curve of Ŝ by a direction (a,b) of coprime integers with b > 0, where a
is the (algebraic) intersection with any meridian curve and b is the intersection with
the trace of one stable half-leaf (on the following picture one has (a,b) = (2,1), so
that the slope b/a is 1

2 ).

4 This refinement was proposed by Umberto Hryniewicz to formalize an assumption that was often
done but never stated.
5 In order to describe S̄ and the first-return map fS̄, one does not really need ∂ -strongness and
looking at Ŝ, but we find it convenient to explain it in this setting.
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In particular, assuming S to be ∂ -strong, every boundary component of Ŝ is a
curve on ∂M∂S whose direction is of the form (a,b) with b > 0. Indeed, b = 0
would violate condition (3): the boundary curve would be parallel to the stable and
unstable directions, and the first-return time would not be bounded.

When φ t is Anosov, one can intersect the invariant foliations of φ t with a ∂ -strong
section S. This yields two 1-dimensional foliations on S◦, that are invariant by the
first-return map. These foliations actually extend to Ŝ into foliations with boundary
with the local form depicted below.

We denote these by F s
Ŝ

and F u
Ŝ

. One checks that if s is a boundary component
of Ŝ with direction (a,b), then the extended foliations have 2b singular half-leaves
on s.

The case that is of interest in this paper is when b = 1 for every boundary com-
ponent of Ŝ. In this case only, the foliations F s

Ŝ
and F u

Ŝ
project to 1-dimensional fo-

liations without singularities on S̄. This implies first that S̄ is a (orientable) compact
surface with empty boundary that carries two non-singular foliations, hence it is a
torus. Second the first-return map fS̄ preserves two non-singular foliations, expand-
ing the first one and contracting the second, so it is an Anosov map of the torus. It is
well-known that such a map is conjugated to the action of a linear map A ∈ SL2(Z)
with tr(A)> 2, and that two such maps A and B are conjugated if and only if A and
B are conjugated in SL2(Z) [13, Thm 18.6.1].

Denoting by X the matrix (1 1
0 1) and by Y the matrix (1 0

1 1), conjugacy classes
in SL2(Z) correspond to words in X and Y containing both letters, up to cyclic
permutations. In particular, there is only one conjugacy class of such maps with one
fixed point on R2/Z2 only, namely the conjugacy class of the matrix XY = (2 1

1 1).
Summarizing the above discussion one has

Proposition 2. Assume that M is a 3-manifold that supports an Anosov flow φ t , that
γ is a periodic orbit of φ t which is the boundary of a Birkhoff section S so that the
boundary direction is (a,b). Then the manifold M(γ,b/a) is the mapping torus of the
first-return map on S̄ along φ t . Moreover, when b = 1, the surface S̄ is necessarily a
torus.
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2 The 237-case

Here p = 2,q = 3,r = 7, so that the triangle PQR has angles π/2,π/3,π/7. In the
2-dimensional orbifold O237 we consider the geodesic h that is obtained by lifting
in O237 the altitude of P in PQR. Denote by h⃗ its lift in T1O237.

Since h goes through the point P which has order 2, there is one lift only
in T1O237, which consists in following h with both orientations. Denote by S237
the 2-chain in T1O237 which consists in all tangent vectors based on h and pointing
to the side of R. It is cooriented by the orbits of the geodesic flow φ t

237. With the
induced orientation, its oriented boundary is −⃗h.

The next picture shows how S237 looks around the fiber of the order 2-cone point.
Combinatorially, it is a rectangle with some side identifications.
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One checks that the Euler characteristic of S237 is −1. Thus it is a torus with one
boundary component. As explained in the end of Section 1, one can blow down the
boundary component of S237 into a point, yielding a surface S̄237 and a first-return
map fS̄237

: S̄237 → S̄237 that is Anosov.
We are left with the computation of the first-return map fS̄237

on S̄237 along φ t
237.

One option is to make an explicit computation, as was done in a more general set-
ting [4, 5]. Another (easier?) way is to show that fS̄237

has one fixed point only.
Here the boundary projects to a fixed point after collapsing. One can then look at all
other geodesics in H2, and convince oneself that no periodic geodesic intersects S237
only once. Indeed a geodesic intersecting S237 corresponds to an element g ∈ Γ237
that translates an heptagon bounded by the lifts of h to an adjacent heptagon, for
example the green one to the pink one in the next picture.

There are 7 such isometries, 5 of which are rotations (around the orange points),
and 2 of which are translation along copies of h. Thus there is no fixed point other
than the one coming from h.

3 The 245-case

In the orbifold O245 we consider the geodesic b that is the shortest segment connect-
ing P and Q. Denote by b⃗ its lift in T1O245. Since b goes though two cone points
of even orders, it makes a U-turn at both points, hence there is only one lift for b
in T1O245.
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Denote by Ŝ245 the surface in T1O245 that consists in all tangent vectors based
on b. It is cooriented by the orbits of φ t

245. With the induced orientation, its oriented
boundary is −2⃗b.

Around the fiber of P, the situation is a bit different from the 237-case since
b comes at P from one direction only, but S245 consists of two ribbons. The local
picture at T1P is the following. The surface Ŝ245 is not singular here.

The situation around the fiber of Q is more involved and the surface Ŝ245 is singu-
lar there. In a local chart that is a degree 4-cover, the lift of Ŝ245 consists of 8 pieces:
2 above each segment that covers b. Coloring in green those pieces that correspond
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to vector oriented clockwisely around Q and coloring in purple the other four pieces,
the order-4 rotation identifies the 4 green pieces together and the 4 purple pieces to-
gether.

One can desingularize Ŝ245 transversally to φ t
245 as shown on the right and obtain

a topological surface S245. The desingularization connects the top part of the verti-
cal boundary of each green piece with the bottom part of the vertical boundary of
another green piece, and similarly with the purple pieces.
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Thus S245 is a rectangle with some identifications on the vertical border. One
checks that its Euler characteristic is −1. Also it has one boundary component:
indeed, when travelling on S◦245 along its border, one checks that there is one com-
ponent only: in the fiber of Q the borders of the green and purple part do not mix, but
in the fiber of P they get exchanged. Thus S245 is a torus with one boundary com-
ponent. One can compute the boundary direction of S245 along its unique boundary
component: its winds twice along b⃗, and once meridionally, so the direction is (2,1).

In order to understand the induced first-return map fS̄245
, we show that is has one

fixed point only. Such a fixed point would correspond to an element of Γ245 mapping
a pentagon in H2 delimited by the lifts of b to an adjacent pentagon.

There are only 5 ways to do so, 3 of which are rotations (around the orange
points), and 2 of which are translations along copies of b (in orange too). Thus the
first-return map on S245 is also conjugated to the cat-bat map.
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4 The 246-case

This case is close to the previous one. In the orbifold O246 we consider the geodesic
c that is the shortest segment connecting P and R. Denote by c⃗ its lift in T1O246.
Since c goes though two cone points of even points, there is only on lift for c.

Denote by Ŝ246 the surface in T1O246 which consists in all tangent vectors based
on c. It is cooriented by the orbits of φ246. With the induced orientation, its oriented
boundary is −2⃗c. As in the previous case, Ŝ246 is not singular around the order 2-
cone point.

However the situation around the fiber or R is more complicated than in the pre-
vious case. In a local chart that is a degree 6-cover, the lift of Ŝ246 consists of 12
pieces: 2 above each segment that covers c. Coloring in green those pieces that cor-
respond to vectors oriented clockwisely around R and coloring in purple the other
six pieces, the order-6 rotation identifies all 6 green pieces together and all 6 purple
pieces together.
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One can desingularize Ŝ246 transversally to φ t
246 as shown on the picture (top

right) and obtain a topological surface S246. The desingularization connects the top
part of the vertical boundary of each purple piece with the bottom part of the vertical
boundary of an adjacent green piece, the middle part of the vertical boundary of each
purple piece with the middle part of the vertical boundary of the opposite green
piece, and the bottom part of the vertical boundary of each purple piece with the top
part of the vertical boundary of an adjacent green piece (bottom right).

Thus S246 is a rectangle with some identifications on the vertical border. One
checks that its Euler characteristic is −2. Also, travelling along c⃗, one sees that there
are two boundary components (light blue and dark blue on the bottom right picture).
Thus S246 is a torus with two boundary components, each with direction (1,1).

In order to understand the induced first-return map, we show that is has one fixed
point only. Unlike the two previous cases, the boundary is not a fixed point: it is a
period 2-point since the two boundary components are exchanged by the first-return
map.
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On the other hand, there is one fixed point in the interior of S246. Indeed, such
a fixed point corresponds to an element g ∈ Γ246 transporting one square in H2

bounded by copies of c (the green square, say) on an adjacent one (the pink one,
say). One sees that 4 isometries transport the green square on the pink one, namely
3 rotations and 1 translation along the orange geodesic (which actually corresponds
to the line PQ). The latter yields the unique fixed point. Thus the first-return map
on S246 is also conjugated to the cat-bat map.

5 The 334-case

This case and the next one are a bit different since the surfaces we consider are not
vertical, but rather horizontal, that is, transverse almost everywhere to the fibering
by circles of the unit tangent bundle. In that sense, they are closer to the original
constructions of surfaces of sections by Birkhoff and Fried. The existence and the
properties of the surface S334 we construct here were already proven [6], but the
surface was not explicitly described. We follow another approach here, reminicent
of the surface Spqr in [4].

In H2 tiled copies of a triangle PQR with angles π/3,π/3,π/4, call J the mid-
point of the segment PQ. On the orbifold O334, consider the oriented geodesic γ8
that has one self-intersection at J and that winds once positively around P and once
negatively around Q. In H2, the curve γ8 and its images by Γ334 tile H2 into octagons
(containing the order 4-cone points), and two types of triangles containing the or-
bits under the action Γ334 of P and Q respectively. Lift γ8 in T1O334 into an periodic
orbit γ⃗8 of the the geodesic flow φ334.



The cat-bat map, the figure-eight knot, and the five orbifolds 17

In H2 consider an oriented foliation F334 of the interiors of the two triangles
delimited by γ8 with one vertex at J by convex curves tangent to γ8 at J.

Then lift F334 in T1H2 by considering the set of those unit tangent vectors posi-
tively tangent to F334. This is a surface Ŝ that is singular in the fiber of J, and which
is bounded by the segments of γ⃗8 that bound the triangles containing P and Q.

Consider the surface Ŝ334 in T1O334 obtained by projecting Ŝ in T1O334. It is also
a surface that is still singular in the fiber of J. It is transverse to φ t

334, hence can
be cooriented by it, and thus oriented. With this convention, its oriented boundary
is −3⃗γ8. Indeed all sides of the triangle containing P (resp. Q) are identified.

In the fiber of J, the surface can be desingularized transversally to φ t
334, as shown

below. Indeed, on one part of the fiber of J (the smallest), 4 pieces arrive, 2 from
the side of P (Sa and Sb) and 2 from the side of Q (Sc and Sd). One has to glue them
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two by two, keeping the transversality to φ t
334. With the notation of the picture, one

checks that, on the side of P, the piece Sa is on top of Sb (because the corresponding
part of the foliation F334 is in front in the trigonometric order), hence in front. On
the side of Q, the piece Sc is under the piece Sd , hence in front. The result is a smooth
surface S334 transverse to φ334, it is bounded by −3⃗γ8.

Its genus can be computed in two ways:

• either one remarks that S334 is made to two hexagons HP,HQ, so that three sides
of HP are identified with three sides of HQ following the pattern of the above
picture, and so it is a torus with one boundary component;

• or one remarks that S334 has one exactly boundary component, is transverse
to φ t

334, and winds once around its boundary in the meriodional direction. Indeed
following γ⃗8, when encountering points a,b,c,d the surfaces makes about − 1

2
turn in the meridional direction and when encountering points e, f it makes about
+ 1

2 turn. All-in-all, this makes −1 turn, there are just two stable and two unsta-
ble separatrices on S334 along its only boundary component. By a Poincaré-Hopf
type argument, S334 is a one-holed torus.

Finally one has to compute the first-return map along the geodesic flow φ334
on S334, that is, check that there is no fixed point except the boundary orbit γ⃗8.
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As in the three previous cases, one does it by looking in H2. The intersection
of a periodic orbit of φ t

334 with S334 can be read by looking at the corresponding
geodesic in H2: such a geodesic corresponds to an element g ∈ Γ334 that translates
one lift of R into another one. One can decompose such a translation into two types
of elementary steps: one that goes from the green octagon to the pink one on the pre-
vious picture, and one that goes from the pink one to the green one. These two steps
are different since the first one induces two intersection points with S334 (roughly
speaking around the part Sa = Sc and Sb = Sd respectively), while the second one
induces one intersection point only (around the part SJ). Therefore, the only way
for a periodic geodesic to intersect S334 only once is to correspond to an element
that takes the pink octagon to the green one. There are only 4 such elements, 2 of
which are rotations around orange points, and 2 that correspond to γ . Thus fS̄334

has
one fixed point only, which corresponds to the boundary component. Therefore it is
conjugated to the cat-bat map.

6 The 344-case

This case is very similar to the previous one.
In H2 tiled by copies of a triangle PQR with angles π/3,π/4,π/4, call K the

midpoint of the segment QR. On the orbifold O344, consider the oriented geodesic γ8
that has one self-intersection at K and that winds once positively around Q and
once negatively around R. In H2, the curve γ8 and its images by Γ344 tile H2 into
hexagons (containing the orbits under the action Γ344 of P), and two types of squares
containing the orbits of Q and R respectively. Lift γ8 in T1O344 into an periodic
orbit γ⃗8 of the the geodesic flow φ344.

In H2 consider the interiors of the two squared delimited by γ8 with one vertex
at K. These have an oriented foliation F344 by convex curves tangent to γ8 at K.
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Then lift F344 in T1H2 by considering the set of those unit tangent vectors posi-
tively tangent to F344. This is a surface Ŝ that is singular in the fiber of K, and which
is bounded by the segments of γ⃗8 that bound the squares containing Q and R.

Consider the surface Ŝ344 in T1O344 obtained by projecting Ŝ in T1O344. It is
also a surface that is still singular in the fiber of K. Note that its oriented boundary
is −4⃗γ8. Indeed all sides of the square containing P are identified.

In the fiber of K, the surface can be desingularized transversally to φ t
344, as in

the previous case: on the smallest part of the fiber of K, 6 pieces arrive, 3 from the
side of Q (Sa,Sb and Sc) and 3 from the side of R (Sd ,Se and S f ). One has to glue
them two by two, keeping the transversality to φ t

344. With the notation of the picture,
one checks that, on the side of Q, the piece Sa is on top, Sb in the middle, and Sb
on the bottom (because or the trigonometric order of the corresponding parts of the
foliation F344). On the side of R, the piece Sd is in the bottom, hence in front, Se in
the middle, and S f on top, hence in the back. Thus one glues Sa with Sd , Sb with Se,
and Sc with S f . The result is a smooth surface S344 transverse to φ t

344, it is bounded
by −4⃗γ8.

As before, its genus can be computed in two ways:
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• either one remarks that S344 is made to two octagons HQ,HR, so that four sides
of HQ are identified with four sides of HR following the pattern of the above
picture, and so it is a torus with two boundary components;

• or one remarks that S344 has two boundary components, is transverse to φ t
344,

and winds twice around its boundary in the meriodional direction. Indeed fol-
lowing γ⃗8, when encountering points a,b,c,d,e, f the surfaces makes about − 1

2
turn in the meridional direction and when encountering points g,h it makes about
+ 1

2 turn. All-in-all, this makes −2 turn, there are just four stable and four unsta-
ble separatrices on S344 along its two boundary components. By a Poincaré-Hopf
type argument, S344 is a two-holed torus.

Finally one has to compute the first-return map along the geodesic flow φ t
344

on S344, that is, check that there is one fixed in the interior, since the boundary
orbit γ⃗8 correspond to an orbit of period 2.

As before, one does it by looking in H2. The intersection of a periodic orbit
of φ t

344 with S344 can be read by looking at the corresponding geodesic in H2: such a
geodesic corresponds to an element g ∈Γ344 that translates one lift of P into another
one. One can decompose such a translation into two types of elementary steps: one
that goes from the green hexagon to the pink one on the previous picture, and one
that goes from the pink one to the green one. These two steps are different since the
first one induces three intersection points with S344 (roughly speaking around the
parts Sa = Sd , Sb = Se and Sc = S f respectively), while the second one induces one
intersection point only (around the part SK). Therefore, the only way for a periodic
geodesic to intersect S344 only once is to correspond to an element that takes the pink
hexagon to the green one. There are only 3 such elements, 2 of which are rotations
around orange points, and 1 that corresponds to a periodic geodesic (actually one
lift of the height of P in the triangle PQR, which is also the curve b in the 246-case).
Thus fS̄344

has one fixed point only. Therefore it is conjugated to the cat-bat map.
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