ASYMPTOTIC INVARIANTS OF 3-DIMENSIONAL VECTOR FIELDS

PIERRE DEHORNOY

ABSTRACT. In this survey article, we present several constructions of invariants for 3-
dimensional volume-preserving vector fields under volume-preserving diffeomorphisms.
After introducing helicity, we focus on invariants constructed using knot theory, following
Arnol’d’s strategy. Most invariants constructed in this way are actually very close to
helicity, but we also present a few that are rather different. We conclude with some open
questions.

These notes are dedicated to the following

Problem A. Construct invariants of 3-dimensional volume-preserving vector fields up to
volume-preserving diffeomorphisms.

We did not specify what is the underlying manifold. For physical applications, it is
natural to work on R? or on a bounded domain of R3, often with the condition that the
vector field is tangent to the boundary. For mathematical reasons, it is easier to work
on compact manifolds, so the 3-sphere S* = R3 U {oc} is a natural space. Actually most
presented results hold both in R? and S?, so we will alternate freely between those two
manifolds, depending on what is more natural.

We also did not specify the regularity of the vector field and the regularity of the
diffeomorphisms. Yet regularity is in general an important question in dynamical systems.
For having a well-defined orbit flow and well-defined orbits, we need the vector field to
be Lipschitz-continuous, but for simplicity we will generally assume C*°. Likewise, many
invariants are invariant under C' volume-preserving diffeomorphisms, but one can restrict
to invariance under C*° volume-preserving diffeomorphisms for simplicity. It turns out
that it is an open question for most constructions whether they are invariants under
volume-preserving homeomorphisms.

Also comes the question of the volume. For physical applications, we are mostly in-
terested in invariant measures given by the Euclidean volume, or a function times the
Euclidean volume. But the richness of the mathematical approach is to deal with more
general invariant measures, like for example the linear measures concentrated on periodic
orbits, or the physical SRB measures (more on this in Section 1.c).

Problem A has roots in magnetohydrodynamics (MHD), a part of physics dedicated to
the dynamics of magnetic fields, in particular in plasmas. Indeed the magnetic flow of an
ideal plasma is time-dependent, but turns out to be transported by the velocity field of the
plasma, so that the magnetic field at a given moment is the image of the magnetic field
at another moment under a volume-preserving diffeomorphism. In order to understand
the long-term behavior (as long as the ideal model is relevant), it is desirable to have
invariants that help understanding how the magnetic flow may or may not evolve [AK98|.
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Firstly, one can note that the number of fixed points and of periodic orbits is such an
invariant. Secondly, periodic orbits form knots whose isotopy classes are a second class
of invariants. However there exist C''-volume-preserving vector fields on S? without fixed
points nor periodic orbits [KK96], so that the knot types are not sufficient to classify
vector fields (there also exist analytic vector fields without periodic orbits, but they do
not preserve any volume [Kup94]). Moreover these invariants are of rather local nature:
knowing that a vector field contains a certain knot as periodic orbit does not necessarily
says much about what happens away from this particular periodic orbit.

The quest for (global) invariants has been launched by Woltjer and Moreau with the
discovery of helicity [Wol58, Mor61]. It was first defined (see Section 2) using differential
forms, and invariance under diffeomorphism was first unnoticed. This invariance was
proven by Moffatt [Mof69] who also remarked that helicity is actually related to knot
theory, and more precisely to the linking number.

This connection was deepened by Arnol’d [Arn73] who showed that helicity is a sort
of average linking number of pairs of orbits. More precisely a generic orbit of a vector
field has in general no reason for being closed, but it is recurrent (meaning that it comes
back close to its initial point). One then obtains a knot by connecting the two ends of
any arc of orbit with a geodesic segment. Arnol’d proved that for almost every pair of
points (p1, p2) the linking number of the two such arcs of orbits of length ¢;, t5 is asymptotic
to a constant cp, ,, times t1to. Moreover the function (p1,p2) — ¢p, p, is integrable, and
its integral equals... the helicity of the vector field!

As the world of knot and link invariants is large and rich, that it contains many different
tractable objects, it is desirable to use Arnol’d’s strategy in order to export these invariants
to vector fields. Let us describe an ideal scheme which mimics Arnol’d’s theorem:

e take a link invariant v, that is, a function that assigns to any link k4 U --- U k;
in R3 or S? a real number and that is invariant under isotopy,

e for X a volume-preserving vector field and py, . . ., p; points in R? or S, consider the
segments of orbits X of the form qb[XQ’tl](pl), . ,QS[;’ti] (p;) where (gb%)te]g denotes
the flow of X ,

e close these segments using geodesic arcs to get knots k¢ (p1,t1), ..., kg (i, ti),

e if for almost every py,...,p; the invariant v(kg(p1,t1),...,kg(pi,t;)) has an as-
ymptotic behavior of the form v 2(p1,y- .., pi)tyt ...t and the functlon (p1,y---,pi) —

X (pl, ...,Dp;) is integrable Wlth respect to the volume-measure, then the integral

f(sd)n (p1,-..,pi)dvol is an invariant of X under volume-preserving diffeomor-
phism.

If v is a link invariant such that the above scheme works for every volume-preserving
vector field X, then v is an asymptotic vector field invariant of order (ni,...,n;). Its
value on X is defined as v("-74) (X) := m f(Sg)n U;(—?(pl, ..., pi) dvol.

With this definition, Arnol’d’s theorem [Arn73| states that the linking number is an
asymptotic vector field invariant of order (1, 1) whose value on a vector field equals helicity.

Recall that a vector field X is ergodic with respect to a probability measure p if ev-
ery X-invariant measurable set has p-measure 0 or 1. In this case every X-invariant
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function is almost-surely constant. In the previous setting, when X is ergodic, the func-
tion (p1,...,pi) — v;f’(pl, ...,pi) is almost surely constant, so that v ™ (X) can be
computed using a single tuple of generic orbits.

Problem B (Arnol’d’s question). Construct asymptotic vector field invariants whose value
on ergodic vector fields is not a function of helicity.

Sadly Problem B admits few answers yet. On the one hand there are some invariants
(e.g., crossing number [FHI1]) for which Arnol’d’s strategy is likely to work, but the
invariant is not very tractable and the correspondence between the actual knot invariant
and its vector field-counterpart is not proven yet.

On the other hand there are many invariants (e.g., w-signatures, Vassiliev invariants) for
which Arnol’d’s strategy is known to work, but the asympotitcs turn out to be a function
the helicity when the vector field is ergodic (i.e., v(X) is a function of the helicity of X).
Let us however underline that this dependance is proven only for ergodic vector fields, so
that these invariants may still say something on how the different ergodic components of
a vector field are linked. Actually the family of invariants that fall in this second category
is very large (Vassiliev invariants are even conjectured to be total invariants). So, if link
invariants form a vast forest for which linking number is the first of many trees (left),
asymptotic invariants for ergodic volume-preserving vector fields seem to form a forest in
which there might be only one tree called helicity (right) !

A satisfactory explanation of this phenomenon has been given recently (actually between
the time the course was given and these notes published!) by E. Kudrayvtseva [Kudl4,
Kud15] and A. Encisco, D. Peralta-Salas, and F. Torres de Lizaur [EPT16]. They show
that if one looks for very reqular invariants, then there is only one for ergodic vector fields,
namely helicity. We will present their results.

However, we can still look at less regular invariants. Indeed it turns out that there
are (few) invariants (e.g., Milnor’s invariants, trunk) for which Problem B has a positive
answer: U(”l""’”i)(f ) is not proportional to helicity. We will present some of them in the
last section.

There already exist two excellent surveys on problem A [Gam06, Ghy07] and it seems
hard to write better texts than these two. The goal of these notes is therefore to restrict
our attention to Problem B and to present mostly results that have been proven in the
last decade.

The plan is as follows: in Section 1 we present a short history of Problem A and con-
nect it with hydro- and magnetodynamics; we also present examples of vector fields for
which the study of knotted orbits and knot-theoretical invariants is easier. Such examples
are useful for developing the intuition. In Section 2 we present the simplest vector field
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invariant—helicity— and relate it with the simplest link invariant—Ilinking number. In
Section 3 we present other asymptotic invariants (signatures, Vassiliev invariants, qua-
dratic linking numbers) which turn out to be proportional to helicity on ergodic vector
fields. We also presents Encisco-Peralta-Salas-Torres de Lizaur’s result about uniqueness
of helicity. In Section 4 we explain how to derive vector field invariants that are not
governed by helicity, and we finish with some questions in Section 5.

Acknowledgements. These notes correspond to an extended version of a course given
at the school Winterbraids V in Pau (2015). I thank the organizers (P. Bellingeri, V.
Florens, J.-B. Meilhan, E. Wagner) for inviting me and for the wonderful atmosphere they
bring into these winter schools. I also thank L. Liechti for taking notes during the lectures,
F. Misev, A. Boulanger, and the anonymous referees for numerous remarks that led to
substantial improvements of these notes.

1. INTRODUCTION: MOTIVATION AND EXAMPLES

We begin with a history section that reminds Helmholtz’ laws for the motion of a perfect
fluid [Hel1858]. These laws were at the origin of Thomson’s theory of atoms [Thol867] and
motivated the foundation of knot theory by Tait [Tail877]. We then give some examples of
measure-preserving vector fields, so that the reader has some examples to test his intuition
on.

1l.a. Helmholtz’ laws and connection with knot theory. Helmholtz’ laws simulta-
neously motivate Problem A and connect it with knot theory, as we explain below.

Euler’s equations (1755) for the welocity field w;(x) of an ideal (i.e., inviscid, incom-
pressible) fluid in R? follow from Newton’s laws of mechanics applied to infinitesimal
volumes:

(1) V-i, = 0,
(2) % + (- V)id +Vp = 0.

Equation (1) transcribes the conservation of mass of the fluid (here V - @; denotes the
divergence of ;), and Equation (2) transcribes the conservation of momentum (p stands
for the pressure and (&, - V), is the directional derivative of ;).

Helmholtz noted a remarkable property of these equations as follows. The local move-
ment of the fluid around a particle is given by the differential du;. It can be decomposed
into a stretching part and a rotational part, given respectively by the symmetric and
antisymmetric part of du;. Given ¢; an infinitesimal ellipse centered on the considered
particle, the circulation of #; along ¢ given by fc i - dc measures how i, rotates on c.
This quantity is bilinear in the two axes of the ellipse: it is hence a 2-form, which we
denote by B;. This can be thought of as a local plane and a local rotation in that plane.
Given a volume form g (for example the standard Euclidean volume), this rotation can
be expressed by a vector whose direction is the axis of local rotation and whose length is
the speed of local rotation. In coordinates one checks that the field &, := V x Uy = curl 4,
satisfies (v, 2) = (&, ¥, 2) and that &, is p-preserving.
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Now the key idea of Helmholtz is to compute the total derivative of the circulation on
an arbitrary curve ¢; with length element dc; that is transported by the flow:

D [ . - Di; - . D(dey)
= cder = 4 .
Dt f, "t fi ( D T T
= % 6pt-d_c't+ﬁt~dﬁt
Ct

jf 0+ d|i,|)* = 0.

Ct

At the global level, this shows that the circulation on a curve is constant over time.
At the infinitesimal level, this shows that the infinitesimal circulation —the form g;— is
transported by the flow: if we denote by ¢! the flow of i; we have 3; = (¢!)*(8y). Also
for the curl we get &; = (¢')«(o): for an ideal fluid, the vorticity field is transported by
the velocity field; one says that it is frozen in.

This theorem of Helmholtz has strong implications, in particular, since ¢! is a volume-
preserving diffeomorphism for all ¢, every property of the vorticity field &; that is preserved
under volume-preserving diffeomorphism yields a time-independent invariant of the veloc-
ity field u;, hence of the original system. Among these properties, “WJ; has a periodic orbit
of a given knot type” is a remarkable one. Isolated periodic orbits are maybe not easy to
detect, but a tubular neighborhood of a knot may also be invariant by the vector field, one
then speak of a knotted invariant tube. “@; has a knotted invariant tube of a given knot
type” is then a property that is invariant under time-evolution. This is what led William
Thomson (a.k.a. lord Kelvin) to imagine atoms as invariant vortex tubes in the ether fluid
that was suppose to exist everywhere. The theory lasted several years before Thomson
abandoned it himself, mostly because he could not find correspondances between the first
knot tables he had and the known atoms that would reflect spectral properties of atoms
(see the historical survey by D. Silver [Sil06]). However this hope led Peter G. Tait to
found and develop knot theory, whose existence justifies a posteriori Thomson’s attempt.

1.b. Magnetohydrodynamics. The connection between knot theory and fluid mechan-
ics was freshened up one century after Helmholtz’s discovery when Woltjer, an astrophysi-
cist, remarked particularly stable patterns in the magnetic field of the crab nebula [Wol58].

An ideal plasma is a perfectly conducting fluid. Its motion is directed by a velocity
field ; that describes the motion of particles, an electric field Et, and a magnetic field By
that is volume-preserving. In the ideal model, the plasma is perfectly conducting. The

magnetic field then satisfies 28t = curl(d A Et) Working with a vector potential of B,

ot

and using the incompressibility condition V- iy = 0, Woltjer derived the equation % +
[@;, By] = 0. This means exactly that the magnetic field B; is frozen in the velocity field:
magnetic lines can be distorted, but particles on the same magnetic line remain on the
same magnetic line.

This ideal model is not accurate in general, but it is a good approximation of real phe-
nomena in certain regimes. It fails for examples when magnetic lines are too “twisted” of
“braided”, in which case the magnetic lines reconnect, thus breaking Helmholtz’ laws. Ac-
tually this reconnection phenomenon and the liberation of energy it induces are proposed
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as an explanation of the huge temperature of the solar corona: while the temperature at
the surface of the Sun is about 6000°K, the temperature in the corona 100 km above the
surface is about 1.000.000°K, see for example [Pri99]. Note that if the invariants we are
looking for in this text change under reconnection, they are likely to behave continuously,
and therefore to be of interest even in this situation.

1.c. Examples. We now describe families of vector fields on subsets of S that are relevant
and explain some of their properties. Remember that the flow of a vector field X is the
one-parameter family of diffeomorphisms (¢})teR that describes the orbits of X, namely

%d)g? (p) =X ((;SléZ (p)). In some cases it is easier to describe the flow induced by the vector
field, rather than the vector field itself.

e The Hopf flow. Viewing S® as the unit sphere in C?, the Hopf flow is defined
by rop (21, 22) = (€21, e z). It preserves the volume given by the Haar measure
on S3. All orbits are periodic of period 1. They form great circles that are pairwise
linked once. The tori given by ]%| = cst are invariant, and the orbits are Villarceau
circles on these tori. On the picture (drawn in R® using stereographic projection
from the point (0,1) in C2 ~ R*), the circle 2o = 0 corresponds to the red closed
orbit. The circle z; = 0 is a vertical straight line going through the projection
point.

e The Seifert flows generalize the previous example. For «, S two real parameters
it is given by qb';ﬁ(zl,zQ) = (€21, ePtz). Tt also preserves the Haar measure
on S%. The tori \%] = cst are still invariant, but the orbits now have slope §/a
on each of them. When «,  are integers (or actually when their ratio is rational),
the orbits are periodic of period lem(a, 8). They form («, 3)-torus knots, except
the two orbits corresponding to z; = 0 and 29 = 0 that are always trivial knots.
The picture corresponds to the case (o, 8) = (3,2), in which orbits form trefoil
knots. These examples are interestesting since torus knots are usually more easy
to understand than general knots, and their invariants are more easily computed.
Therefore when one wishes to understand the asymptotic behaviour of an invariant,
it may help to first understand its behavior on periodic orbits of Seifert flows, that
is, on torus knots.
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e Suspensions of automorphisms of the disc: for f an area-preserving diffeomorphism
of the disc, one considers the suspension D? x [0,1]/ (p.1)~(f(p),0) €quipped with the
vertical vector field. This is a topological torus and the vector field preserves the
product volume. One can embed this torus into S?. The vector field thus obtained
is not continuous at the boundary of the thorus, but one can easily extend it
to a neighborhood of the embedded torus with a bump function and obtain a
continuous, volume-preserving vector field.

If the torus is embedded in a knotted way, one obtains another vector field which
is not the image of the previous one by an isotopy of the space. We call it a knotted
SUSPension.

e The Lorenz flow [Lor63] is the flow on R? that describes the solutions of the system
t=—-10x+ 10y, ¢ =24x—y—=xz, Z= —8/3z+xy. Its main feature is that it
admits a strange attractor, that is, a branched surface on which orbits accumulate,
keeping spiraling with a chaotic behavior (left).

Understanding precisely the form and the dynamics of this attractor is difficult
if one starts from the given equations. This is why a combinatorial model of
the flow was introduced by Guckenheimer and Williams [Wil79] (center). The
geometric Lorenz attractor is a branched surface supporting a semi-flow. It is
obtained from two ribbons by gluing their extremities as shown on the picture.
Identifying the gluing segment with [0, 1], the first return-map can be chosen of
the form = — a + bz mod 1, with two parameters 0 < a < 1 < b < 2 (right). It is
easily seen that such a map admits a dense set of periodic points. Lorenz geometric
attractors hence contain infinitely many periodic orbits. These form non-trivial
knots. Changing the parameters a,b changes the set of periodic orbits, yet the
choice a = 0,b = 2 contains all the knots that appear for other parameters. These
knots are called Lorenz knots. They are more complicated than torus knots, but
still simpler than arbitrary knots (for example they are closures of positive braids,
hence fibered knots), see [BW81, Ghy10, Dehl11] for more on them. Hence they
are good candidates for studying asymptotic behavior of knot invariants on orbits
of vector fields, more complex than torus knots, but still rather well understood.
It has been proved [Tuc02] that the dynamics of the actual Lorenz equation
is indeed (semi-)conjugated to the dynamics of some geometric attractor, so that
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the geometric model reflects the behavior of the solutions of the Lorenz equations.
The Lorenz flows (the original one or the geometric models) are dissipative and
do not preserve any volume, so they are not directly eligible for our problem.
However they admit invariant measures, like the Dirac linear measures whose mass
is concentrated on a finite number of periodic orbits, or physical SRB-measures.
The latters are obtained starting from the volume measure pup on an arbitrary
ball B in R3, considering the image measure (¢!)*(uup) obtained by pushing along
the flow, and taking an accumulation point in the weak sense. Such a point is an
invariant measure, called an SRB-measure. It can be thought of as “the invariant
measures most compatible with volume when volume is not preserved” [You02].

Actually any differential system whose orbits do not all escape to infinity admits
non-trivial invariant measures, so that the Lorenz flow is not an isolated exam-
ple. Other similar examples include the Rossler flow [Ros76] (left) or the Ghrist
flow [Ghr97] (right).

The latter is very interesting since it contains all knot types as periodic orbits.
However when and how a given knot appears as periodic orbit of the Ghrist’s
attractor is still very badly understood, so that it is difficult to use this vector field
for guiding the intuition. See the beautiful book [GHS97] for more examples.

What makes the Lorenz flow particularly interesting is the structure and abun-
dance of its periodic orbits, plus the fact that their knot type is rather well under-
stood.

In view of the previous list, one may ask: which flows are not eligible for our study?
Almost none, since every flow on a compact manifold admits an invariant measure by the
Krylov-Bogoliubov Theorem (see for example [KH95, Thm 4.1.1]). But we underlined the
previous examples because the knot types of the periodic orbits are rather understood,
and can serve as guiding lines.

2. HELICITY AND ASYMPTOTIC LINKING NUMBER

For simplicity, we work in S3, although helicity can be defined for vector fields in
arbitrary homology spheres, as well as on submanifolds of S* with boundary, provided the
vector field is tangent to the boundary.

2.a. Woltjer-Moreau-Moffatt’s helicity. Given a volume form p on S? (for example
the standard one), a vector field 4 induces a 2-form [z = izu according to the formula
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Bz(¥,2) = p(d, 7, Z). Saying that @ is p-preserving amounts to the equation Lzu = 0,
where Lgz is the Lie derivative along #. By Cartan’s formula Lz = igd + diz, we get
Lgp = igdp + digu = dBg. So the form B is closed. Since H2(S?) is trivial, 85 is exact,
so there exists a 1-form agz such that 8z = dagz. The 1-form «y is called a form-potential
of . It is not unique, and the other form-potentials are obtained by adding a closed form.

Lemma 2.1. The integral fgg ag Ndag is independent of the choice of the form-potential.

Proof. For any closed-form 6, we have (a+6)Ad(a+0) = aNda+0Ada = aNda+d(ONa),
so that [ (a+0) Ad(a+0) —anda = [ d@ANa) = [, 0Aa, by Stokes” formula. The
latter integral is zero since S? has no boundary. O

Definition 2.2. The helicity Hel(, 1) of @ is the integral [ ag A dog for ag a form-
potential of @. By the previous result, it does not depend on the choice of the potential.

Note that helicity heavily depends on the choice of the invariant volume pu: different
invariant volumes induce different helicities. Helicity can also be defined on domains with
boundary, provided the vector field is tangent to the boundary.

Lemma 2.3. The helicity of a p-preserving vector field @ is invariant under the action of
w-preserving diffeomorphisms.

Proof. If f is a p-preserving diffeomorphism, then we have 3y, (7 = f*(8z) and the 1-form
[*(ag) satisfies df*(az) = f*(dog) = By, (), so that *(az) is a form-potential of f. (1),
and fS3 oy, () N\ dO[f*(ﬁ‘) = fsg ag N dog. g

Although being very concise the previous definition may look mysterious. Here is an-
other interpretation of helicity that is important for us. It relies on the introduction of an
auxiliary metric g (for example the standard metric on S?). The volume-preservation of @
now reads div @ = 0, that is, V.= 0, and this equation implies the existence of a vector
field & such that curl@ := V x @ = @. Such a @ is called a vector-potential of .

In this case the wedge product az A dag is equal to & - i, so one gets

(3) Hel(i, vol) = / @ - i dvol = / curl (@) - i dvol.
S8 S8
An important example of vector potential (on R3) is given by the Biot-Savard Formula:
u(y) x (z—y)
le—yl®
this potential, we then obtain a formula for the helicity of a vector field on R?®: Hel(i, vol) =

= ffR3xR3\Diag G@) (@) x(e=) 75 4y where Diag denotes the set {(z,z)|2 € R3}. Since

the vector field @ defined by wi(z) := ﬁ ng\ (z} dy satisfies curlw = 4. Using

lz—yll®
Z-(§ x 2) =det(,7, Z), we get
1 det(u U —
(4) Hel(#, vol) = — / / MEl2), W) 2= y) g g
A7 | Jr3xR3\Diag |z —yll

2.b. Linking number. Linking number is certainly the simplest invariant of 2-component
links. For k1, ks two disjoint knots in R3, their linking number Lk(k1, ko) admits several
equivalent definitions [Rol76]:
e the number of signed crossings of the curves w(ky), w(kz) for 7 a generic projection
of R3 on a plane;
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e the algebraic intersection number (k1,S2), where Sy is any oriented surface whose
oriented boundary coincides with ko (also called a Seifert surface for ko);

e the degree of the Gauss map G : S! x S! — §2, (t1,t5) — %, where
Y1, Y2 are arbitrary parametrizations of the knots k1, ko;

e the Gauss Integral

det(41(t1),92(t2), v2(t2) — 1 (t1))
(5) //SS a(t2) — (0P ah dta

The equivalence of the first, third and fourth definitions is not hard to check. Indeed
the first one corresponds to counting the signed number of preimages of the north pole
under the Gauss map. The fourth one amounts to compute the degree by integrating the
pullback of the area form on S?. The equivalence with the second definition is harder to
check. One option is to first check that two different surfaces induce the same intersection
number, and then to prove that this number corresponds to the number of signed crossings
using a particular surface (for example the one given by the Seifert Algorithm [Sei34]).

The connection of the Gauss Integral with magnetic fields goes back to Ampere. Indeed
Biot-Savard Equation states that the magnetic field at « induced by a charged particle ¢
q u(y) Nz —y)
2l —yl?
Therefore the magnetic field generated at a point x by a closed loop 75 crossed by

I dyn (z—
a constant current of intensity I is given by 7{ 7L3y)
v 21 [z =y

moving with velocity (y) is given (up to a multiplicative constant) by

So the circulation

I dy A (x — .
of the magnetic field along a closed loop v, is given by 7{ }{ y A (x 3?!) =
Y2 2 Hw - y”
I det d dy. x —
j{ f e Hx Y, T % Y) = 21 - Lk(71,72), the last equality relying on Gauss Integral.
7 Jy2 r—y

This 1ast equation generalizes Ampere’s law (which corresponds to the case where 7, is a
trivial knot).

Note that the previous definition can work for knots in S3: one first perturbs them
so that they do not pass through the point co, and then considers the linking number of
their stereographic projections in R%. One checks that an isotopy, even passing through oo,
leave the linking number invariant.

2.c. Connection between helicity and linking number. In his seminal paper [Mof69]
Moffatt showed that for a field @ localized on two infinitesimal tubes which are tubular
neighbourhoods of two knots kl, ko parametrized by 71,72 : St — R3, Formula (4) for he-

// det(@(r1(t1), @r2(t2)),12(t2) = m(t1) ) oy
3 1 ata.

S1x8! [72(t2) = y1(t1)]

Now since the knots k:l,k:Q are invariant, the vector field @ at a given point ~;(¢;) is

proportional to the tangent vector 4;(¢;). Up to changing the parametrization, the pro-

portionality factor is constant equal to the intensity I; of the current in the corresponding

knot. Comparing with Formula (5), Moffatt deduces Hel(w) = Lk(ky, k2)I1 I2.

licity takes the form Hel(u
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Noting that helicity is a quadratic form, Moffatt then remarks that if a field is localized
on closed curves, helicity will be the sum of all pairwise linking numbers of orbits (mul-
tiplied by the corresponding intensities). This suggests that helicity is an average linking
number.

In order to make Moffatt’s idea more precise and to deal with the fact that orbits of
flows are more likely to be open lines than closed curves, Arnol’d introduced [Arn73] a
method to turn open segments of orbits into loops. The original definition was not precise
enough to make the desired result true, but Vogel [Vog02] provided a correct refinement
(which takes a simple form on a compact manifold with a metric, like S?).

Definition 2.4 (Arnol’d-Vogel). Given a vector field X on S3, for p a point and t a
positive time, the loop k¢ (p,t) is defined as the concatenation of the segment of orbit
of X starting at p and of length ¢ with a geodesic arc connecting ¢'(p) to p. Such a loop
is called an almost periodic orbit of X.

If the short path connecting ¢'(p) to p intersects the segment of orbit or if the orbit
starting at p is periodic of period less than ¢, then the loop k¢ (p,t) is not embedded, but
otherwise it is, and therefore defines a knot.

Theorem 2.5 (Arnol’d-Vogel). Assume that X is a vector field on S? that preserves a

measure [ not charging any periodic orbit. Then for p-almost every pair of points p1,pa,
1 -

. 0o L B B . . .

the limit Lk (p1,p2) = tl,zltlzgoo —t1t2Lk(kX(p1,t1),k:X(pg,tg)) exists. Moreover, if X is

w-ergodic, then for almost every p1,ps the limit equals WHel(f,u).

In other words, Lk is a (1, 1)-asymptotic invariant which is proportional to the helicity
on ergodic vector fields.

The proof is an application of the Birkhoff Ergodic Theorem. The flow (¢!)icr of
the vector field X induces a parametrization of its orbits, so that the tangent vector
to an orbit at a given point coincides with the vector field X at that point. Then
Gauss Integral for ; Lk( <(p1,11), k:X(pg,tQ)) can be written as the sum of the inte-

gral / / Bt (6™ (p). X (67 (p2)). 6 (02) — 6 (10)
12 Jio41) J0,) [¢%2(p2) — @1 (p1)[I?
terms that depend on the geodesic arcs used to close the segments of orbits. Since S3
is compact, these additional terms are of the order of |t1| + |t2|, and in particular are
negligible compared to t1ts.
The above integral is a time-average. In order to apply the ergodic theorem, one needs to

check that the function (z,y) — det(X(‘TZ)’_)il(lg)’yﬂ) is integrable on S? xS3\ Diag. It is indeed
the case (this is a non-trivial fact). Birkhoff’s ergodic Theorem then implies that when
t1,ts tend to infinity, for almost every pi, ps the time-average converges to an integrable
det(X (2), X (y).y
ly — x|
Example 2.6. Let us estimate the helicity of the flows given in Section 1.c.
For the Hopf flow, every orbit is periodic of period 1 and two orbits have linking +1.

Therefore the function Lk s constant equal to 1, so that Hel(XHOpf) = u(S?) =1.

Hopf

dsy dsy and three other

—x
function, and the space-average of this function equals / / ) dx dy.
s Jo
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For the Seifert flow if «, 5 are two coprime integers, then the orbits of )Zaﬁ are periodic

of period 1, and their linking number is also equal to a8. Therefore the function Lk;f ,

is also constant equal to af, so that Hel(X, g) = af. By continuity, the same holds for
arbitrary «, 5.

For the suspension of a diffecomorphism of the disc embedded in a trivial way in S3,
the interpretation of helicity as average linking number implies that the helicity of a
suspension equals the average rotation of the corresponding diffeomorphism of the disc. It
was proven by Fathi [Fat80] that such an average rotation is given by the so-called Calabi
invariant [Cal70].

For the Lorenz flow, it is not easy to get an exact value for helicity for arbitrary invari-
ant measures. However every pair of orbits has negative linking number, so that for all
invariant measures, the helicity is negative.

3. ASYMPTOTIC INVARIANTS PROPORTIONAL TO HELICITY

We now give examples of knot invariants (w-signatures, Vassiliev invariants) for which
Arnol’d’s scheme works, meaning that an asymptotic on long pieces of orbits of vector
fields exists. These invariants are among the most common knot invariants and form a
very rich family. For example the classical signature is among the simplest invariants
that distinguish the left-handed trefoil, the right-handed trefoil and the figure-eight knot.
Also Vassiliev invariants are conjecturally total invariants: any two knots are presumably
distinguished by some Vassiliev invariant.

However we will see that this richness is not fully preserved when taking the asymptotics.
Indeed all constructed vector field invariants turn out to be proportional for ergodic vector
fields (remember that a vector field X is ergodic with respect to a probability measure
if every X-invariant set has measure 0 or 1). So these invariants do not give solutions to
Problem B.

Still, let us underline that in Theorem 3.1, 3.2, 3.4, and 3.5, proportionality is known
only when the measure is a volume-measure and the vector field is ergodic for this mea-
sure. For example if the considered invariant measure is supported on only one periodic
orbit, then the asymptotic invariants we consider exist and are equal to their standard
counterpart for the knot formed by the periodic orbit. It is an interesting question to
understand what happens on SRB-measures (as for example those for the Lorenz flow):
does proportionality to helicity also hold in this case?

3.a. Signatures, linear saddle invariants, and Gambaudo-Ghys’ approach. The
signature o is a classical knot invariant introduced by Trotter [Tro62]. It was later gener-
alized by Tristram and Levine [Tri69, Lev69] into a one-parameter family o, for w € S'.
These are among the simplest invariants to compute. Their definition relies on the intro-
duction of a Seifert surface for the knot, but the invariants do not depend on the choice of
this surface. Namely for S an orientable surface whose boundary coincides with a knot K,
one can consider the Seifert bilinear form s on Hy(S,R) defined by s([z], [y]) = Lk(z,y™),
where x,y are arbitrary curves representing the respective homology classes and y™ de-
notes the curve y pushed a bit off the surface in the positive normal direction. This linking
number does not depend on the choice of the representative z,y, and one checks that the
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form s is bilinear. The w-signature o, (K) is then defined as the signature of the hermitian
form (1 —w)s + (1 — @)s. The classical signature corresponds to the case w = —1.

The w-signature of a knot behaves rather nicely when one varies w in the sense that it
is a piecewise constant function that jumps only at the roots of the Alexander polynomial
of the knot, and by a term at most twice the multiplicity. However the precise shape may
be complicated and surprising. The result generalizing Arnol’d Theorem to signatures is
due Gambaudo and Ghys (see the introduction for the notation o(?)).

Theorem 3.1. [GGO01] Let X be a C™ volume-preserving vector field on S*. (a) For
every w = ¥ the w-signature is an asymptotic vector field invariant of order (2). (b)

If X is ergodic, we have o) (X) =26(1 — 6) - Hel(X).

This theorem has then been generalized to other knot invariants [Baa07, Baal2] with
little variation in the scheme of the proof. In order to explain this common scheme, we
follow Baader and introduce the common feature of the considered invariants. A saddle
point move is the local operation on links depicted below:

(X

A real-valued link invariant 7 is a linear saddle invariant if it is additive under disjoint
union of links: 7(¢1 U fs) = 7(¢1) + 7(¢2), and if for two oriented links ¢1, s that are
related by a saddle point move one has |7(¢1) — 7(¢2)| < C, where C' > 0 is a constant not
depending on {1, ¢>. The w-signatures are examples of linear saddle invariants, but there
are others, as for example Rasmussen s-invariant or certain concordance invariants.

Theorem 3.2 ([Baal2)). Let X be a C™ volume-preserving vector field on S®. (a) Every
linear saddle invariant T is an asymptotic vector field invariant of order (2). (b) If X is
ergodic we have T (X) = C,-Hel(X), where C; is an explicit constant independent of X .

The proof goes along two main steps. The first one is due to Gambaudo-Ghys and yields
some normal projections for vector fields. The second in this context is due to Baader and
consists in showing that linear saddle invariants behave well with respect to these normal
projections. Let X be a vector field on S3 and 7 a linear saddle invariant.

Firstly recall that a flow box for X is a submanifold of the form D x [0,1] for D a disc
such that the vector field X is tangent to the direction given by the second coordinate.
The general result proved by Gambaudo and Ghys [GGO01] allows to decompose a large
portion (say 1 —¢e1) of S? into finitely many flow boxes (BzX)i:L---,n that project well on
a given plane in the sense that two boxes either do not overlap at all or they overlap
transversally. Such projections are called normal projections. The combinatorics of the
overlappings are recorded by a matrix (€i7j)1<i7j<n with e; ; = 0 when the corresponding
boxes do not overlap and e;; = &1 when they do, the sign depending on whether the
boxes overlap positively or negatively.

Secondly observe that, for k¢ (p,t) an almost periodic orbit, the value 7(k¢(p,t)) de-
pends mostly on its intersection with the boxes By, ..., By. Indeed suppose that k¢ (p, 1)
crosses m; times B;. Using at most n(mj + - - - + m,,) linear saddle point moves, one can
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transform £ ¢ (p, t) into the disjoint union of several torus links of type T'(m;, e; jm;), one
for every pair of overlapping flow boxes (B;, Bj), plus some remaining links depending on
the portion of X that does not visit By, ..., B,.

Since a piece of orbit that visits a flow box stays in the box for a time that is bounded
from above and from below, the number m; + - - - 4 my, is linear in the length of & ¢ (p, t),
and so the number of saddle point moves involved is also linear. Since we will prove
that 7(k ¢(p,t)) is quadratic in ¢, this linear number of saddle moves does not really count:
up to another factor €2, the value 7(k¢(p,t)) is roughly equal to >, ; €; ;7(T(m;, m;)).

It remains to evaluate this last expression. Using the same properties of 7, for (p, q)-
torus knots, the function (p, q) — 7(T'(p, ¢)) is almost-additive. Standard arguments imply
that is equal to C; - pq, up to a factor €3, for some constant C; that only depends on 7.

Putting all of this together, we get that (kg (p,t)) is equal to C7 >, ; e; jmim; (up to a
factor 1 +e2+¢3). Now the ergodic theorem implies that for almost every starting point p
the number m; of visits of k¢(p,t) in B; is asymptotic to ¢;(p) - ¢, where g;(p) is an average
frequency that depends of p, so that t%T(kX (p,1)) is approximately C7 >, ; €ijdi (p)g;(p).
This proves part (a) of the theorem.

For part (b), if X is ergodic, then the function ¢; is almost surely constant. Since
Zz}j ei;qiq; actually computes the asymptotic linking number, we get 7'(2)()2 ) = C; -

Hel(X).

3.b. Vassiliev invariants and configuration integrals. Vassiliev invariants are pow-
erful invariants that conjecturally distinguish all knots (namely if k;, k2 are not isotopic,
it is conjectured that there exists a Vassiliev invariant v such that v(k1) # v(k2)). A way
to present them relies on chord diagrams [GPV00].

A chord diagram is a finite set of chords in a disc, each equipped with a sign and an
orientation. A Gauss diagram for a knot k is of the same type: one starts from a planar
projection (k) with d double points. For every double point of 7(k) we add to k a vertical
arc that connects the two points of k that project to the double point. We orient this
arc from top to bottom and we label it with a sign according to whether the crossing
is positive or negative. This transforms k into a knotted graph, but we only keep its
abstract structure and forget about the embedding, thus having a circle with d oriented
and signed chords: the Gauss diagram of the projection. Of course, different projections
yield different diagrams.

If D is a chord diagram and 7 (k) a knot diagram of a knot k, the pairing (D, w(k)) is
the signed number of appearances of D as a sub diagram of the Gauss diagram associated
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to (k). In general (D, 7w(k)) depends on the diagram, so that (D, -) is not a knot invariant.
However by combining several diagrams one can obtain the invariance.

Theorem 3.3. [GPV00] For every Vassiliev invariant v there exist chord diagrams D1, . . .,
D,, and reals c1,...,c, such that for every knot k and every diagram w(k) of k one has

’U(k’) = Z Cm<Dma W(k»

This approach allows Baader and Marché to prove that Vassiliev invariants also have
an asymptotic behavior.

Theorem 3.4. [BM12] Let X be a C™ volume-preserving vector field on S®. (a) Every
Vassiliev knot invariant of order n is an asymptotic vector field invariant of order (2n).
(b) If X is ergodic we have v®"(X) = C, - Hel(X)", where C, is an explicit constant
independent of X.

The original proof is once again a variation on Arnol’d-Gambaudo-Ghys’ approach. It
amounts to showing that for every diagram D and for a normal projection of X given by
Gambaudo and Ghys [GGO1], there is an asymptotic for (D;, (k¢ (p,t))). For this, given
a chord diagram D;, one divides the knot k¢ (p,t) into N >> n equal parts s1,...,sn.
An apparition of the chord diagram D; in k ¢(p,t) corresponds to n crossing points, hence
2n times t1,...,t2,. Up to a small error, one can assume that these 2n points appear
in 2n different segments of si1,..., sy, so that the corresponding times ¢; are roughly
independent. Once again, the probability of seeing a crossing is > _, ; € ;¢i(p)g;(p) for the
same constants g;(p) as in the proof of Theorem 3.1. Therefore every term (D;, 7 (k ¢(p,t)))
is approximately (Zi,j €i;4i(p)g;(p))". By applying Birkhoff’s ergodic theorem, this term

is asymptotic to t2" for almost every p, and the space average for ergodic vector fields is

then v (X) = (X em) (X, €iipipi)"-

The proofs that we sketched of Theorems 3.1, 3.2, and 3.4 may look rather technical and
combinatorial compared to Arnol’d’s proof of the asymptotic character of linking number.
It is then natural to wonder whether there are more direct or more intuitive proofs of these
results. This is indeed the case for Theorem 3.4 which has been given a proof relying on
configuration space integrals by Komendarczyk and Voli¢ [KV13]. This new proof does
not rely on the decomposition into flow boxes that looked superfluous. However there are
still many technical difficulties. The main point is that there exist integral formulas for
Vassiliev invariants that generalize Gauss Integral, so that one can directly prove that every
term (Dy,, m(k¢(p,t))) is asymptotic to a term of order 2n, without using Gambaud-Ghys’
normal projections.

This new proof has one advantage and one disadvantage. On the negative side, it is less
explicit for the value of the proportionality factor C',. On the positive side, it shows that
if v(2n) ()? ) = 0, then there exists a lower-order asymptotic invariant, namely v is an order
2n — 2-asymptotic invariant. Also there is an induction: if v2"(X) = v2=2(X) = ... =
v(2k+2) (X ) = 0, then v is an asymptotic vector field invariant of order 2k. These lower
order terms have no interpretation yet.

3.c. Akhmetev’s quadratic helicities. In an attempt to define variations on the theme
of helicity, one can use the intermediate step given by Arnol’d [Arn73]. Indeed Theorem 2.5
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shows that for X a volume-preserving vector field, for almost-every pair of points (p1, p2),
1

the limit Lk (p1, p2) = tl}izgoo @Lk(k‘f (p1,t1), k¢(p2, t2)) exists. Helicity is defined as

the integral of this function, and in case X is ergodic, Lk? is almost-surely constant.

Now if X is not ergodic, one can play with Lk}f’ and wonder when we obtain other
invariants. This was done by Akhmetev in at least two cases.

Theorem 3.5. [Akh12] For X a volume-preserving vector field, the functions (p1,p2) —
Lk?(pl,]og)2 and (p1,p2,p3) — Lk;’?(pl,pg)Lkgg(pl,pg) are integrable and their integrals
are invariant under volume-preserving diffeomorphism.

The corresponding invariants are called quadratic helicities and denoted by Hel® and
Hel? respectively. They are asymptotic invariants of order (2,2) and (2,1, 1) respectively.
Let us underline once again that if X is ergodic, then the function (pi,p2) — Lk;’%’ (p1,p2)
is almost constant, so these quadratic helicities are just the square of the standard helicity.
Their interest is then for non-ergodic flows. Of course it is easy to play with other combi-
nations of higher degree, but it is then not obvious to decide when the obtained quantity
is integrable and whether it is invariant under diffeomorphism.

3.d. Helicity is the only C'!-invariant. Looking at Theorems 3.1, 3.2, 3.4 and 3.5 one
may wonder whether there exists any asymptotic invariant not proportional to helicity
on ergodic vector fields. As we will see in the next section, these indeed exist. However
we mention here a series of recent results that partly explains why it is not so easy to
construct invariants different from helicity.

As shown by Lemma 2.1, the helicity of a field X may be defined by integrated the 3-
form a¢ A dag on the whole manifold. If X varies continuously, so do ay¢ and da g,
implying that the helicity varies continuously. The invariants we are looking for are
functional on the space of volume-preserving vector fields. The natural notion of dif-
ferentiability for such functionals is the Fréchet derivative. We then denote by X the
set of C''-volume preserving vector field on S?, with the natural C'-topology. According
with [Kud14, Kud15, EPT16], a function I : X — R is a regular integral invariant if it is in-
variant under volume-preserving diffeomorphisms and if the Fréchet derivative is obtained
by integrating a continuous kernel K, namely D ;1 (17) = Jo K (X ) - Y. Kudryavtseva on
the one hand, and Encisco, Peralta-Salas and Torres de Lizaur on the other hand proved
two local and global versions of the rough following statement

Theorem 3.6. [Kud15, EPT16] Every regular integral invariant is a C*-function of he-
licity.

This result is remarkable and gives a satisfactory explanation why helicity appears that
often. Let us however underline that it does not prevent the existence of invariant that

are not functions of helicity. But it implies that such invariant cannot be too smooth.
This is the case of the invariants we present in the next section.

4. ASYMPTOTIC INVARIANTS DIFFERENT FROM HELICITY

In this section we construct invariants that differ from helicity on ergodic vector fields.
These constructions seem much more particular than those of the previous section in
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the sense that we construct a few invariants, case by case, rather than obtaining infinite
families as one could hope.

4.a. Higher helicities. The first way to generalize helicity was already suggested by
Arnol’d and Khesin [AK98]. A first step generalization of linking number is Milnor’s
p-invariant for 3-component links. For k; U ko U k3 a link, (k) U ko U k3) is an element
of Z/ ged(Lk(k1, k2), Lk(k2, k3), Lk(ks, k1))Z. In case all pairwise linking numbers are zero,
we then obtain a well-defined integer. The similarity with linking number goes a bit further
since there exist integral formulas for [, called Massey products [Mas57]. We do not write
them here since they are rather complicated, but their existence is important.

The corresponding scenario for vector fields would then require linking of arbitrary
orbits to be zero. A particular case of this situation was studied by Komendarczyk:

Theorem 4.1 ([Kom09, Kom10]). Let By, By, By be three handlebodies in S? or R3 sup-
porting measure-preserving vector ﬁelds X 1, Xg, X3, such that the pairwise linking numbers
of arbitrary pairs of orbits of XZ7 X] with i # j is zero. Then the integral over By X Bo X Bs
of the Massey product evaluated on (Xl, )22, Xl;) converges and is invariant under volume-
preserving diffeomorphism.

4.b. Asymptotic crossing number. Crossing number is one of the oldest knot invari-
ants, but it is hard to compute in general. For k a knot in R and (k) a diagram of k (that
is, a projection on a plane), cr(mw(k)) is defined as the number of double points of (k).
The crossing number Cr(k) is then the minimum of cr(m(k)) over all diagrams of k. In
other words cr(7(k)) is the number of preimages of the north pole under the Gauss map

G : S' x S'\ Diag — S?, (t1,t2) %, where ~ is an arbitrary parametrization of
k that projects onto (k).

The difference with linking number is that S! x S!\ Diag is not a closed surface, so that
G does not have a well-defined degree. Cr(k) is then defined as the minimal number of
preimages of the north pole under G over all projections of k.

A variant can be obtained by counting the average number of preimages of points (not
only of the north pole). This number can be computed by integrating the pull-back of the

area form on S? by G, yielding

_ 1 | det(¥(t1), ¥(t2),v(t2) — v(t1))]
) =5 [ Tl T

This number is not necessarily an integer. One then defines Cr,y (k) as the infimum of
cray(m(k)) over all projections of k.
Now this definition can be copied for arbitrary volume-preserving vector fields

. 1 det(X X —
190 () i // | det(X (p1), (p2);p2 p1)]| dp1 dps.
47 | Jso g9\ Ding p2 — p1|

However it is not invariant under volume-preserving diffeomorphism and one has to min-
imize once again in order to get an invariant

Cre(X):= min e (¢*X).

¢ vol. pres.
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Taking the infimum over all volume-preserving diffeomorphisms may look like cheating
in view of obtaining an invariant. However this invariant has some good properties. For
p > 1, the LP-energy of a vector field on a compact domain of R? is the integral of its LP-

—

norm: E,(X) := | X |[Pdvol. Tt is not invariant under volume-preserving diffeomorphism.

In particular, in physical applications where the considered vector field is transported
by volume-preserving diffeomorphisms, the energy is likely to decrease, but one wonders
whether it can tend to 0. A property of helicity that we did not mention is that it yields
a lower bound on the L?-energy. Therefore a non-zero helicity implies that the energy
cannot tend to 0 (see [AK98]). Asymptotic crossing number yields similar and better
bounds:

Theorem 4.2 ([FHI1]). For X a volume-preserving vector field, its 3/2-energy is bounded
- 16 1/4 .
by Esp(X) > () Caze(X)P1,
T

av

4.c. Asymptotic trunk. Thin position for knots is a concept introduced by Gabai for
solving the R-conjecture [Gab87], which states that if the 0-surgery manifold of a knot k
in S? is homeomorphic to S' x S?, then k is the unknot. Roughly, thin position corresponds
to an embedding of a knot that is as vertical as possible. It yields several knot invariants—
waist, width, trunk— that were formally defined and studied first by Ozawa [Ozal0].
Trunk translates well to vector fields and its asymptotic character is not hard to prove. It
is very close in spirit with braid index or bridge number (whose asymptotic character is
still unknown).

A height function on S? is a Morse function with only two critical points (one maximum
and one minimum). A curve k is in Morse position with respect to a Morse function A if
h|;, is also a Morse function. In this case h=1(¢) N k consists of finitely many points for
every t, and the trunk of k with respect to h is defined as the maximum of this number
over all levels of h: tr(k, h) := max; #{h~1(¢t)Nk}. Of course this maximum is not invariant
under isotopy, but allowing h to change over height functions does, and one obtains the
definition of the (knot-)trunk of k:

- ; -1
Tr(k) = ) in mtaxlj{h (t) Nk}
Theorem 4.3 ([DR15]). Trunk is an asymptotic invariant of order (1), and there is no
function f : R — R such that for every ergodic p-preserving vector field )?, the value
T (X, 1) is given by f(Hel(X, p)).

The point for proving this theorem is that one can actually define directly an analog
of the trunk for vector fields, and check that is coincide with the asymptotic invariant.
Namely in the definition of the knot-trunk we replace the number of intersection points
of the knot with a surface by the absolute value of the flux of the vector field through the
surface, thus defining tr(X, i, h) := max; fh—l(t) |i ¢pf, and

Tr(X := inf 2[4
(X, 1) h;}gghtmtaX/hl(t) i gl

The key property for proving Theorem 4.3 is to check that Tr(X, 1) is continuous with
respect to both X and p (but its not regular integral, for otherwise it would contradict
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Theorem 3.6). This implies that if a long piece of orbit approximates p, the knot-trunk of
this orbit approximates the trunk of the vector field. It is enough to compute trunk and
helicity of several examples to check independence. Actually, one checks that the trunk of
the Seifert flow )Z'a,g with respect to the standard volume on S? is min(a, 3). Recall from

Example 2.6 that the helicity of )?a,ﬁ is af. The Seifert flow is not ergodic, but it can be
approximated by ergodic flows. Since there is no function f such that min(a, 8) = f(af),
the statement follows.

5. (QUESTIONS

We finish with some speculations on how to construct new vector field invariants.

5.a. Higher helicities. This direction seems to be the most promising one. On one hand,
Theorem 4.1 ensures that Milnor’s invariant for 3-component links has a vector field analog
in the restricted case where it is computed on a union of three domains that ensure that
pairwise linking numbers are all zero. A less restricted case would correspond to a vector
field defined on one single domain.

Question 5.1. Can one generalize Komendarczyk Theorem 4.1 to any vector field X such
that Lk}O (p1,p2) = 0 for almost every p1, p2? In particular if X is ergodic and Hel(X) = 07

Another direction is given by Komendarczyk-Voli¢’s proof that Vassiliev invariants are
asymptotic invariants. In particular they show that when helicity vanishes, then an order n
Vassiliev invariant yields an order 2n — 2 asymptotic invariant.

Question 5.2. For X a vector field with Hel(X: ) = 0 and v an order n Vassiliev invariant,

is there an interpretation for v(27—2) ()Z )? Are all these invariants proportional? Are they
related to Milnor’s invariant for 3-component links?

Of course there is no reason to restrict to triple linking numbers.

Question 5.3. Are there asymptotics for higher order Milnor’s invariants? Are they
related to lower order asymptotics of Vassiliev invariants when higher order asymptotics
vanish?

5.b. Order 2 invariants. One of the easiest knot invariants to define is the genus (also
called 3-genus). For K a knot, g(K) is defined as the minimal genus over all Seifert
surfaces for K. Unfortunately this invariant is rather difficult to compute. There are lower
bounds given by inequalities o, (K) < deg(Ax) < 2¢g(K) where Ak denotes the Alexander
polynomial of K. Also there are upper bounds given by explicit constructions of Seifert
surfaces (which may well not minimize genus), as for example the one given by applying
Seifert’s algorithm. In general these bounds do not match exactly, but for X a vector field
in Gambaudo-Ghys’ normal form, lower and upper bounds estimated on kg¢(p,t) grow
both quadratically with ¢ (although not at the same rate).

Question 5.4. Is genus an order 2 asymptotic invariant? Is the degree of the Alexander
polynomial an order 2 invariant?
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Note that Baader showed that if one replaces 3-genus by slice-genus (a smaller 4-

dimensional cousin), then the answer is yes, but 951212;'3 is then equal to |Hel| on ergodic
vector fields.

Also when there exists a Gambaudo-Ghys’ normal projection that exhibits only positive
crossings (as for example for Seifert flows or for the Lorenz flow), the lower and upper
bounds are asymptotically the same for all invariant measures, so that Question 5.4 has
two positive answers, but the obtained invariants once again equal helicity.

An interesting example is given by Ghrist’ flow [GHS97], see the end of Section 1.c.
It admits many invariant measures, and for many of them helicity vanishes. Some nu-
merical computations done by the author suggest that deg(AkXGh ' t(m)) has a non-trivial

quadratic asymptotic behavior in this case, suggesting a positive answer to Question 5.4.
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