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Abstract

We obtain scaling limit results for asymmetric trap models and their infinite volume
counterparts, namely asymmetric K processes. Aging results for the latter processes are
derived therefrom.

AMS 2010 Subject Classifications: 82C44,60K35,60G70

Keywords and Phrases: random dynamics, random environments, K-process, scaling limit, trap
models

1 Introduction

The long time behavior of trap models and related processes with disordered parameters has
been the theme of several papers in the recent literature. From the inaugurating work of
Bouchaud [1], where the case of the complete graph was shown to exhibit aging, the same
as well as other cases were analysed. The model on the complete graph was further studied
in [2] and [3], with different points of view, and considering distinct time scales. And more
recently, [4] took up the asymmetric case, which is also the model we study here.

The trap model in the complete graph is sometimes also called REM-like trap model, due
to its resemblance to a dynamics for the Random Energy Model (REM [5]). Such a dynamics
for the REM, on the hypercube rather than the complete graph, was studied in [6, 7], where
aging results comparable to the ones of Bouchaud were derived. See also [8, 9, 10]. Trap and
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trap-like models associated to correlated energy (mean field) spin glasses have been the object
of more recent work: a dynamics for the p-spin model was studied in [11, 12], and results on
the GREM-like trap model were obtained in [13].

Trap models on Zd have also attracted a lot of interest, in connection with aging as well as
with localization; see [14, 15, 16, 17, 18] – results on the asymmetric case were obtained recently
in [22, 20, 21]. Analyses on tori were performed in [22, 23].

In this paper, we revisit the trap model in the complete graph, described briefly below in
this introduction, and in full in Section 3. Our goal is twofold:

1. to propose a representation of the model – in terms of trap depth, rather than location –
for which scaling limits can be derived in a unified manner in different scaling regimes;

2. and to introduce the infinite volume processes which result from these scaling limits, in
particular the asymmetric K process.

Let us now briefly describe the asymmetric trap model in the complete graph with n vertices.
This is a continuous time Markov chain on the vertices of that graph, whose mean jump time
at site x is given by τ 1−a

x , where a ∈ [0, 1] is an asymmetry parameter, and whose transition
probability from any site x to any site y is proportional to τay , where {τx} are iid positive
random variables in the domain of attraction of an α-stable law. The random variable τ 1−a

x

may be interpreted as the depth of the trap at site x. The case a = 0 is that of the symmetric
model. We call the general case where a ∈ [0, 1] the asymmetric model. Let Yn(t) denote the
site visited at time t.

This paper is more immediately related to [3] and [4], so let us briefly outline our results here
against the background of the ones of those papers. Whereas in the former reference a scaling
limit was derived for the symmetric model at times of the order of the deepest trap in the
landscape, and then aging results were derived for a class of two-time correlation functions of
the limit model at vanishing times, in here we present similar limit results for the asymmetric
model. Rather than looking at Yn(t) however, we consider Zn(t) = τ 1−a

Yn(t), the depth of the
currently visited trap. As explained below, this is a convenient representation for taking scaling
limits, not only at times of the order of the deepest trap in the landscape, which we do here
using this representation (see Theorem 3.1), obtaining a limiting process which we denote by
Z, but at shorter time scales as well. We call Z the asymmetric K process, in allusion to the K
process introduced in [3]. We further derive a scaling limit result for Z at vanishing times (see
Theorem 3.2), obtaining a limiting process Ẑ which is self similar of index 1. The latter fact
may be interpreted as a fuller aging result for Z, involving the dynamics itself, not only a class
of correlation functions thereof. Other scaling regimes of Zn may be analysed with the same
approach, with similar results.

Scaling limits of asymmetric trap models in the complete graph are also the main theme
of [4]. In that work scaling limits of the clock process are derived in several scaling regimes
(essentially all of them: from “order 1”, where the volume limit is taken first, and then the
time limit, to the scale where the model is virtually at equilibrium, including scales in between,
in particular the ones treated here); occurrence of aging and other dynamical phenomena are
discussed for each regime.

One reason to consider a representation like Zn, as we do here, rather than the clock process,
is that, besides the information on the jump times given by the latter process, Zn provides also
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location information, absent in that process. For, say, correlation functions which depend only
on jump times (like the Π functions discussed on Subsection 3.3 below; see (3.59-3.62)), the
clock process is enough. But other ones require location information, and in those cases the
clock process is no longer enough on its own. We discuss two such examples in Subsection 3.3
below.

Zn and Z, as well as their rescaled versions, and Ẑ also, can be described as functions of two
related subordinators, the second being obtained as the integral of an independent iid family
of mean 1 exponentials with respect to the first one. Once we obtain the limit of the first
subordinator in a given scaling regime, a continuity property of the above mentioned function
implies a limit result for the original process. Section 2 below is devoted to establishing that
continuity property (see Lemma 2.1) in a somewhat abstract setting, which may turn out to
be the setting of similar processes of interest.

In Section 3 we describe our trap models and K processes in more detail and then, applying
the auxiliary result of Section 2, we derive scaling limit results for them, as anticipated above,
the one for the trap model in Subsection 3.1, and the one for the K process in Subsection 3.2.
In the closing Subsection 3.3 we discuss the derivation of aging results for three particular
two-time correlation functions of Z as a corollary to Theorem 3.2.

2 A continuity lemma about a class of trajectories in D

Let D be the space of càdlàg real trajectories on R+ = [0,∞) equipped with the J1 Skorohod
metric (see e.g. [24] Chapter 3, Section 5). Let N∗ = {1, 2, . . .} denote the positive integers.

Let S, Sε, ε > 0, be nonnegative nondecreasing jump functions in D, i.e., suppose that
there exist (countable) subsets Aε = {xεi , i ∈ N∗} and A = {xi, i ∈ N∗} of R+ and positive
number sequences {γεxεi , i ∈ N∗} and {γxi , i ∈ N∗} such that

Sεr =
∑

i : xεi∈[0,r]

γεxεi <∞, Sr =
∑

i : xi∈[0,r]

γxi <∞, r ≥ 0. (2.1)

Consider {Ti, i ∈ N∗}, a family of i.i.d. exponential random variables of mean 1 and let

Γεr =
∑

i : xεi∈[0,r]

γεxεiTi, Γr =
∑

i : xi∈[0,r]

γxiTi, r ≥ 0, (2.2)

Zε
t =

{
γεxεi0

, if t ∈ [Γεxεi0−
,Γεxεi0

) for some i0,

0, if t /∈ [Γεxεi−,Γ
ε
xεi

) for any i,
(2.3)

and

Zt =

{
γxi0 , if t ∈ [Γxi0−,Γxi0 ) for some i0,

0, if t /∈ [Γxi−,Γxi) for any i.
(2.4)

Lemma 2.1 Let Sε, S, Zε, Z be as above. If Sε → S, then Zε → Z in distribution.

Remark 1 The probability measure in the statement of the above lemma is the one underlying
{Ti, i ∈ N∗}.
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Remark 2 From (2.1-2.4), we see that Z = Ξ(S, {Ti, i ∈ N∗}) and Zε = Ξ(Sε, {Ti, i ∈ N∗}),
where Ξ is the composition underlying the above definitions. Lemma 2.1 then establishes a
continuity property of Ξ in its first argument.

Proof of Lemma 2.1
We will assume that there exists R′ ∈ R+ such that |A ∩ [0, R′]| =∞. Other cases may be

argued similarly, with simpler arguments.
Let Γ−1 be the (right continuous) inverse of Γ. Let us fix T > 0. Then one readily checks

that, given δ > 0, there exists R /∈ A, R ≥ R′, such that

P(Γ−1(T ) ≥ R) ≤ δ. (2.5)

Given η > 0, we may choose δ′ > 0 be such that

SR+δ′ − SR < η. (2.6)

Let us now enumerate A ∩ [0, R] = {x1, x2, . . .} such that γx1 ≥ γx2 ≥ . . .. From the
hypothesis, there exists m = m(ε), with m→∞ as ε→ 0, and an enumeration of Aε∩ [0, R] =
{xε1, xε2, . . .} such that as ε→ 0(

sup
1≤i≤m

|xεi − xi|
)
∨
(
m sup

1≤i≤m
|γεxεi − γxi |

)
→ 0. (2.7)

It follows from this and the hypothesis that, given η > 0, for all small enough ε and 1 ≤ k ≤ m∑
i>k

γεxεi = SεR −
k∑
i=1

γεxεi ≤ SR+δ′ −
k∑
i=1

γxi + η = SR+δ′ − SR +
∑
i>k

γxi + η ≤
∑
i>k

γxi + 2η. (2.8)

We now recall that in the J1 topology, functions are close if they are uniformly close in-
side arbitrary bounded intervals, after allowing small time distortions (for details see e.g. [24]
Chapter 3, Section 5).

Now, given k ≥ 1 arbitrary but fixed, independent of ε, let {x̄1, . . . , x̄k} be an enumeration
of {x1, . . . , xk} such that {x̄1 < . . . < x̄k}. This leads to an enumeration {x̄ε1, . . . , x̄εk} of
{xε1, . . . , xεk} such that for 1 ≤ i ≤ k

x̄εi → x̄i and γεx̄εi → γx̄i (2.9)

(see paragraph of (2.7) above). At this point we relabel {Ti} so that T1, . . . , Tk are attached to
x̄1 < . . . < x̄k and commonly to xε1, . . . , x

ε
k, respectively, which does not change distributions.

Let Z(k) and Z(k,ε) be the respective versions of Z and Zε with the relabeled {Ti}.
Let us now take a family of temporal distortions (λε) = (λεk) as follows. For 1 ≤ i ≤ k,

we consider the time intervals Ii = [t−i , ti], where ti = Γx̄i and t−i = Γx̄i−, and [tε−i , tεi ], where
tεi = Γεx̄εi and tε−i = Γεx̄εi−, and then define

λε(s) =



tε−1
t−1
s, if 0 ≤ s ≤ t−1 ,

tεi−t
ε−
i

ti−t−i
(s− t−i ) + tε−i , if t−i ≤ s ≤ ti,

tε−i+1−t
ε
i

t−i+1−ti
(s− ti) + tεi , if ti ≤ s ≤ t−i+1,

(s− t−k+1) + tε−k+1, if s ≥ t−k+1,

(2.10)
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where t−k+1 := ΓR, tε−k+1 := ΓεR.
At this point, we have two tasks: the first one is to control the slopes of the functions λε

and the second one is to control the sup norm of the difference Z
(k,ε)
λε(t) − Z

(k)
t .

We start by the second task. Let M = ∪ki=1Ii. If t ∈M, then

|Z(k)
t − Z

(k,ε)
λε(t)| ≤ max

1≤i≤k
|γx̄i − γεx̄εi |, (2.11)

which goes to zero as ε goes to zero by (2.9).

If t ∈ [0, t−k+1] \M, then we have that Z
(k)
t ≤ γxk+1

and Z
(k,ε)
λε(t) ≤ maxi>k γ

ε
xεi

. Hence,

|Z(k)
t − Z

(k,ε)
λε(t)| ≤ γxk+1

∨max
i>k

γεxεi ≤ γxk+1
∨
∑
i>k

γεxεi ≤
∑
i>k

γxi + 2η, (2.12)

for all small enough ε, by (2.8).
Now, we solve the first problem by considering two cases:
1) If s ∈ [t−i , ti] for some 1 ≤ i ≤ k, then the slope of λε is given by

tεi − tε−i
ti − t−i

=
γεx̄εiTi

γx̄iTi
=
γεx̄εi
γx̄i
→ 1 (2.13)

as ε→ 0, by (2.9).
2) If s ∈ [ti, t

−
i+1] for some 0 ≤ i ≤ k, where t0 := 0, then it suffices to prove that

tεi → ti (2.14)

tε−i → t−i (2.15)

as ε→ 0 in probability.
In all cases, the absolute value of the difference of right and left hand sides is bounded above

by
m∑
i=1

|γεxεi − γxi |Ti +
∑
i>m

|γεxεi − γxi |Ti. (2.16)

The first term vanishes almost surely as ε → 0 by (2.7) and the Law of Large Numbers,
and, given η > 0, the expected value of the second term is bounded above by∑

i>m

γεxεi +
∑
i>m

γxi ≤ 2
∑
i>m

γxi + η, (2.17)

for all small enough ε, where use is made of (2.8) in the latter inequality, and (2.14,2.15) follow
since m→∞ as ε→ 0 and η is arbitrary.

To conclude, given 0 < ζ < 1, δ > 0, choose T > − log(ζ/2), and then R satisfying (2.5),
and then δ′ satisfying (2.6) with η = ζ/4, and then k such that

∑
i>k γxi < ζ/2. Choosing now

λε as in (2.10), we conclude that

lim sup
ε→0

P(d(Z(k,ε), Z(k)) > ζ) ≤ δ, (2.18)

where d is the J1 Skorohod distance on D (see [24] Chapter 3, Section 5). Since Z(k,ε) = Zε

and Z(k) = Z in distribution for all fixed k and ε small enough, the result follows. �
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Let us now explain how Lemma 2.1 will be used in the sequel. Our aim is to apply it to a case
where Sε and S are random objects, in fact subordinators, with parameters that are themselves
random, which we call environment. Both Sε and S, as well as their respective environments,
will be independent of {Ti}, and the convergence Sε → S will hold only in distribution: either
1) the joint distribution of the environment and the subordinators, or 2) the distributions
of subordinators given the environment, for almost every realization of the environment. In
both cases, we may use the Skorohod representation theorem (see e.g. [25] Theorem 3.2.2). In
case 1) we will first explicitly choose a convenient version of the environment, for which the
distribution of the subordinator, given the environment, converges for almost every realization
of the environment; with the modified environment, we are effectively in case 2. We can then,
by Skorohod representation, in both cases, for each choice of the environment, choose versions
of the subordinators that converge almost surely, and then we are in the setting of Lemma 2.1.
It is clear that the conclusion of the lemma holds for the original subordinator, where the
distribution referred to in the lemma is the joint distribution of {Ti} and the subordinators
given the original environment in case 2, and the modified environment in case 1, for almost
every realization of that environment in each case. In case 1, the result of the lemma will then
hold for the overall joint distribution of {Ti}, the subordinators given the environment, and the
environment.

Establishing the convergence in distribution of the subordinators is done by verifying the
convergence of the respective Laplace exponents.

3 Application to trap models on the complete graph and

K processes

We will apply the lemma above to show scaling limit results for trap models in the complete
graph and for K-processes. We introduce these two processes next.

We first consider the trap model on the complete graph

Kn = {{1, . . . , n}, {(x, y), x, y = 1, . . . , n}} (3.1)

with n vertices (differently from the usual definition, here we include self loops, for convenience –
this should not matter in the convergence results below): Yn = (Yn(t))t≥0, which is a continuous
time Markov chain with jump rate at site x given by

τ−(1−a)
x , (3.2)

and transition probability from site x to site y given by

τay∑n
z=1 τ

a
z

, (3.3)

where a ∈ [0, 1] is a parameter, and τ := {τx, x ∈ Kn} is an independent family of positive
random variables with common distribution in the domain of attraction of a stable law of degree
0 < α < 1, that is,

P(τ1 > t) =
L(t)

tα
, t > 0, (3.4)
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where L is a slowly varying function at infinity.
We call Yn an asymmetric or weighted trap model on the complete graph with asymmetry

parameter a, mean jump time parameters {τ 1−a
x , x = 1, . . . , n} and weights {τax , x = 1, . . . , n}.

The latter set of parameters may indeed be seen as unnormalized weights of the transition
probabilities of Yn. Notice that the a = 0 (symmetric) case corresponds to uniform weights.

We will consider the following construction of Yn. Let

N = {N (x) := (N (x)
r )r≥0, x ∈ N∗} (3.5)

be a family of independent Poisson counting processes such that the rate of N (x) is τax . Let σ
(x)
j

the j-th event time of N (x), j ≥ 1. Let also

T = {T0; T
(x)
i , x ∈ N∗} (3.6)

be independent mean 1 exponential random variables, independent of N and τ , and define for
r ≥ 0

Sn(r) =
n∑
x=1

τ 1−a
x N (x)

r , Γn(r) =
n∑
x=1

τ 1−a
x

N
(x)
r∑
i=1

T
(x)
i . (3.7)

Then
Yn(t) = x, if Γn(σ

(x)
j −) ≤ t < Γn(σ

(x)
j ) for some x, j ≥ 1. (3.8)

is a construction of Yn as above described, with initial state distributed on {1, . . . , n} in such
a way that site x has probability weight proportional to τax , x ∈ {1, . . . , n}.

Remark 3 Regarding the latter point, notice that the initial state of Yn is the one whose Pois-
son mark is the earliest, so it corresponds to the minimum of n independent exponential random
interarrival times with rates τax , x ∈ {1, . . . , n}, and it is well known that the probability that
the minimum of n independent exponential random variables is a given such random variable
is proportional to its rate.

We are interested below in
Zn(t) = τ 1−a

Yn(t). (3.9)

This is the representation for the process aluded to at the introduction above. It has been
considered in [2], where the symmetric (a = 0) case was studied, and a (single time) scaling
limit result was derived for it, first taking the volume, and the time, to infinity (see Proposition
2.10 in that reference) – this is an aging regime not considered in this paper, but rather in [4].

Remark 4 Zn and Yn may be seen as processes in random environment, where τ is the set of
random parameters acting as environment. Indeed, given τ , both are Markovian (this should
be clear for Yn, but a moment’s thought reveals that it is true for Zn as well, even when there
are same values for τi’s with distinct i’s). Notice also that τ is an environment for Sn as well,
which for each n ≥ 1 is a subordinator for every fixed such environment (recall the discussion
at the end of Section 2.1). This aspect, which is characteristic of the complete graph, makes our
approach particularly suitable, since by an application of (the continuity) Lemma 2.1, we are
left with establishing convergence of subordinators (in the Skorohod topology), which reduces to
showing convergence of Laplace exponents (in the topology of real numbers), which is relatively
simple, as we will see below.
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Remark 5 Given Sn, Zn may be identified in distribution to Ξ(Sn, {Ti, i ∈ N∗}), with Ξ
introduced in Remark 2.

We now turn to K-processes, which is a Markov process in continuous time on N̄∗ =
{1, 2, . . . ,∞} constructed in a similar way as Yn was above, as follows. Let γ = {γx, x ∈ [0,∞)}
be the increments of an α-stable subordinator in [0,∞) given by a Poisson process P in
(0,∞)× (0,∞) with intensity measure

αx−1−α dx dy. (3.10)

Let
N̂ = {N̂ (x) := (N̂ (x)

r )r≥0, x ∈ N∗} (3.11)

be a family of independent Poisson counting processes such that the rate of N̂ (x) is γax. Let σ̂
(x)
j

the j-th event time of N̂ (x), j ≥ 1. Let T be as above (see (3.6)), and independent of N̂ .
Define for r ≥ 0

S(r) =
∑
x∈[0,1]

γ1−a
x N̂ (x)

r , Γ(r) =
∑
x∈[0,1]

γ1−a
x

N̂
(x)
r∑
i=1

T
(x)
i , (3.12)

and then make

Yt =

{
x, if Γ(σ̂

(x)
j −) ≤ t < Γ(σ̂

(x)
j ) for some x, j ≥ 1,

∞, otherwise.
(3.13)

Remark 6 It can be verified that when a > α, then Y is a jump process, and so there is almost
surely no t for which Y (t) =∞ (since in this case ∪j,x[Γ(σ̂

(x)
j −),Γ(σ̂

(x)
j )) = [0,∞)). And in the

case where a ≤ α, there almost surely exist t’s for which Y (t) = ∞. (One way to check these

claims is by verifying that when a > α, {σ̂(x)
j ; j ≥ 1, x ∈ [0, 1]} is a discrete subset of [0,∞)

almost surely, and when a ≤ α, it is almost surely dense in [0,∞), and these in turn follow
from the fact that

∑
x∈[0,1] γ

a
x is almost surely finite in the former case, and infinite in the latter

one.)

Let
Zt = γ1−a

Yt
, (3.14)

where γ∞ should be interpreted as 0.

Remark 7 Z and Y may be seen as processes in random environment, where γ (more specifi-
cally, γ|[0,1] = {γx, x ∈ [0, 1]}) is the environment. Indeed, given γ, both are Markovian. γ|[0,1]

is also an environment for S, which is a subordinator for every fixed such environment (recall
the discussion at the end of Section 2.1).

Remark 8 Given S, Z may be identified in distribution to Ξ(S, {Ti, i ∈ N∗}), with Ξ introduced
in Remark 2.
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Remark 9 In [3] and other references the representations used for the trap model and K process
are the ones given here by Yn(t) and Y (t), t ≥ 0, respectively (see (3.8) and (3.13) above). The
alternative representation Zn(t) and Z(t), t ≥ 0, we adopt here (see (3.9) and (3.14) above) has
the advantage of leading to a unifying approach for taking the scaling limits of those processes,
as explained in the introduction and will be done in detail in Subsections 3.1 and 3.2 below.

In the next subsection, we will consider a particular scaling regime for Zn and establish
a scaling limit result under which Zn converges to the K process. Then, in the following
subsection we will derive a scaling limit result satisfied by Z. All proofs will rely on Lemma 2.1
above to get the results from the convergence of the appropriate Sε in each case (see statement
of that lemma and its preliminaries above). In order to obtain the latter convergence, since
we have subordinators in all cases, it will suffice to establish convergence of the associated
Laplace exponents. The last subsection is devoted to a discussion on aging results (for two-
time correlation functions) satisfied by Z as a consequence of Theorem 3.2 and other results.

3.1 Scaling limit for Zn at large times

For r ≥ 0, let

U(r) =
∑
x∈[0,r]

γx. (3.15)

Given a sequence (cn)n≥1, set

Z
(n)
t = c1−a

n Zn(t/c1−a
n ), t ≥ 0. (3.16)

Theorem 3.1 There exists a deterministic sequence (cn)n≥1 such that

(Z
(n)
t )t≥0 → (Zt)t≥0. (3.17)

in distribution as n→∞.

Remark 10 The distribution referred to above is the joint one of the dynamical and envi-
ronmental random variables. The sequence (cn) will be exhibited explicitly in the proof below
(see 3.21).

Proof
By Lemma 2.1, and recalling the discussion at the end of Section 2, it is enough to establish

the limit
S(n) → S, (3.18)

where

S(n)
r := c1−a

n Sn(canr) =
n∑
x=1

(cnτx)
1−aN

(x)
canr
, (3.19)

since, given S(n), Z(n) is identically distributed with Ξ(S(n), {Ti, i ∈ N∗}). (See the discussion
at the end of Section 2 above.)
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Since S(n), n ≥ 1, and S are subordinators (given τ), it is enough to show the convergence
of the corresponding Laplace exponents (see Corollary 3.6 page 374 in [26]). A straightforward
computation yields

ϕn(λ) :=
n∑
x=1

(cnτx)
a(1− e−λ(cnτx)1−a), λ ≥ 0, (3.20)

as the Laplace exponent of S(n). In order to establish its limit (a weak one), we will make a
precise choice of cn and switch to another version of τ , so that the limit will be strong. We
follow [14], Section 3. Let

cn = (inf{t ≥ 0 : P(τ1 > t) ≤ n−1})−1
, (3.21)

τ
(n)
x := c−1

n gn(U(x)− U(x− 1/n)) , x ∈ (0, 1] ∩ 1
n
Z (3.22)

gn(y) = cnG
−1(n1/αy), y ≥ 0, (3.23)

where G−1 is the inverse of the function G defined by the following condition.

P(U(1) > G(x)) = P(τ1 > x), x ≥ 0 (3.24)

Then
ϕ̃n(λ) :=

∑
x∈(0,1]∩ 1

n
Z

(τ (n)
x )a(1− e−λ(τ

(n)
x )1−a) (3.25)

is identically distributed with ϕn(λ) (simultaneously for all λ). Now let

Tδ = {x ∈ [0, 1] : γ(x) > δ} = {x1 < . . . < xK}, (3.26)

and

T
(n)
δ =

{
x

(n)
1 =

1

n
dnx1e < . . . < x

(n)
K =

1

n
dnxKe

}
, (3.27)

where the strict inequalities in (3.27) hold provided n is large enough (for each fixed δ).
Now Lemma 3.1 in [14] implies that for every δ > 0∑

x∈T(n)
δ

(τ (n)
x )a(1− e−λ(τ

(n)
x )1−a)→

∑
x∈Tδ

γax(1− e−λγ
1−a
x ) (3.28)

almost surely as n→∞. One also readily checks that∑
x∈(0,1]∩ 1

n
Z\T(n)

δ

(τ (n)
x )a(1− e−λ(τ

(n)
x )1−a) ≤ λ

∑
x∈(0,1]∩ 1

n
Z\T(n)

δ

τ (n)
x . (3.29)

Since, as argued in paragraphs of (3.25-3.28) in [14], we have that the limδ→0 lim supn→∞ of the
sum in the right hand side of (3.29) vanishes almost surely, we may conclude that

ϕ̃n(λ)→
∑
x∈[0,1]

γax(1− e−λγ
1−a
x ), λ ≥ 0, (3.30)

almost surely. The right hand side is the Laplace exponent of S, so the proof is complete.
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3.2 Scaling limit of Z at small times

In this subsection, we assume 0 ≤ a < α. Let

Z
(ε)
t = ε−1Zεt. (3.31)

Before stating a convergence result for Z(ε), let us describe the limit process. Let (Ŝt)t≥0 be
an α̂-stable subordinator, where

α̂ =
α− a
1− a

, (3.32)

and whose Laplace exponent is given by ϕ̂(λ) = ĉλα̂, where ĉ is a constant to be determined
below.

We may then write Ŝ as a partial sum of its increments as follows.

Ŝr =
∑
x∈[0,r]

γ̂x, (3.33)

where {γ̂x, x ∈ N∗} are the increments of Ŝ.
Let now

Γ̂r =
∑
x∈[0,r]

γ̂xTx, (3.34)

where {Tx, x ∈ [0,∞)} is an iid family of mean 1 exponential random variables, independent
of Ŝ.

Remark 11 One may readily check that Γ̂ is also an α̂-stable subordinator (under the joint
distribution of Ŝ and {Tx, x ∈ [0,∞)}).

Now define

Ẑt =

{
γ̂x, if t ∈ [Γ̂x−, Γ̂x) for some x ∈ [0,∞)

0, for all other t ≥ 0, if any.
(3.35)

Remark 12 Ẑ may be seen as a process in random environment, where Ŝ is the environment.
Indeed, given Ŝ, Ẑ is Markovian. And the distribution of Ẑ (integrated over the environment)
makes it a self similar process of index 1, that is, (Ẑt)t≥0 = (c−1Ẑct)t≥0 in distribution for every
constant c > 0. This latter property explains the aging behavior of Z in its small time scaling
regime, as established below.

Remark 13 Given Ŝ, Ẑ may be identified in distribution to Ξ(Ŝ, {Ti, i ∈ N∗}), with Ξ intro-
duced in Remark 2.

We are now ready to state this subsection’s result.

Theorem 3.2 If 0 ≤ a < α then for almost every γ

(Z
(ε)
t )t≥0 → (Ẑt)t≥0. (3.36)

in distribution as ε→ 0.

11



Remark 14 The distributions referred to above are, to the left, the conditional distribution of
(Ẑ

(ε)
t ) given γ, and to the right, the (unconditional) distribution of (Ẑt).

Remark 15 An argument for the integrated version of Theorem 3.2 (where the stated weak
convergence is with respect to the joint distribution of Z given γ and γ) is simpler than the one
given next. See Remark 16 below.

Proof
Let

Ŝ(ε)
r = ε−1

∑
x∈[0,1]

γ1−a
x N̂x

εα̂r, r ≥ 0 (3.37)

where α̂ was introduced in (3.32) above. Then, given γ and ε > 0, (Ŝ
(ε)
t , t ≥ 0) is a subordinator,

and its Laplace exponent equals

ϕ̂(ε)(λ) = εα̂
∑
x∈[0,1]

γax(1− e−λε−1γ1−ax ), λ ≥ 0. (3.38)

By Lemma 2.1, and recalling the discussion at the end of Section 2, to get the result, it is
enough to establish the limit

Ŝ(ε) → Ŝ (3.39)

in distribution as ε→ 0 for a.e. γ. Since we are dealing with subordinators, it suffices to show
that for almost every γ

ϕ̂(ε)(λ)→ ĉλα̂, λ ≥ 0, (3.40)

as ε→ 0, for some positive constant finite ĉ. This is obvious for λ = 0, so let us fix λ > 0, and
write

λ−α̂ϕ̂(ε)(λ) = R−α
∑
x∈[0,1]

(Rγx)
a(1− e−(Rγx)1−a) (3.41)

with R = (ε−1λ)
1

1−a , and then argue in the sequel that the left hand side converges to a constant
as R→∞ for a.e. γ.

We start by considering

W := R−α
∑
x∈[0,1]

Rδ−1∑
i=1

(Rγx)
a(1− e−(Rγx)1−a)I{γx∈[ δ

R
(i−1), δ

R
i]}. (3.42)

Since the difference between W and the left hand side of (3.41) is bounded above by

R−(α−a)
∑
x∈[0,1]

γax I{γx>1}, (3.43)

which vanishes as R→∞ for a.e. γ, it is enough to establish the convergence result for W . We
estimate it as follows.

W −X1 ≤ R−α
Rδ−1∑
i=2

X+
i := R−α

Rδ−1∑
i=2

(δi)a(1− e−(δi)1−a)Mi (3.44)

W ≥ R−α
Rδ−1∑
i=2

X−i := R−α
Rδ−1∑
i=2

(δ(i− 1))a(1− e−(δ(i−1))1−a)Mi, (3.45)

12



where X1 = R−α
∑

x∈[0,1](Rγx)
a(1 − e−(Rγx)1−a)I{γx∈[0, δ

R
]} and Mi is the number of points of P

in the region [0, 1]× [ δ
R

(i− 1), δ
R
i] (recall paragraph of (3.10) above).

X1 can be bounded above by R−α
∑

x∈[0,1](Rγx) I{γx∈[0, δ
R

]}, and this has the same distribution

as R−α
∑

x∈[0,Rα] γx I{γx∈[0,δ]} for every R > 0, by the scale invariance of γ. We can use standard
large deviation estimates for the latter expression to conclude that X1 can be ignored in the
limits as R → ∞ and then δ → 0 (here we may use the existence of a positive exponential
moment for

∑
x∈[0,1] γx I{γx∈[0,δ]} for any δ, a result that follows as an application of Campbell

Theorem – see [27]). We concentrate on the right hand sides of (3.44, 3.45).
We start with (3.44). By the exponential Markov inequality, we get, for given θ, ξ > 0,

P

(
R−α

Rδ−1∑
i=2

X+
i ≥ R−α

Rδ−1∑
i=2

EX+
i + ξ

)
≤ A

B
(3.46)

where A = Eeθ
∑Rδ−1

i=1 X+
i and B = eθ

∑Rδ−1

i=1 EX+
i +Rαξ.

Since Mi, i ≥ 2, are independent Poisson random variables, we obtain

A

B
= e−R

αξθ+
∑Rδ−1

i=2 (eciθ−1−ciθ)EMi , (3.47)

where ci = (δi)a(1− e−(δi)1−a).
We choose θ = R−b with a < b < α < 2b. Then, using the estimate

EMi =

∫ δ
R
i

δ
R

(i−1)

α

x1+α
dx ≤ Rα

δα(i− 1)1+α
, (3.48)

we find that the sum in the exponent in (3.47) is bounded above by

Rδ−1∑
i=2

Rα

δα(i− 1)1+α
(ciR

−b)2 ≤ 2
Rα−2b

δα−2a

Rδ−1∑
i=1

i−(1+α−2a) (3.49)

Since the sum on the right of (3.49) is bounded by constant times R2a−α ∨ logR, and using the
above estimates, we find that the exponent in (3.47) is bounded above by

−Rα−bξ + const R−c
′
, (3.50)

for some constant c′ > 0. We can then apply Borel-Cantelli and conclude that for a.e. γ, given
ξ > 0

R−α
Rδ−1∑
i=2

X+
i ≤ R−α

Rδ−1∑
i=2

EX+
i + ξ (3.51)

for all large enough R.
Conversely, we can conclude that given ξ > 0, for a.e. γ and all R large enough

R−α
Rδ−1∑
i=2

X−i ≥ R−α
Rδ−1∑
i=2

EX−i − ξ. (3.52)
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(3.51) and (3.52) then imply that

lim inf
R→∞

R−α
Rδ−1∑
i=1

EX−i ≤ lim inf
R→∞

W ≤ lim sup
R→∞

W ≤ lim sup
R→∞

R−α
Rδ−1∑
i=1

EX+
i . (3.53)

To conclude, it is enough to verify that

lim inf
δ→0

lim inf
R→∞

R−α
Rδ−1∑
i=1

EX−i = lim sup
δ→0

lim sup
R→∞

R−α
Rδ−1∑
i=1

EX+
i (3.54)

is a (positive finite) constant ĉ.
We begin with the following estimate.

EX+
i = (δi)a(1− e−(δi)1−a)

∫ δ
R
i

δ
R

(i−1)

α

x1+α
dx ≤ (δi)a(1− e−(δi)1−a)

δ

R

α

( δ
R

(i− 1))1+α
(3.55)

Summing up:

R−α
Rδ−1∑
i=2

EX+
i ≤ R−α

Rδ−1∑
i=2

(δi)a(1− e−(δi)1−a)
δ

R

α

( δ
R

(i− 1))1+α

= α
Rδ−1∑
i=2

δa−α
1− e−(δi)1−a

i1+α−a

(
i

i− 1

)1+α

(3.56)

Now as R → ∞, the latter sum converges to a series, which is readily seen to be an approxi-
mation to an integral. We find that

lim sup
δ→0

lim sup
R→∞

R−α
Rδ−1∑
i=2

EX+
i ≤ α

∫ ∞
0

1− e−x1−a

x1+α−a dx. (3.57)

We similarly find the latter expression as a lower bound for

lim inf
δ→0

lim inf
R→∞

R−α
Rδ−1∑
i=2

EX−i

and (3.54) follows, with the right hand side of (3.57) as the constant ĉ. �

Remark 16 In order to get an integrated result, rather than the quenched one above, it is
enough to replace {γx, x ∈ [0, 1]} by a suitable version. In view of the right hand side of (3.41),
we consider {R−1γx, x ∈ [0, Rα]}, and that expression thus becomes

R−α
∑

x∈[0,Rα]

γax(1− e−γ
1−a
x ). (3.58)

Since
∑

x∈[0,1] γ
a
x(1 − e−γ

1−a
x ) is integrable, as can be checked by an application of Campbell

Theorem, the Law of Large Numbers yields a quenched result for the version, which implies the
integrated result for the original γ.
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Remark 17 A few words about the cases where α ≤ a ≤ 1. When a > α, we have that Z
is a jump process in N∗ (see Remark 6) with Z(0) = γx with probability proportional to γax,
x ∈ [0, 1]. It follows then that Z(ε) →∞ identically almost surely as ε→ 0.

The case a = α demands more delicate analysis. We have that ϕ̂(ε)(λ) (see 3.38), when scaled
with a factor of | log ε|−1 (instead of εα̂ = 1 in this case), converges to a number r independent
of λ > 0 as n → ∞ in probability, and this is the Laplace exponent of a subordinator which
equals 0 for an exponentially distributed amount of time of rate r, and then jumps to ∞, where
it stays. One may then argue from this that Z(ε) →∞ identically as ε→ 0 in probability.

3.3 Aging in the K process

Theorem 3.2 may be viewed as an aging result for Z, since Ẑ is nontrivial and self similar with
index 1. Corresponding aging results for two-time correlation functions follow.

Below we consider three examples of correlation functions related to aging, and derive scaling
limit/aging results for them as a consequence of Theorem 3.2 (as well as of other results derived
above). Other correlation functions can be similarly treated.

Example 1 We start with the time correlation function introduced in [1], which is the one
that is usually studied in connection with his model. Let

Π̄(t, s; γ) = P(no jump of Z on [t, t+ s]|γ) (3.59)

(see Remark 18 below).
Let Φ ∈ D, let D(Φ) denote the set of discontinuities of Φ, that is, D(Φ) = {t ≥ 0 : Φ(t) 6=

Φ(t−)}, and consider F : D × (0,∞)× (0,∞)→ {0, 1} such that

F (Φ; t, s) = 1{[t, t+ s] ∩ D(Φ) = ∅}. (3.60)

Then we have that
Π̄(εt, εs; γ) = E[F (Z(ε); t, s)|γ]. (3.61)

Let also
Π̂(t, s) = P(no jump of Ẑ on [t, t+ s]). (3.62)

Since deterministic single times are almost surely continuity points of Ẑ, we have that
F (·; t, s) is almost surely continuous under the distribution of Ẑ. We thus conclude from
Theorem 3.2 that if 0 ≤ a < α, then for almost every γ

lim
ε→0

Π̄(εt, εs; γ) = E[F (Ẑ; t, s)] = Π̂(t, s). (3.63)

The aging phenomenon, namely Π̂(·, ·) being a (nontrivial) function of the ratio of its argu-
ments, then follows from the self similarity with index 1 (and nontriviality) of Z̄, but in this
case there is an explicit expression for Π̂, obtained as follows. One readily checks that the right
hand side of (3.62) equals P([t, t+s]∩R(Γ̂) = ∅), where R(Φ) is the range of Φ ∈ D. Since Γ̂ is
an α̂-stable subordinator (see Remark 11), an application of the Dynkin and Lamperti arcsine
law theorem for that probability yields

Π̂(t, s) =
sin(πα̂)

π

∫ 1

s/(t+s)

θ−α̂(1− θ)α̂−1 dθ. (3.64)
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The limit in (3.63) was first obtained in [1] (as the expression in (3.64)) for the case where
a = 0. The general case 0 ≤ a ≤ 1 was first studied in [4] (see Theorem 3.3 for the case a < α,
and Theorem 3.4 for the case a > α; the particular limit (3.63) is (7.5) in that reference).

In case a ≥ α, then the discussion in Remark 17 indicates that the limit in (3.63) is
identically 1, and that aging is thus interrupted.

For the next examples, we restrict a to [0, α).

Example 2 Let
R̄(t, s; γ) = P(Z(t) = Z(t+ s)|γ). (3.65)

Then, the difference between R̄(εt, εs; γ) = P(Ẑ
(ε)
t = Ẑ

(ε)
t+s|γ) and Π̄(εt, εs; γ) is given by

P(Ẑ
(ε)
t = Ẑ

(ε)
t+s; Ẑ

(ε)
t 6= Ẑ

(ε)
t+r for some r ∈ [0, s]|γ). (3.66)

Let P̂(ε) and P̂ denote the point processes in (0,∞)× (0,∞) associated to Ŝ(ε) and Ŝ, respec-
tively, i.e.,

P̂(ε) =
{(
t, Ŝ

(ε)
t − Ŝ

(ε)
t−

)
: t > 0, Ŝ

(ε)
t − Ŝ

(ε)
t− > 0

}
, P̂ =

{(
t, Ŝt − Ŝt−

)
: t > 0, Ŝt − Ŝt− > 0

}
.

(3.67)
The convergence in distribution Ŝ(ε) → Ŝ argued in the proof of Theorem 3.2 implies that

P̂(ε) → P̂ (3.68)

as ε→ 0 in distribution (in the point process sense; for almost every γ).
Let also Γ̂(ε)(t) = ε−1Γ(εα̂t), t ≥ 0 (see paragraph of (3.12) above). We have that

Γ̂(ε) → Γ̂ (3.69)

in distribution for almost every γ (see (3.34) above). This claim may be argued as follows.

Since (Γ̂
(ε)
t ) is a subordinator, an entirely similar reasoning to the one employed in the proof

of Theorem 3.2 may also be employed to establish this result. It also follows from a continuity
property of (Γ̂

(ε)
t ) as a function of (Ŝ

(ε)
t ) and T similar to the one established in Lemma 2.1,

and similarly proven. We leave the details for the interested reader.
For arbitrary δ, T > 0, consider now the event

A
(ε)
δ,T,t,s = {Ẑ(ε)

t > δ, Ẑ
(ε)
t+s > δ, Γ̂(ε)(T ) > t+ s}, (3.70)

and let B
(ε)
δ,T be the event that there exist two points in P̂(ε) ∩ {(0, 2T ) × (δ/2,∞)} with the

same second coordinate. Now one readily gets from the above convergence results that

lim
ε→0

P(A
(ε)
δ,T,t,s|γ) = P(Ẑt > δ, Ẑt+s > δ, Γ̂(T ) > t+ s), (3.71)

and this can be made arbitrarily close to 1 by choosing δ and T appropriately. We also have
that

lim
ε→0

P(B
(ε)
δ,T |γ) = P(Bδ,T ), (3.72)
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where Bδ,T is the event corresponding to B
(ε)
δ,T upon replacing P̂(ε) by P̂ . The latter probability

clearly vanishes. Now, since the intersection of the event in the probability in (3.66) and A
(ε)
δ,T,t,s

is contained in B
(ε)
δ,T , we conclude from the above that

lim
ε→0

R̄(εt, εs; γ) = lim
ε→0

Π̄(εt, εs; γ) = Π̂(t, s) (3.73)

for almost every γ.

Remark 18 The aging correlation functions

Π(t, s; γ) = P(no jump of Y on [t, t+ s]|γ), (3.74)

R(t, s; γ) = P(Y (t) = Y (t+ s)|γ) (3.75)

are more widely considered in the literature than their barred versions (3.59) and (3.65) above.
In the present case there is almost surely no difference, since a.s. γx 6= γy provided x 6= y and
γx > 0.

The above examples could be done either by considering the clock processes Γ̂(ε) and Γ̂ on
their own, together with (3.69), in the case of Example 1, or, in the case of Example 2, we used,
besides Theorem 3.2, convergence results for S and Γ (in the appropriate scale), and in both
examples the limit is a correlation function of the limiting clock process Γ̂. Our last example
is natural from the aging point of view, requires Theorem 3.2 alone, and the limit is not a
function of Γ̂ alone.

Example 3 Let

Q(t, s; γ) = P
(
supr∈[0,t] Z(r) < supr∈[0,t+s] Z(r)|γ

)
. (3.76)

This function was suggested in [14] as a “measure of the prospects for novelty in the system“.
Ẑ is almost surely continuous in single deterministic times, so we have that

lim
ε→0

Q(εt, εs; γ) = P
(

supr∈[0,t] Ẑ(r) < supr∈[0,t+s] Ẑ(r)
)

=: Q̂(t, s), (3.77)

since the function 1{supr∈[0,t] Φ(r) < supr∈[0,t+s] Φ(r)} is continuous in Φ ∈ D for almost every

Φ under the distribution of Ẑ. We note that Q̂(t, s) is a function of the ratio t/s only, by the
self similarity of Ẑ, but an explicit expression is not available, as far as we know, as it is for
Π̂(t, s).
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[15] Ben Arous, G.; Černý, J. (2005) Bouchaud’s model exhibits two different aging regimes in
dimension one, Ann. Appl. Probab. 15, no. 2, 1161–1192.
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