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Abstract. We construct a new invariant—the trunkenness—for volume-perserving vector fields

on S3 up to volume-preserving diffeomorphism. We prove that the trunkenness is independent
from the helicity and that it is the limit of a knot invariant (called the trunk) computed on long

pieces of orbits.
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The problem we address here is the construction of new invariants of volume-preserving vector
fields on S3 or on compact domains of R3 up to volume-preserving diffeomorphisms. This problem
is motivated by at least two physical situations. First if v is the velocity field of a time-dependant
ideal fluid satisfying the Euler equations (ideal hydrodynamics) then its vorticity field curl v is
transported by the flow of v [Hel1858]. Second if B is the magnetic field in an incompressible
plasma (ideal magnetodynamics), then B turns out to be transported by the velocity field as long
as the latter does not develop singularities [Wol58]. In these contexts, invariants of curl v or B up
to volume-preserving diffeomorphisms yield time-independent invariants of the system.

Not so many such invariants exist. The first one was discovered by William Thomson [Tho1867]:
if the considered field has a periodic orbit or a periodic tube, then its knot type is an invariant
(this remark led to the development of knot theory by Peter G. Tait [Tai1877]). However it may
not be easy to find periodic orbits, and even then such an invariant only takes a small part of the
field into account.

The main known invariant is called helicity. It is defined by the formula Hel(v) =
∫
v · u, where

u = curl−1(v) is an arbitrary vector-potential of v. It was discovered by Woltjer, Moreau, and
Moffatt [Wol58, Mor61, Mof69]. Helicity is easy to compute or to approximate since it is enough to
exhibit a vector-potential of the considered vector field, to take the scalar product and to integrate.
The connection with knot theory was sketched by Moffatt [Mof69] and deepened by Arnold [Arn73]
as follows. Denote by kX(p, t) a loop starting at the point p, tangent to the vector field X for a
time t and closed by an arbitrary segment of bounded length. Denote by Lk the linking number of

loops. Arnold showed that for almost every p1, p2, the limit lim
t1,t2→∞

1

t1t2
Lk(kX(p1, t1), kX(p2, t2))

exists (see also [Vog02] for a corrected statement). Moreover if X is ergodic the limit coincides
almost everywhere with Hel(X) (for a non-ergodic vector field, one has to average the previous
limit).

The idea of considering knot invariants of long pieces of orbits of the vector field was pursued by
Gambaudo and Ghys [GG01] who considered ω-signatures of knots, Baader [Baa11] who considered
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linear saddle invariants, and Baader and Marché [BM12] who considered Vassiliev’s finite type
invariants. In every case, it is shown that limt→∞

1
tnV (kX(p, t)) exists, where V is the considered

invariant and n a suitable exponent called the order of the asymptotic invariant. However all these
constructions have the drawback that they do not yield any new invariant for ergodic vector fields,
as in this case the obtained limits are all functions of the helicity.

Recently, it was proved by Kudryavtseva [Kud16] for vector fields obtained by suspending an
area-preserving diffeomorphism of a surface and for non-vanishing vector fields, and then by Enciso,
Peralta-Salas and Torres de Lizaur [EPT16] for arbitrary volume-preserving vector fields, that
every invariant that is regular integral (in the sense that its Fréchet derivative is the integral of
a continuous kernel) is a function of helicity, see the cited articles for precise statements. These
results give a satisfactory explanation of why most constructions yield invariants that are functions
of helicity for ergodic vector fields. However they do not rule out the existence of other invariants,
but imply that such invariants cannot be too regular.

An example of such another invariant is the asymptotic crossing number considered by Freedman
and He [FH91]. The advantage is that it is not proportional to helicity, but the disadvantage is
that it is hard to compute, even on simple examples.

In this article we consider a less known knot invariant called the trunk (see Definition 1.1 below).
It was defined by Ozawa [Ozw10], building on the concept of thin position that was introduced
by Gabai [Gab87] for solving the R-conjecture. Less famous that the invariants previously studied
in the context of vector fields, the trunk has the advantage that its definition relies on surfaces
transverse to the considered knot, so that it is easy to transcript in the context of vector fields.
The invariant depends on an invariant measure for the flow of the vector field that may or may
not be a volume, and is invariant under diffeomorphisms that preserve this measure. Given a µ-
preserving vector field X and a surface S, the geometric flux through S is the infinitesimal volume
that crosses S in both directions (see Definition 2.1), it is denoted by Flux(X,µ, S). Our invariant
is a minimax of the geometric flux, where one minimizes over all height functions and maximizes
over the levels of the considered height function.

Definition 1. Assume that X is a vector field on S3 or on a compact domain of R3 that preserves
a probability measure µ. Denote by φX the flow of X. The trunkenness of X with respect to µ is

Tks(X,µ) := inf
h height
function

max
t∈[0,1]

Flux(X,µ, h−1(t)) = inf
h height
function

max
t∈[0,1]

lim
ε→0

1

ε
µ(φ

[0,ε]
X (h−1(t))).

By a height function on S3 we refer to a function with only two singular points and whose level
sets are 2-dimensional spheres. On R3, the level sets of a height function all are topological planes.

From the definition, it is straightforward that the trunkenness of a vector field is invariant
under diffeomorphisms that preserve the measure µ. More is true, the trunkenness is invariant
under homeomorphisms that preserve µ.

Theorem A. Assume that X1 and X2 are vector fields on S3 or on a compact domain of R3 that
preserve a probability measure µ and that there is a µ-preserving homeomorphism f that conjugates
the flows of X1 and X2. Then we have

Tks(X1, µ) = Tks(X2, µ).

What we do in this paper is to prove several properties of this new invariant. The first one is a
continuity result that implies that the trunkenness of a vector field is an asymptotic invariant of
order 1. For K a knot, we denote by Tk(K) its trunk (see Definition 1.1 below).

Theorem B. Suppose that (Xn, µn)n∈N is a sequence of measure-preserving vector fields such that
(Xn)n∈N converges to X and (µn)n∈N converges to µ in the weak-∗ sense. Then we have

lim
n→∞

Tks(Xn, µn) = Tks(X,µ).
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In particular if X is ergodic with respect to µ then, for µ-almost every p, the limit

lim
t→∞

1

t
Tk(kX(p, t))

exists and is equal to Tks(X,µ).

This continuity result then allows us to compute the trunkenness of some explicit vector fields
on S3 called Seifert flows. These computations in turn show that the trunkenness is not dictated
by helicity, even in the case of ergodic vector fields, thus contrasting with most previously known
knot-theoretical constructions.

Theorem C. There is no function f such that for every ergodic volume-preserving vector field X
on S3 one has Tks(X,µ) = f(Hel(X,µ)).

Finally we adress the question of what happens if for a non-singular vector field on S3 there
is a function that achieves the trunkenness, or in other words if the infimum in Definition 1 is a
minimum.

Theorem D. Let X be a non-singular vector field on S3 preserving the measure µ and h a height
function such that

Tks(X,µ) = max
t∈[0,1]

Flux(X,µ, h−1(t))

Then X has an unknotted periodic orbit.

One of the main motivations for constructing topological invariants of a vector field X is to
find lower bound on the energies Ep(X) :=

∫
|X|p dµ. Indeed since a topological invariant yields

a time-independent invariant of the physical system, an energy bound in term of a topological
invariant will also be time-independent, although the energy may vary when the vector field is
transported under (volume-preserving) diffeomorphisms. Such energy bounds exist for the helicity
and for the asymptotic crossing number. We do not know whether the trunkenness bounds the
energy.

The plan of the article is as follows. First we recall in Section 1 the definition of the trunk of
a knot in order to make the definition for vector fields natural. Then we define the trunkenness
of a measure-preserving vector field and prove Theorems A and B in Section 2. Using this result
we compute of trunkenness of Seifert vector fields and prove Theorem C in Section 3. We prove
Theorem D in Section 4. Finally in Section 5 we compute the trunkenness of some vector fields
supported in the tubular neighborhood of a link.

Acknowledgements. We thank Michel Boileau who suggested to study the trunk instead of the
genus for vector fields during a visit of P.D. to Toulouse in 2013.

1. Trunk of knots

For K a knot, we denote by K the set of all embeddings of K into R3. The standard height
function on R3 is the function hz : R3 → R, (x, y, z) 7→ z. Every level h−1z (t) is a 2-dimensional
plane. An embedding k ∈ K is said to be in Morse position with respect to hz if the restriction
of hz to k is a Morse function. In this case there are only finitely many points at which k is tangent
to a level of hz.

Definition 1.1. Assume that k is an embedded knot in R3 that is in Morse position with respect
to hz. The trunk of the curve k relatively to hz is

tkhz (k) := max
t∈R

]{k ∩ h−1z (t)}.

The trunk of a knot K is then defined by

Tk(K) := min
k∈K

tkhz (k) = min
k∈K

max
t∈R

]{k ∩ h−1z (t)}.

The trunk of a knot was defined by M. Ozawa [Ozw10] and motivated by D. Gabai’s definition
of the waist of a knot [Gab87].
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Figure 1. The trunk of the trefoil knot: the maximal number of intersection points
between a horizontal level and the proposed embedding is 4. This number cannot be
reduced under isotopy, hence the trunk of the trefoil is 4.

Example 1.2. A knot is trivial if and only if its trunk equals 2. Indeed the embedding as the
boundary of a vertical disc shows that the trunk is less than or equal to 2, and every embedding
in Morse position of the trivial knot has to intersect some horizontal plane in at least two points.
Conversely, if the trunk of a knot is equal to 2, then it admits an embedding that intersects every
horizontal plane in at most two points. The union of the segments that connect these pairs of
points is a disc bounded by the knot, implying that the knot is trivial.

Example 1.3. For p, q in N, the torus knot T (p, q) can be realized as the closure of a braid with
q strands, yielding Tk(T (p, q)) 6 2q. By symmetry one also gets Tk(T (p, q)) 6 2p. Actually, one
can prove Tk(T (p, q)) = 2 min(p, q), see Remark 1.2 in [Ozw10].

Instead of fixing the function and changing the knot up to isotopy, one can fix the knot and
change the function up to orientation preserving diffeomorphism. With this in mind, one defines
a height function on R3 as a function obtained by precomposing hz by a diffeomorphism, that is,
a function of the form

h : R3 → R
(x, y, z) 7→ hz(φ(x, y, z))

for φ an orientation preserving diffeomorphism of R3. In particular, a height function is a function
whose levels are smooth planes. For K a knot and k a fixed embedding of K in R3, one can then
define

tkh(k) := max
t∈R

]{k ∩ h−1(t)},

so that we have the alternative definition

(1) Tk(K) = min
h height
function

tkh(k) = min
h height
function

max
t∈R

]{k ∩ h−1(t)}.

2. Trunkenness of measure preserving vector fields

We use the definition of Equation (1) to define the trunkenness of a vector field with respect to
an invariant measure. The main question then concerns the analog of the number of intersection
points of a surface with a curve when the curve is replaced by a vector field. A natural answer is the
geometric flux. If X is a vector field that preserves a measure µ given by a volume element Ω, one
can then consider the 2-form ιXΩ. For S a piece of oriented surface that is positively transverse
to X, the integral

∫
S
ιXΩ computes the instantaneous volume that crosses S. In other words,
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Figure 2. For S a piece of a surface (in red), the domain φ[0,ε](S) is roughly the part
of the space located between S and φε(S). It is pinched around those points where the
vector field is tangent to S. Its volume is ε · Flux(X,µ, S) at the first order.

by Fubini Theorem we have µ(φ[0,t](S)) = (
∫
S
ιXΩ) · t. On the other hand if S is negatively

transverse to X we have µ(φ[0,t](S)) = −(
∫
S
ιXΩ) · t. Therefore in this case, for any surface S,

the instantaneous volume crossing S is given by
∫
S
|ιXΩ|. Now if the measure µ is not given by

integrating a volume form one cannot consider the above integral, but the quantity µ(φ[0,t](S))
still makes sense for any piece of surface S (see Figure 2).

Definition 2.1. For X a vector field that preserves a measure µ and for S a surface, the geometric
flux of (X,µ) through S is

Flux(X,µ, S) := lim
ε→0

1

ε
µ(φ[0,ε](S)).

This definition generalizes the number of intersection points of a knot with a surface. Indeed
one can see an embedding k of a knot K as a vector field with a particular invariant measure in
the following way: consider a non-singular vector field Xk that is tangent to k at every point and
denote by φtk the induced flow. Since k is closed, φk is Tk-periodic for some Tk > 0. The Dirac
linear measure associated to Xk is defined by

µk(A) = Leb({t ∈ [0, Tk], φtk(x) ∈ A})

where A is a measurable set and x an arbitrary point on k. The measure µk is Xk-invariant and
has total mass Tk. In this setting, for S a surface that intersects k in finitely many points, a
point p in the set k ∩ S has µk-measure zero and thus cannot be detected by the measure. But by

definition of µk the set φ
[0,ε]
k (p) is an arc of k of µk-measure ε and since k ∩ S is made of finitely

many points, for ε small enough, the set φ
[0,ε]
k (k ∩ S) has µk-measure exactly ε · ]{k ∩ S}. In other

words, one has

]{k ∩ S} = lim
ε→0

1

ε
µk(φ

[0,ε]
k (k ∩ S)).

As µk is concentrated on k, we thus have

(2) ]{k ∩ S} = lim
ε→0

1

ε
µk(φ

[0,ε]
k (S)) = Flux(Xk, µk, S),

so the geometric flux indeed generalizes the number of intersection points.

We now mimic for vector fields the definition of the trunk of a knot. In order to have a well-
defined maximum, in what follows we assume the vector fields are on a compact domain D3 ⊂ R3

or on the 3-sphere S3 = R3 ∪∞. In the later case, we define the standard height function

h0 : S3 → [0, 1]

(x, y, z) 7→ 1− 1

1 + x2 + y2 + z2
.
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The levels h−10 (0) and h−10 (1) consist of the points (0, 0, 0) and∞ respectively and every other level

h−10 (t) is a 2-dimensional sphere of radius
√
t/(1− t) centered at the origin. A height function

on S3 is then a function obtained by precomposing by an orientation preserving diffeomorphism φ
of S3, that is, a function of the form h : S3 → [0, 1], (x, y, z) 7→ h0(φ(x, y, z)).

Definition 2.2. Let X be a vector field whose flow preserves a measure µ on a compact domain
of R3 or on S3, and h a height function. We set

tksh(X,µ) := max
t∈[0,1]

Flux(X,µ, h−1(t)) = max
t∈[0,1]

lim
ε→0

1

ε
µ(φ[0,ε](h−1(t))).

The trunkenness of (X,µ) is defined as

Tks(X,µ) := inf
h height
function

tksh(X,µ) = inf
h height
function

max
t∈[0,1]

Flux(X,µ, h−1(t))

= inf
h height
function

max
t∈[0,1]

lim
ε→0

1

ε
µ(φ[0,ε](h−1(t))).

Note that we can only consider an infimum instead of a minimum as in the case of knots. In
Section 4 we prove that for non-singular vector fields, if the trunkenness is a minimum then the
vector field possesses an unknotted periodic orbit.

If the invariant measure µ is given by the integration of a volume form Ω, we get the alternative
definitions

tksh(X,Ω) = max
t∈[0,1]

∫
h−1(t)

|ιXΩ|, and Tks(X,Ω) = inf
h height
function

max
t∈[0,1]

∫
h−1(t)

|ιXΩ|.

We now prove the invariance under homeomorphism.

Proof of Theorem A. Assume without loss of generality that there is a homeomorphism f such
that f · φtX1

= φtX2
· f , with φtXi the flow of Xi, and assume by contradiction that Tks(X1, µ) <

Tks(X2, µ). Let 0 < δ = Tks(X2, µ) − Tks(X1, µ). Take hn to be a sequence of (differentiable)
height functions such that

lim
n→∞

tkshn(X1, µ) = Tks(X1, µ).

Consider the continuous functions h̃n = hn ·f−1 and for each n consider a differentiable function

Hn that is arbitrarily C0-close to h̃n. Hence, for each n, the level sets of Hn and h̃n are arbitrarily
close. Observe that we can assume that Hn is a height function (by taking Hn such that its level
sets are all spheres or all planes, depending on the domain of the vector field). Thus we can choose
Hn so that, for every t ∈ [0, 1] and for ε small enough, we have

|µ(φ
[0,ε]
X2

(H−1n (t)))− µ(φ
[0,ε]
X2

(h̃−1n (t)))| < δ

4
.

Fix n large enough so that tkshn(X1, µ)− Tks(X1, µ) < δ
4 , and for such n set T in [0, 1] so that

tksHn(X2, µ) = Flux(X2, µ,H
−1
n (T )).

We have two possibilities:

(1) If Flux(X2, µ,H
−1
n (T )) ≥ Flux(X2, µ, h̃

−1
n (T )), then for ε small enough

µ(φ
[0,ε]
X2

(H−1n (T ))) ≤ δ

4
+ µ(φ

[0,ε]
X2

(h̃−1n (T ))).
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Hence

Tks(X2, µ) ≤ tksHn(X2, µ) = lim
ε→0

1

ε
µ(φ

[0,ε]
X2

(H−1n (T )))

≤ δ

4
+ lim
ε→0

1

ε
µ(φ

[0,ε]
X2

(h̃−1n (T )))

=
δ

4
+ lim
ε→0

1

ε
µ(φ

[0,ε]
X1

(h−1n (T )))

≤ δ

4
+ tkshn(X1, µ) <

δ

2
+ Tks(X1, µ).

Thus, δ = Tks(X2, µ)− Tks(X1, µ) < δ
2 , a contradiction proving Theorem A in this case.

(2) If Flux(X2, µ,H
−1
n (T )) < Flux(X2, µ, h̃

−1
n (T )), then

tksHn(X2, µ) = Flux(X2, µ,H
−1
n (T ))

< Flux(X2, µ, h̃
−1
n (T )) = Flux(X1, µ, h

−1
n (T ))

≤ tkshn(X1, µ) < Tks(X1, µ) +
δ

4
< Tks(X2, µ).

Thus, tksHn(X2, µ) < Tks(X2, µ), a contradiction to the definition of the trunkenness.

This finishes the proof of Theorem A. �

Computing the trunkenness of a vector field is not easy in general. Considering a given height
function gives an upper bound on the trunkenness, but lower bounds are harder to find. Theorem B
is a continuity result that provides a useful tool.

Proof of Theorem B. We begin with the first part of the theorem, namely we prove that if (Xn, µn)n∈N
is a sequence of measure-preserving vector fields such that (Xn)n∈N converges to X and (µn)n∈N
converges to µ in the weak-∗ sense, then we have limn→∞Tks(Xn, µn) = Tks(X,µ).

Fix ε > 0. The convergence hypothesis implies that for every surface S, for every δ > 0 small
and for n big enough, we have

(3) |µn(φ
[0,δ]
Xn

(S))− µ(φ
[0,δ]
X (S))| ≤ ε,

where φtX and φtXn denote the flows of the vector fields X and Xn, respectively.
Assume that Tks(Xn, µn) does not converge to Tks(X,µ), then for any N ∈ N there exists

n ≥ N such that

|Tks(Xn, µn)− Tks(X,µ)| > 3ε.

Fix n big enough satisfying the last inequality and (3). Then either

Tks(Xn, µn) < Tks(X,µ) or Tks(X,µ) < Tks(Xn, µn).

Next we analyse these two cases and deduce a contradiction for each.
If Tks(X,µ) < Tks(Xn, µn), consider a sequence of height functions hk such that

lim
k→∞

tkshk(X,µ) = Tks(X,µ).

Modulo extracting a subsequence we can assume that for all k we have that 0 ≤ tkshk(X,µ) −
Tks(X,µ) ≤ ε. Observe that this difference is always positive by the definition of the trunkenness.
Then

3ε < Tks(Xn, µn)− Tks(X,µ)

= Tks(Xn, µn)− tkshk(X,µ) + tkshk(X,µ)− Tks(X,µ),

hence,

2ε < Tks(Xn, µn)− tkshk(X,µ) + tkshk(Xn, µn)− tkshk(Xn, µn)

< Tks(Xn, µn)− tkshk(Xn, µn) + |tkshk(Xn, µn)− tkshk(X,µ)|
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For k fixed, since µn tends to µ in the weak-∗ sense, we can assume that the term
|tkshk(Xn, µn) − tkshk(X,µ)| is smaller than ε by possibly taking n larger. Then we get 2ε <
Tks(Xn, µn)− tkshk(Xn, µn) + ε. We deduce ε+ tkshk(Xn, µn) < Tks(Xn, µn), a contradiction to
the definition since we have

ε+ tkshk(Xn, µn) < Tks(Xn, µn) ≤ tkshk(Xn, µn).

The other case is similar. Assume now Tks(Xn, µn) < Tks(X,µ) and for each n consider a
sequence of height functions hn,k such that

lim
k→∞

tkshn,k(Xn, µn) = Tks(Xn, µn).

As in the previous case, we assume that for all k we have 0 ≤ tkshn,k(Xn, µn)− Tks(Xn, µn) ≤ ε.
Then, for n large enough,

3ε < Tks(X,µ)− Tks(Xn, µn)

= Tks(X,µ)− tkshn,k(Xn, µn) + tkshn,k(Xn, µn)− tkshn,k(X,µ)

+tkshn,k(X,µ)− Tks(Xn, µn)

≤ Tks(X,µ)− tkshn,k(X,µ) + ε+ |tkshn,k(X,µ)− tkshn,k(Xn, µn)|
≤ Tks(X,µ)− tkshn,k(X,µ) + 2ε.

We conclude that ε + tkshn,k(X,µ) < Tks(X,µ), a contradiction to the definition of Tks(X,µ).
Thus, for n large enough, |Tks(Xn, µn)−Tks(X,µ)| < 3ε. This proves the first part of Theorem B.

The second part of Theorem B gives an asymptotic interpretation to the trunkenness of a vector
field. Consider a sequence of knots (Kn)n∈N that support vector fields Xn and denote by (tn)n∈N
the respective periods. From Equation (2) we get that for each n

]{Kn ∩ h−1(t)} = lim
ε→0

1

ε
µn(φ[0,ε]n (h−1(t))),

where µn are the mesures supported by the knots and φtn is the flow of Xn.
If we suppose that Xn tends to X and that the normalized linear Dirac measures ( 1

tn
µn)n∈N

converge to µ in the weak-∗ sense, then we can reformulate the previous result into

lim
n→∞

1

tn
Tk(Kn) = Tks(X,µ).

Now if X is ergodic with respect to µ then, for almost every p and for every sequence tn →∞,
the linear Dirac masses concentrated on the knots Kn := kX(p, tn) tend to µ in the weak-∗ sense.
Recall that kX(p, tn) is the knot obtained by following the orbit of p for a time tn concatenated with
a geodesic from φtnX (p) to p, as explained in the introduction. Then the convergence implies that

lim
t→∞

1

t
Tk(kX(p, t)) exists and is equal to Tks(X,µ). This proves the second part of Theorem B. �

3. Independence of helicity

As mentioned in the introduction, the helicity is a well-known invariant of vector fields up
to volume-preserving diffeomorphism. In this section, all vector fields are on the sphere S3 and
preserve a volume form, that we denote by Ω. For X such a vector field, Cartan’s formula implies
that ιXΩ is a closed 2-form, and since the ambient manifold is simply connected it is exact. We
may then write ιXΩ = dα, for α some differential 1-form. The helicity of X is defined as

Hel(X) =

∫
S3
α ∧ dα,

and does not depends on the choice of the primitive α.
As we recalled in the introduction most known asymptotic invariants are in fact proportional

to a power of helicity [Arn73, GG01, Baa11, BM12]. The goal of this section it to prove that the
trunkenness of a vector field is not a function of its helicity. In order to do so we compute the
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trunkenness and the helicity of a vector field that preserves the invariant tori of a Hopf fibration
of S3.

Considering S3 as the unit sphere {(z1, z2) ∈ C2, |z1|2+|z2|2 = 1}, the Seifert flow of slope (α, β)
is the flow φα,β given by

φtα,β(z1, z2) := (z1e
i2παt, z2e

i2πβt).

It is generated by the vector field Xα,β given by Xα,β(z1, z2) = (i2παz1, i2πβz2). This flow
preserves the standard volume form, that is, the volume form ΩHaar associated to the Haar measure
of S3. The flow has two distinctive periodic orbits corresponding to z1 = 0 and z2 = 0 that are
trivial knots in S3. The tori |z1/z2| = r for 0 < r <∞ are invariant and the flow on each of them
is the linear flow of slope α/β. If α/β is rational, put α/β = p/q with p, q ∈ N coprime. Then
every orbit of φα,β , different from the two trivial ones, is a torus knot of type T (p, q).

The helicity of φα,β is equal to αβ. To compute it in the rational case (α, β) = (p, q) with p, q
coprime, observe that all the orbits except two are periodic of period 1. The linking number of an
arbitrary pair of such orbits is pq. Therefore the asymptotic linking number (also called asymptotic
Hopf invariant) equals pq and, by Arnold’s Theorem [Arn73], so does the helicity. For the general
case of (α, β) not necessarily rational, it is enough to use the continuity of the helicity, since Xα,β

can be approximated by a sequence of Seifert flows with rational slope.

Proposition 3.1. The trunkenness of the Seifert flow φα,β with respect to the standard volume
form ΩHaar is equal to 2 min(α, β).

Proof. Let us first prove Tks(Xα,β ,ΩHaar) 6 2β. For this it is enough to exhibit a height function h
that yields tksh(Xα,β ,ΩHaar) = 2β. First define ∞ = (0, 1) and 0 = (0,−1) in S3 ⊂ C2 and take
the stereographic projection to identify

{(z1, z2) ∈ C2 , |z1|2 + |z2|2 = 1} ' R3 ∪ {∞}.

Take now as h the standard height function h0 of R3 ∪ {∞}. The spheres are centered at 0 ∈ R3

that corresponds to the point (0,−1) ∈ S3 ⊂ C2, hence the orbit z1 = 0 intersects twice each level
sphere h−10 (t). The middle sphere, S = h−10 (1/2), contains the other special orbit z2 = 0 and is
the only sphere that intersects all the orbits of φα,β . Then the function t 7→

∫
h−1
0 (t)

|ιXα,βΩHaar|
has a maximum for t = 1/2.

For computing
∫
S
|ιXα,βΩHaar|, we remark that the 2-sphere S has the orbit (ei2παt, 0) as an

equator, that the flow is positively transverse to the northern hemisphere and negatively trans-
verse to the southern hemisphere. Then the integral

∫
S
|ιXα,βΩHaar| is equal to twice the flux

of Xα,β through any disc bounded by the curve (ei2παt, 0). Consider the flat disc D in S3
bounded by (ei2παt, 0). The first return time to D is constant and equal to 1/β, so the flux
multiplied by 1/β gives the total volume of S3, that is 1. Therefore Flux(Xα,β ,ΩHaar, D) is
equal to β, and we obtain tksh0(Xα,β ,ΩHaar) =

∫
S
|ιXα,βΩHaar| = 2β. By symmetry, we then

have Tks(Xα,β ,ΩHaar) 6 2 min(α, β).

For proving the converse inequality Tks(Xα,β ,ΩHaar) > 2 min(α, β), we approximate Xα,β by a
sequence (Xpn/rn,qn/rn)n∈N, where pn, qn, rn are integer numbers. Theorem B yields

Tks(Xα,β ,ΩHaar) = lim
n→∞

Tks(Xpn/rn,qn/rn ,ΩHaar).

As the trunkenness is an order-1 invariant (it is multiplied by λ if the vector field is multiplied
by λ), we only have to prove Tks(Xp,q,ΩHaar) = 2 min(p, q) for p, q two coprime natural numbers.

Since every orbit of Xp,q is periodic, we can consider a sequence of (Kn)n∈N of collections of
periodic orbits whose induced linear Dirac measures converge to ΩHaar. We take Kn to be an
n-component link all of whose components are torus knots T (p, q). Actually Kn is a cabling with
n strands on T (p, q), so by Zupan’s theorem [Zup12], the trunk of Kn is 2nmin(p, q). Since the
period of each component of Kn is 1, the total length of Kn is n, and we get Tks(Xp,q,ΩHaar) >
2 min(p, q). �
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Proof of Theorem C. The previous computations show that for a Seifert flow Xα,β on S3 we have
Hel(Xα,β ,ΩHaar) = αβ and Tks(Xα,β ,ΩHaar) = 2 min(α, β). There is no real function g such that
min(α, β) = g(αβ), so there is no function g such that Tks(Xα,β ,ΩHaar) = g(Hel(Xα,β ,ΩHaar)).

However the Seifert flows are not ergodic with respect to ΩHaar. Indeed, the foliation of S3 by
invariant tori is invariant, so that it is easy to construct an invariant set with arbitrary mesure.
Still, a theorem of Katok [Kat73] states that every volume-preserving vector field can be perturbed
(in the C1-topology) into an ergodic one. Starting from X1,8 and X2,4, we obtain two ergodic
volume-preserving vector fields X ′1,8 and X ′2,4. By continuity, their trunknesses are close to 2 and
4 respectively, while their helicities are close to 8. At the expense of multiplying the X ′1,8 and X ′2,4
by a constant, we can assume that their helicities are exactly 8. However their trunknesses are still
close to 2 and 4, hence different. �

The formula Tks(Xα,β ,ΩHaar) = 2 min(α, β) is also interesting to compare with Kudryavtseva’s
and Encisco-Peralata-Salas-Torres de Lizaur’s theorems: the function (α, β) 7→ 2 min(α, β) is con-
tinuous but not differentiable, so that trunkenness is a continuous vector field invariant, but it is
not integral regular in the sense of [Kud16, EPT16].

4. Trunkenness and the existence of periodic orbits

In this section we adress the question of what happens when the infimum in the definition of
the trunkenness is a minimum, for non-singular vector fields on S3 with an invariant mesure µ. We
deduce that the vector field must posses an unknotted periodic orbit by finding a periodic orbit
tangent to a level of the function. The proof of Theorem D in particular implies that there is
height function h such that

tksh(X,µ) = Flux(X,µ, h−1(tmax))

for some (not necessarily unique) tmax ∈ [0, 1] and such that all the connected components of
S = h−1(tmax) along which X is tangent to S are bounded by periodic orbits of X. The existence
of vector fields on S3 without periodic orbits [Kup94] implies that there are vector fields for which
we cannot consider a minimum to define the trunkenness.

Proof of Theorem D. For f a height function we define

Ff : [0, 1] → R
t 7→ Flux(X,µ, f−1(t))

Set h the height function such that Tks(X,µ) = tksh(X,µ) and let tmax ∈ [0, 1] be a maximum of
Fh, hence

Tks(X,µ) = tksh(X,µ) = lim
ε→0

1

ε
µ(φ

[0,ε]
X (h−1(tmax))).

Denote by S the level set h−1(tmax). Observe that the value tmax is not necessarily unique.
We assume that S3 and S are oriented and thus we can distinguish three subsets of S (see

Figure 3):

• St the closed set along wich X is tangent to S;
• S+ the open set along wich X is positively transverse to S;
• S− the open set along wich X is negatively transverse to S.

We claim that none of these sets is empty. First assume that S+ is empty, then S = St ∪ S−.
Observe that S3 \ S has two connected components that are diffeomorphic to open 3-dimensional
balls. Hence there is one of these connected components, denote its closure by D, that is invariant
under the diffeomorphism of S3 defined by φtX for any t > 0, and since X is non-singular there

exists t0 > 0 such that Φ := φt0X has no fixed points. Thus Φ maps D to D, and D is the closed
3-dimensional disc, hence by Brouwer fixed point theorem Φ has a fixed point, a contradiction.
Thus S+ is non-empty, and the same argument proves that S− is non-empty. Now S+ and S− are
open subsets of S and have empty intersection, hence St = S \ (S+ ∪ S−) is not empty.
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S−

S+

St

Figure 3. The decomposition of the level S of the height function into S+ where X is
positively transverse to S (orange), S− where X is negatively transverse (black), and St

where X is tangent to T (white). A piece of orbit of X that intersects S four times is

also shown.

Decompose B := ∂St as B = B+ ∪ B−, where B+ and B− are in the boundary of S+ and S−

respectively. Observe that there is at least one connected component of St whose boundary has
both positive and negative parts.

Assume that X has no periodic orbits, then B is made of circles and each one of these circles is
tranverse to X in at least one point.

Lemma 4.1. If a point p in St is such that either its positive or negative orbit is contained in S,
then X has an unknotted periodic orbit.

Proof. Assume without loss of generality that the positive orbit of p is contained in S, then it
limits to some invariant set of X contained in S. By Poincaré-Bendixson Theorem such a set has
to be a periodic orbit of X. Since the periodic orbit is contained in the sphere S it has to be
unknotted. �

Then under the assumption that X has no unknotted periodic orbits, we have that for every
p ∈ St the positive and negative orbit of p have to leave S at some point. Consider now two points
p, q ∈ B that are in the same orbit and such that the orbit segment connecting them is contained
in St. We can thus assume that there exists τ ≥ 0 such that φτX(p) = q and φsX(p) ∈ St for all
0 ≤ s ≤ τ . Observe that by allowing τ to be zero, we consider the case p = q.

Take ε > 0 and consider the orbit segment

O = {φsX(p) | −ε < s < τ + ε}.

The flowbox Theorem implies that there is a neighborhood U of O and a diffeomorphism

ϕ : B(1)× (−ε, τ + ε)→ U

so that the flowlines are the image under ϕ of the vertical segments {·} × (−ε, τ + ε). Here B(1)
denotes the 2-dimensional open disc of radius 1.

Proposition 4.2. There exists p, q ∈ B as above such that p ∈ B− and q ∈ B+ or p ∈ B+ and
q ∈ B−.

The idea of the proof is that if for every pair of points p, q as above that are both in B+ or B−,
we can change the function h for another height function h1 such that

tksh(X,µ) = tksh1(X,µ)
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U
V

V0

S+

St

S−

Figure 4. A neighborhood U of a piece of orbit O of X that connects two points p, q
in B+. The intersection of ∂U with S is bold and green.

and such that the level of h1 realizing the trunkenness has no tangent part that separates S+ from
S−, which is impossible.

Proof. Consider a pair of points p, q ∈ B+ as above (see Figure 4). Let V0 be the neighborhood of
O defined as ϕ(D(1/3)× (−ε, τ + ε)), where D(1/3) is the 2-dimensional closed disc of radius 1/3
and V = ϕ(B(2/3)× (−ε, τ + ε)). Hence V0 ⊂ V ⊂ U . We will deform the levels of h intersecting
V without changing the trunkenness.

The image of S by ϕ−1 defines a surface Σ that is positively transverse to the vertical direction
in B(1)× (−ε, 0) and B(1)× (τ, τ + ε), as in Figure 5 left. If we project Σ to B(1)× {0}, the flux
through Σ and through the image of Σ under the projection are the same. Thus if we change Σ
(or any surface) for another surface whose projection, counted with multiplicities and signs, is the
same as the one of Σ, the flux remains constant.

Inside D(1/3)× (−ε, τ + ε) we change the images under ϕ−1 of the levels of h to obtain a family
of surfaces that are always positively transverse to X and are C∞-close to the original ones, in such
a way that the projection to B(1)×{0} is preserved (as in Figure 5 right). Using the neighborhood
V , we can paste the deformed surfaces of V0 with the original surfaces in U \ V .

Using ϕ this deformation can be pushed forward to the manifold so that the level surfaces of

h that intersected V are modified and X is positively transverse to the surfaces inside V0. Let S̃

be the surface obtained from S after the deformation and h̃ be a height function whose level sets
correspond to the deformed surfaces. Then

tksh(X,µ) = tksh̃(X,µ),

since Flux(X,µ, S̃) = Flux(X,µ, S), and for every surface intersection V the corresponding equa-
tion holds. Clearly, the same proof works if p, q ∈ B−.

Observe that the level S̃ of h̃ realizing the trunkenness coincides with S outside V . Moreover,

the tangent part S̃t of S̃ is strictly smaller than St: the connected component A of St containing
p and q got transformed into A \ (V0 ∩A). In other words there is now a strip accross A.

Assume now that for any couple of points p, q ∈ B that is joined by an orbit segment contained

in St we have either p, q ∈ B+ or p, q ∈ B−. The sets S̃t and B are compact, we can thus find
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Figure 5. Modifying the levels of h in U around the arc pq in the case p, q ∈ B+.

Figure 6. Modifying the levels of h in U around the arc pq in the case p ∈ B+, q ∈ B−.

a finite number of pairs of points p, q ∈ ∂B such that after deforming the levels h as above along
each of the corresponding orbit segments, we obtain a height function h1 such that

tksh(X,µ) = tksh1(X,µ) = Flux(X,µ, S1),

where S1 is the level of h1 realizing the trunkenness and such that St1 is formed by discs. Hence none
of the connected components of St1 separates the positively tranverse set S+

1 from the negatively
transverse set S−1 , a contradiction. �

Consider now a pair of points p, q as in Proposition 4.2 and assume that p ∈ B− and q ∈ B+.
We now construct a height function h2 such that

tksh(X,µ) > tksh2(X,µ),

a contradiction that implies that X has unknotted periodic orbits.
Consider the function Fh and let Mh be the set of t ∈ [0, 1] realizing the trunkenness, that is

Mh = {t ∈ [0, 1] | Fh(t) = tksh(X,µ)}. Observe that Mh is closed. We distinguish two cases:

(1) all the elements of Mh are isolated;
(2) there exist a closed interval Imax contained in Mh.

We start with the first case. Take tmax ∈ Mh and set S = h−1(tmax). To obtain h2 we will
deform the levels near S, if Mh has more than one element the following deformation has to be
done near each correponding level set. Thus we assume without loss of generality that tmax is the
only element of Mh.
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Let O, ϕ, U , V and V0 be defined as above. Let [a, b] ⊂ [0, 1] be such that tmax ∈ [a, b] and if
h−1(t)∩V0 6= ∅ then t ∈ [a, b]. Shrinking V if necessary, we can assume that ϕ(B(2/3)× (−ε, τ + ε)
is contained in h−1([a, b]) and that for any t ∈ [0, 1] \ [a, b] we have

Flux(X,µ, h−1(t)) < tksh(X,µ)− δ,

for some δ > 0. We assume also that ϕ(B(2/3)× [0, τ ]) is contained in h−1([a, b]).
Consider now the surface Σ obtained as the image under ϕ−1 of S in U . Then either Σ is

positively transverse to the vertical direction in B(1) × (−ε, 0) and negatively transverse to the
vertical direction in B(1) × (τ, τ + ε), or it is negatively transverse to the vertical direction in
B(1) × (−ε, 0) and positively transverse to the vertical direction in B(1) × (τ, τ + ε). We assume
without loss of generality that Σ is negatively transverse to the vertical direction in B(1)× (−ε, 0)
and positively transverse to the vertical direction in B(1)× (τ, τ + ε), as represented in Figure 6.

We want to deform the levels of h intersecting V0 in such a way that their trace under the
projection to B(1)× {0} is reduced.

Shrinking V if necessary, we can assume that the level sets are:

• tangent or negatively transverse to X in ϕ(B(2/3)× (−ε, 0)),
• tangent or positively transverse to X in ϕ(B(2/3)× (τ, τ + ε)).

Consider the circle C = Σ ∩ ∂(D(1/3)× (−ε, τ + ε)). Since ∂(D(1/3)× (−ε, τ + ε)) is topologicaly
a sphere, C divides it into two discs. Let W be the disc that is entirely tangent to the vertical

direction. There is a continuous deformation from Σ to the continuous surface Σ̃ that coincides
with Σ outside D(1/3)× (−ε, τ + ε) and coincides with W in this set. Observe that the projection

of Σ̃ to B(1) × {0} is a proper subset of the projection of Σ. We can now approximate Σ̃ in
B(2/3) × (−ε, τ + ε) with a smooth surface Σ1, that can be obtained from Σ by a continuous
deformation that is the identity near the boundary of B(2/3)× (−ε, τ + ε).

Apply this deformation to nearby levels by pushing (to the right as in Figure 6) all the level
sets intersecting B(1/3) × (0, τ) with a continuous map that is the identity near the boundary of
B(2/3)× (−ε, τ + ε). By construction the projection to B(1)× {0} of the image under ϕ−1 of any
level set intersecting V is a subset of the original one and for levels sufficiently near h−1(tmax) it
is a proper subset. Thus the flux of X gets reduced on any of the deformed surfaces.

As before, we use ϕ to push forward the deformation to S3 and obtain the levels of a new height
function h2 such that tksh2(X,µ) < tksh(X,µ).

The proof of the case where Mh has only isolated elements ends here and we are left with the
case where the set Mh contains an interval Imax = [a, b]. Take tmax = a and use the previous
procedure to obtain a new height function h2 such that the interval Imax is reduced to I2 = [a2, b]
for some a2 > a. This process can be applied as long as the boundary of the tangent part of h−1(t)
for any t ∈ [a, b] is not composed by periodic orbits of X. Recursively either we find an unknotted
periodic orbit or we obtain a height function f such that tksf (X,µ) < tksh(X,µ) as needed. �

The proof of Theorem D gives the following result.

Corollary 4.3. Let X be a non-singular vector field on S3, µ an invariant measure and h a height
function such that

Tks(X,µ) = tksh(X,µ).

Then there is a height function h1 such that:

• tksh(X,µ) = tksh1(X,µ);
• for every s ∈ [0, 1] such that tksh1

(X,µ) = Flux(X,µ, h1
−1(s)) and for every point p in

the boundary of the tangent part of S = h−11 (s), either p belongs to a periodic orbit or its
orbit limits to a periodic orbit. In both cases the periodic orbit is contained in S and is
thus unknotted.
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Figure 7. On the left, two vector fields supported on the unlink and both transverse
to the canonical meridian discs. The top one has all its orbits horizontal, hence its
trunkenness is 0 while the bottom one has linked orbits. Its trunkenness is at most 2 ·
Flux(X,Ω, D) but it might be smaller. On the right a vector field supported on a link L
both of which components are figure-eight knots. If the flux of the vector field through
the canonical meridian discs of both components is equal to F , then the trunkenness of
this vector field is F · Tk(L) = 8F by Proposition 5.1.

5. Trunkenness of knotted tubes

In this section we compute the trunkenness with respect to a volume form of some vector fields
supported in a tubular neighborhood of a link or knot. Our statement is reminiscent from Zupan’s
theorem [Zup12] concerning the trunk of the cable of a knot. Recall that for a divergence-free
vector field supported on a tube, the fluxes through all meridian discs are equal.

Proposition 5.1. (see Figure 7 right) Suppose that X is a Ω-preserving vector field supported on
tubes T1, . . . , Tj that are tubular neighborhoods of knots k1, . . . , kj, each knot ki being non-trivial,
and such that X is transverse to all canonical meridian discs and the flux of X through each of
them is constant equal to some F 6= 0, then we have

Tks(X,Ω) = F · Tk(k1 ∪ · · · ∪ kj).

Note that the trunkenness in this case is independent from the dynamics of X inside each tube,
and in particular of the first-return map on a meridian disc, exactly like the trunk of a cable link
is independent of the twist number of the cabling. However the restriction that all the knots ki are
non-trivial is necessary. Indeed the trunkenness of a vector field supported on a tube that forms
a trivial knot may be smaller than 2F . For example take an unknotted solid torus in R3 that
supports a vector field obtained by the suspension of the identity (with no extra twist) and assume
that the vector field is zero outside the solid torus (see Figure 7 top left). The trunkenness of such
vector field is zero: it is enough to consider a height function whose levels are always tangent to the
vector field. Observe that the levels of such a height function intersect the solid torus along circles
or annuli. As this example shows, the trunkenness of a vector field supported in the neighborhood
of a link with at least one unknotted component seems hard to determine (see Figure 7).

Proof. Let L = k1 ∪ k2 ∪ . . .∪ kn ⊂ S3 be a link all of whose components are non-trivial knots. Let
h be a height function such that Tk(L) = tkh(L). Observe that we can assume that h exists since
for a knot or link the trunk is defined by a minimum (see Definition 1.1). The trunk of L is then
realized by one or more level sets of h, that is, there exist t1, t2, . . . , tk such that for any 1 ≤ i ≤ k
there is a critical value ci of h|L so that ti < ci < ti+1 and Tk(L) = ]{L ∩ h−1(ti)}. Let

mj(ti) = ]{kj ∩ h−1(ti)}, for 1 ≤ j ≤ n and 1 ≤ i ≤ k.
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For any 0 < ε < 1 there is an Ω-preserving diffeomorphism fε of S3 that makes the solid tori Tj
longer and of radius εrj for any 1 ≤ j ≤ n, with rj the radius of the tubular neighborhood Tj . Let
Xε be the vector field obtained from X via fε, then Tks(X,Ω) = Tks(Xε,Ω) for every ε.

Assume that there is a height function g and an index i such that tksg(X,Ω) < F ·
∑n
j=1mj(ti).

Consider the height function gε = g ◦ f−1ε , then Theorem A implies tksg(X,Ω) = tksgε(Xε,Ω) and

tksgε(Xε,Ω) < F ·
n∑
j=1

mj(ti).

We claim that tkgε(L) <
∑n
j=1mj(ti) = Tk(L) holds, which is absurd.

Assume first that gε restricted to the core of the tori fε(Tj) is a Morse function. The core of
the tori form the link L thus tkgε(L) ≥ Tk(L) in one hand. But since

tksgε(Xε,Ω) = Flux(Xε,Ω, g
−1
ε (T )) < F · min

1≤i≤k

n∑
j=1

mj(ti)

for some T ∈ [0, 1], taking ε arbitrarily small tells us that the number of discs in the intersection
of g−1ε (T ) and the tori is smaller than Tk(L). In other words we conclude that tkgε(L) < Tk(L),
which is impossible. We are left with the case where gε is not a Morse function when restricted
to L, seen as the core of the tori fε(Tj). The following lemma finishes the proof of the proposition.

Lemma 5.2. In the previous context, there exists another height function g′′ε so that:

• g′′ε |L is a Morse function;
• tksgε(Xε,Ω) = tksg′′ε (Xε,Ω).

Proof. Let S = g−1ε (t) be a level that is tangent to at least one of the components of L and let k1
be one of the tangent components. We will modify gε in a neighborhood of k1, this modification
taking place near the part of k1 that is tangent to S.

Observe that S is tangent to a closed subinterval of k1, since if it were tangent to all of k1 then
k1 would be the trivial knot, in contrary to our assumption on L. For δ < εr1, consider N(δ, k1) the
δ-tubular neighborhood of k1 that is contained in fε(T1). For δ sufficiently small, the intersection
S ∩ N(δ, k1) is composed by a finite number of discs. Let D1 be one of these discs, then ∂D1 is
included in ∂N(δ, k1) and is either a contractible circle in ∂N(δ, k1) or not.

If ∂D1 is contractible in ∂N(δ, k1), then we can locally deform the levels of gε near D1, to obtain
a new height function g′ε such that:

• the disc D′1 obtained from D1 is tangent to k1 at one point;
• near D′1 all levels are transverse to k1;
• tksgε(Xε,Ω) = tksg′ε(Xε,Ω).

The support of the deformation is contained in N(δ, k1). Performing this deformation near any
disc in S∩N(δ, k1) whose boundary is contractible in ∂N(δ, k1), we can assume now that the discs
of S that are tangent to k1 have non-contractible boundary in ∂N(δ, k1). Thus these discs are
homologous to meriodional discs D2 × {θ} of T1. Again, we can locally deform the levels, so that
this discs are transverse to k1. The deformed height function g′′ε is Morse when restricted to L.

Thus g′′ε is Morse when restricted to k1. Repeating this process if necessary, we obtain a that
g′′ε is Morse when restricted to L. �

�
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