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Plan of the talk

1 S.N. Kruzhkov’s compactness lemma for evolution problems
The statement of the lemma (“continuous”)
Three (?) applications
The standard method and its variant

2 The Kruzhkov lemma adapted to FV schemes
Notation and example
The statement (“discrete”) and comments
Proof (sketched)

3 A gradient reconstruction formula on the plane
The formula and its connection with FV discretizations
Applications: consistency + discrete duality
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A COMPACTNESS LEMMA



Kruzhkov’s lemma An adaptation to FV A 2D reconstruction property

Statement (“continuous”)

Moduli of continuity

A function ω : R
+ → R

+ is called modulus of continuity , if

ω is continuous , non-decreasing, and ω(0) = 0

ω is sub-additive, i.e. ω(r + s) ≤ ω(r) + ω(s)

Moduli of continuity are used to “quantify” various continuity and
uniform continuity properties.
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Statement (“continuous”)

Moduli of continuity

A function ω : R
+ → R

+ is called modulus of continuity , if

ω is continuous , non-decreasing, and ω(0) = 0

ω is sub-additive, i.e. ω(r + s) ≤ ω(r) + ω(s)

Moduli of continuity are used to “quantify” various continuity and
uniform continuity properties.

Remarks:

A modulus of continuity always has a concave envelope,
and therefore (the way we use it)
it can always be assumed concave and strictly increasing

Examples:
– power-like (or Hölder) moduli of continuity

ω(r) = const rα, α ∈ (0, 1] ;
– “log-Hölder” moduli of continuity ω(r) = const

∣

∣ln |r |
∣

∣

(for r small)

Rq. It is not possible to have a modulus of continuity
“better” than ω(r) = const r
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Statement (“continuous”)

The statement of the lemma (“continuous”)

The following lemma due to Kruzhkov (’69) is a sharp tool for proving strong
L1 compactness of families of solutions of evolution PDEs.

It claims that a family of solutions of evolution equations
which possesses uniform space translates in L1(Q)
also possesses uniform time translates
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The statement of the lemma (“continuous”)

The following lemma due to Kruzhkov (’69) is a sharp tool for proving strong
L1 compactness of families of solutions of evolution PDEs.

It claims that a family of solutions of evolution equations
which possesses uniform space translates in L1(Q)
also possesses uniform time translates , more exactly :

Lemma (the “continuous” statement)

Let Ω be an open domain in R
d , T > 0, Q = (0, T ) × Ω.
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Statement (“continuous”)

The statement of the lemma (“continuous”)

The following lemma due to Kruzhkov (’69) is a sharp tool for proving strong
L1 compactness of families of solutions of evolution PDEs.

It claims that a family of solutions of evolution equations
which possesses uniform space translates in L1(Q)
also possesses uniform time translates , more exactly :

Lemma (the “continuous” statement)

Let Ω be an open domain in R
d , T > 0, Q = (0, T ) × Ω. Assume that

– families of functions (uh)h, (F h
α)h,α are bounded in L1(Q)

– they satisfy ∂tu
h =

∑

|α|≤m
DαF h

α in D′(Q)

– uh can be extended outside Q, and one has

sup
|∆x|≤∆

∫ T

0

∫

Rd
|uh(t , x+∆x)−uh(t , x)| dxdt ≤ ω(∆),

where ω(·) is a modulus of continuity that does not depend on h.
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Statement (“continuous”)

The statement of the lemma (“continuous”)

The following lemma due to Kruzhkov (’69) is a sharp tool for proving strong
L1 compactness of families of solutions of evolution PDEs.

It claims that a family of solutions of evolution equations
which possesses uniform space translates in L1(Q)
also possesses uniform time translates , more exactly :

Lemma (the “continuous” statement)

Let Ω be an open domain in R
d , T > 0, Q = (0, T ) × Ω. Assume that

– families of functions (uh)h, (F h
α)h,α are bounded in L1(Q)

– they satisfy ∂tu
h =

∑

|α|≤m
DαF h

α in D′(Q)

– uh can be extended outside Q, and one has

sup
|∆x|≤∆

∫ T

0

∫

Rd
|uh(t , x+∆x)−uh(t , x)| dxdt ≤ ω(∆),

where ω(·) is a modulus of continuity that does not depend on h.

Then (uh)h is relatively compact in L1(Q).

An L1
loc version follows easily.
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Statement (“continuous”)

Relation with the Aubin-Lions-Simon Lemma

Lemma (Aubin-Lions, Simon, the L1 case)

Let E ⋐ L1(Ω) ⊂ F be a triple of Banach spaces.
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Lemma (Aubin-Lions, Simon, the L1 case)

Let E ⋐ L1(Ω) ⊂ F be a triple of Banach spaces. Assume that

(uh)h are bounded in L1(0, T ; E)

(∂tuh)h are bounded in L1(0, T ; F ) .
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(∂tuh)h are bounded in L1(0, T ; F ) .

Then (uh)h is relatively compact in L1(Q) , Q = (0, T ) × Ω.

The Kruzhkov lemma can be compared to this statement.

Typical case:

– F = W−m,1(Ω) (exactly the case of the Kruzhkov lemma)
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Statement (“continuous”)

Relation with the Aubin-Lions-Simon Lemma

Lemma (Aubin-Lions, Simon, the L1 case)

Let E ⋐ L1(Ω) ⊂ F be a triple of Banach spaces. Assume that

(uh)h are bounded in L1(0, T ; E)

(∂tuh)h are bounded in L1(0, T ; F ) .

Then (uh)h is relatively compact in L1(Q) , Q = (0, T ) × Ω.

The Kruzhkov lemma can be compared to this statement.

Typical case:

– F = W−m,1(Ω) (exactly the case of the Kruzhkov lemma)
– E = W 1,1(Ω) or BV (Ω)

(the smallest “classical” Banach spaces compactly embedded in L1(Ω)).

Yet this choice of E corresponds to the “trivial” case of ω(r) = const r .
For general ω, an “exotic” space should be used for E .
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Statement (“continuous”)

Relation with the Aubin-Lions-Simon Lemma

Lemma (Aubin-Lions, Simon, the L1 case)

Let E ⋐ L1(Ω) ⊂ F be a triple of Banach spaces. Assume that

(uh)h are bounded in L1(0, T ; E)

(∂tuh)h are bounded in L1(0, T ; F ) .

Then (uh)h is relatively compact in L1(Q) , Q = (0, T ) × Ω.

The Kruzhkov lemma can be compared to this statement.

Typical case:

– F = W−m,1(Ω) (exactly the case of the Kruzhkov lemma)
– E = W 1,1(Ω) or BV (Ω)

(the smallest “classical” Banach spaces compactly embedded in L1(Ω)).

Yet this choice of E corresponds to the “trivial” case of ω(r) = const r .
For general ω, an “exotic” space should be used for E .

Guess : in its full generality, the Aubin-Lions-Simon lemma would be difficult
to recast into the discrete framework .
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Applications

The origin : scalar conservation law in R
N

The lemma was conceived for the passage to the limit in

∂tu
ε + div f (uε) = ε∆uε, u|t=0 = u0 ∈ L∞(Rd )

(the Cauchy problem in the whole space R
d ).
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The origin : scalar conservation law in R
N

The lemma was conceived for the passage to the limit in

∂tu
ε + div f (uε) = ε∆uε, u|t=0 = u0 ∈ L∞(Rd )

(the Cauchy problem in the whole space R
d ).

In this case, uε have a uniform L∞ bound
(=⇒ everything is bounded in L1

loc(R
+×R

d)).

The space translates of uε are controlled (either by the BV estimate, or
thanks to the space translation invariance + L1 contraction).

Thus Lemma =⇒ strong compactness =⇒ passage to the limit
(towards the entropy solution of the conservation law ∂tu + div f (u) = 0)
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∂tu
ε + div f (uε) = ε∆uε, u|t=0 = u0 ∈ L∞(Rd )

(the Cauchy problem in the whole space R
d ).

In this case, uε have a uniform L∞ bound
(=⇒ everything is bounded in L1

loc(R
+×R

d)).

The space translates of uε are controlled (either by the BV estimate, or
thanks to the space translation invariance + L1 contraction).

Thus Lemma =⇒ strong compactness =⇒ passage to the limit
(towards the entropy solution of the conservation law ∂tu + div f (u) = 0)

Rq: For finite volumes, this approach is not relevant :

– BV estimates not natural, at least not for all meshes

– in bounded domains or on non-uniform meshes,
space translation arguments do not apply.

(=⇒ nonlinear weak-* convergence, process solutions, weak BV estimates...)
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Applications

The origin : scalar conservation law in R
N

The lemma was conceived for the passage to the limit in

∂tu
ε + div f (uε) = ε∆uε, u|t=0 = u0 ∈ L∞(Rd )

(the Cauchy problem in the whole space R
d ).

In this case, uε have a uniform L∞ bound
(=⇒ everything is bounded in L1

loc(R
+×R

d)).

The space translates of uε are controlled (either by the BV estimate, or
thanks to the space translation invariance + L1 contraction).

Thus Lemma =⇒ strong compactness =⇒ passage to the limit
(towards the entropy solution of the conservation law ∂tu + div f (u) = 0)

Rq: For finite volumes, this approach is not relevant :

– BV estimates not natural, at least not for all meshes

– in bounded domains or on non-uniform meshes,
space translation arguments do not apply.

(=⇒ nonlinear weak-* convergence, process solutions, weak BV estimates...)

Our technique in Finite Volumes will be,
discrete BV estimates in space + L1 bounds =⇒ strong L1 compactness
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Applications

Parabolic-elliptic problems

General problem (Alt and Luckhaus (’83) :

∂tb(v) − div a(b(v),∇v) = f + BC + IC : b(v)|t=0 = b0.

Here b is a continuous non-decreasing function
(=⇒ the pb. looks parabolic, but it can degenerate into an elliptic one);
the diffusion a can be of Leray-Lions type (non-Newtonian fluids).

Particular case: the Richards equation (one-phase flow in porous media).

Finite volume studies:
Eymard, Gallouët, Gutnic, Herbin, Hilhorst ,... (quasilinear);
A., Gutnic, Wittbold (nonlinear: non-Newtonian flow).
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Applications

Parabolic-elliptic problems

General problem (Alt and Luckhaus (’83) :

∂tb(v) − div a(b(v),∇v) = f + BC + IC : b(v)|t=0 = b0.

Here b is a continuous non-decreasing function
(=⇒ the pb. looks parabolic, but it can degenerate into an elliptic one);
the diffusion a can be of Leray-Lions type (non-Newtonian fluids).

Particular case: the Richards equation (one-phase flow in porous media).

Finite volume studies:
Eymard, Gallouët, Gutnic, Herbin, Hilhorst ,... (quasilinear);
A., Gutnic, Wittbold (nonlinear: non-Newtonian flow).

Technique (think e.g. of Galerkine approximations... but also of FV !):

– ∇hvh is estimated in Lp, p > 1
– thus the space translates of b(vh) are controlled

(by the modulus of continuity of b and the space translates of v )
– by the Kruzhkov Lemma , b(vh) have uniform time translates
– passage to the (strong) limit in b(vh)
– some further work (weak compactness of the gradients, Minty argument...)

=⇒ convergence of the approximations.
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Applications

A cross-diffusion system (squirrels’ war)
Consider the quasilinear, strongly coupled reaction-diffusion system

∂tu − ∆u − div ((u + v)∇u + u∇v) = u(a1 − b1u − c1v),

∂tv − ∆v − div (v∇u + (u + v)∇v) = v(a2 − b2u − c2v).
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Applications

A cross-diffusion system (squirrels’ war)
Consider the quasilinear, strongly coupled reaction-diffusion system

∂tu − ∆u − div ((u + v)∇u + u∇v) = u(a1 − b1u − c1v),

∂tv − ∆v − div (v∇u + (u + v)∇v) = v(a2 − b2u − c2v).

Think again of Galerkine ( for FV : A.,Bendahmane,Ruiz Baier ).

Take uh (resp., vh) for the test function in equation one (resp., eq. two).



Kruzhkov’s lemma An adaptation to FV A 2D reconstruction property

Applications

A cross-diffusion system (squirrels’ war)
Consider the quasilinear, strongly coupled reaction-diffusion system

∂tu − ∆u − div ((u + v)∇u + u∇v) = u(a1 − b1u − c1v),

∂tv − ∆v − div (v∇u + (u + v)∇v) = v(a2 − b2u − c2v).

Think again of Galerkine ( for FV : A.,Bendahmane,Ruiz Baier ).

Take uh (resp., vh) for the test function in equation one (resp., eq. two).

– a uniform bound on uh, vh in L∞(0, T ; L2(Ω)) ; on ∇uh, ∇vh in L2(Q) ;

– a uniform bound on
∫

Q
(uh + vh)(|∇uh|2 + |∇vh|2)
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– a uniform bound on
∫

Q
(uh + vh)(|∇uh|2 + |∇vh|2)

Hence the diffusion terms are e.g. (u+v)∇u =
√

u+v × (
√

u+v ∇u), etc.,
which is a product of L4(Q) fct by L2(Q) fct =⇒ bounded in L4/3(Q) .
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– a uniform bound on
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Q
(uh + vh)(|∇uh|2 + |∇vh|2)

Hence the diffusion terms are e.g. (u+v)∇u =
√

u+v × (
√

u+v ∇u), etc.,
which is a product of L4(Q) fct by L2(Q) fct =⇒ bounded in L4/3(Q) .

The Aubin-Lions-Simon argument can be used : ∂tu, ∂tv belong to
L4/3(0, T ; W−1, 4/3(Ω)) + L1(0, T ; L2∗/2(Ω)) ⊂ L1(0, T ; W−1, 4/3+L2∗/2);
u, v in L2(0, T ; H1(Ω)), and H1

⋐ L1 ⊂ W−1, 4/3+L2∗/2(Ω).
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u, v in L2(0, T ; H1(Ω)), and H1

⋐ L1 ⊂ W−1, 4/3+L2∗/2(Ω).

Alternatively, use Kruzhkov: from the above estimates,

– L1(Q) bounds on everything are Ok
– space translates on uh, vh are Ok (thanks to L2(Q) bounds on ∇uh, ∇vh)

=⇒ by the Kruzhkov Lemma , compactness of uh, vh.
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Applications

A cross-diffusion system (squirrels’ war)
Consider the quasilinear, strongly coupled reaction-diffusion system

∂tu − ∆u − div ((u + v)∇u + u∇v) = u(a1 − b1u − c1v),

∂tv − ∆v − div (v∇u + (u + v)∇v) = v(a2 − b2u − c2v).

Think again of Galerkine ( for FV : A.,Bendahmane,Ruiz Baier ).

Take uh (resp., vh) for the test function in equation one (resp., eq. two).

– a uniform bound on uh, vh in L∞(0, T ; L2(Ω)) ; on ∇uh, ∇vh in L2(Q) ;

– a uniform bound on
∫

Q
(uh + vh)(|∇uh|2 + |∇vh|2)

Hence the diffusion terms are e.g. (u+v)∇u =
√

u+v × (
√

u+v ∇u), etc.,
which is a product of L4(Q) fct by L2(Q) fct =⇒ bounded in L4/3(Q) .

The Aubin-Lions-Simon argument can be used : ∂tu, ∂tv belong to
L4/3(0, T ; W−1, 4/3(Ω)) + L1(0, T ; L2∗/2(Ω)) ⊂ L1(0, T ; W−1, 4/3+L2∗/2);
u, v in L2(0, T ; H1(Ω)), and H1

⋐ L1 ⊂ W−1, 4/3+L2∗/2(Ω).

Alternatively, use Kruzhkov: from the above estimates,

– L1(Q) bounds on everything are Ok
– space translates on uh, vh are Ok (thanks to L2(Q) bounds on ∇uh, ∇vh)

=⇒ by the Kruzhkov Lemma , compactness of uh, vh.

The system is quasilinear + gradients weakly compact =⇒ convergence Ok.
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Applications

A system from electrocardiology

Look at the “simplified bidomain model of cardiac electric activity”:

∂tv − div Mi(x)∇ui + h(v) = Iapp, (t , x) ∈ QT ,

− ∂tv − div Me(x)∇ue − h(v) = −Iapp, (t , x) ∈ QT ,

with, say, Neumann boundary conditions

(Mi,e(x)∇ui,e) · n = si,e on (0, T ) × ∂Ω,

and with initial datum: v(0, x) = v0(x), x ∈ Ω. Here :
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Applications

A system from electrocardiology

Look at the “simplified bidomain model of cardiac electric activity”:

∂tv − div Mi(x)∇ui + h(v) = Iapp, (t , x) ∈ QT ,

− ∂tv − div Me(x)∇ue − h(v) = −Iapp, (t , x) ∈ QT ,

with, say, Neumann boundary conditions

(Mi,e(x)∇ui,e) · n = si,e on (0, T ) × ∂Ω,

and with initial datum: v(0, x) = v0(x), x ∈ Ω. Here :

Ω is a time-independent Lipschitz domain in R
3 (the heart does not

move...); the space-time domain is QT = (0, T ) × Ω;

ui , ue is the intra- (respectively, extra-) cellular electric potential;

v := ui − ue is the transmembrane potential;

Iapp(t , x) is a given stimulation current;

Mi(x) and Me(x) are the intra- and extra-cellular conductivity tensors
(assumed symmetric, positive definite, but anisotropic).

h(v) is an ad hoc model for the transmembrane ionic current. We focus
on the case where h is close to a cubic polynomial.
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Applications

A system from electrocardiology (cont d)

Assume that h : R → R is a continuous function, and there exist r ∈ (2,+∞)
and constants C, L, l > 0 such that

1
C

|v |r ≤ |h(v)v | ≤ C
(

|v |r + 1
)

,

h̃ : z 7→ h(z) + Lz + l is strictly increasing on R, with h̃(0) = 0.

In the known models, the appropriate value is r = 4 ; this means, the
nonlinearity h is of cubic growth at infinity. The assumptions are automatically
satisfied by any cubic polynomial h with positive leading coefficient.
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Applications

A system from electrocardiology (cont d)

Assume that h : R → R is a continuous function, and there exist r ∈ (2,+∞)
and constants C, L, l > 0 such that

1
C

|v |r ≤ |h(v)v | ≤ C
(

|v |r + 1
)

,

h̃ : z 7→ h(z) + Lz + l is strictly increasing on R, with h̃(0) = 0.

In the known models, the appropriate value is r = 4 ; this means, the
nonlinearity h is of cubic growth at infinity. The assumptions are automatically
satisfied by any cubic polynomial h with positive leading coefficient.

In A.,Bendahmane,Karlsen we “make converge” 3D DDFV schemes

— for general r , for the fully implicit scheme ;

— for r < 4 (strictly !), for the linearized implicit scheme .

Well, there is some hope for attaining the critical case r = 4
(V.V. Zhikov’s compensated compactness lemmas...)
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Applications

A system from electrocardiology (cont d)

For the fully implicit scheme: standard DDFV convergence proof.

To see the difficulty with the linearized scheme, discretize the “continuous”
equations: vn − vn−1

∆t
− div Mi (x)∇un

i +
h(vn−1)

vn−1
vn = In

app, . . .

(we’ve assumed that h(0) = 0, h(z)
z ≥ 0 ; the general case is similar).
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Applications

A system from electrocardiology (cont d)

For the fully implicit scheme: standard DDFV convergence proof.

To see the difficulty with the linearized scheme, discretize the “continuous”
equations: vn − vn−1

∆t
− div Mi (x)∇un

i +
h(vn−1)

vn−1
vn = In

app, . . .

(we’ve assumed that h(0) = 0, h(z)
z ≥ 0 ; the general case is similar).

We need at least an L1 estimate on the ionic current term h(vn−1)

vn−1 vn , in order
to apply the (discrete) Kruzhkov Lemma.
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The discretization is designed in such a way that it gives a uniform
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where b(z) := h(z)/z is ≥ 0 , by the assumptions on h.

We also have a uniform L2(QT ) bound on vh .
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For the fully implicit scheme: standard DDFV convergence proof.

To see the difficulty with the linearized scheme, discretize the “continuous”
equations: vn − vn−1
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− div Mi (x)∇un

i +
h(vn−1)
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vn = In

app, . . .

(we’ve assumed that h(0) = 0, h(z)
z ≥ 0 ; the general case is similar).

We need at least an L1 estimate on the ionic current term h(vn−1)

vn−1 vn , in order
to apply the (discrete) Kruzhkov Lemma. Fortunately,

The discretization is designed in such a way that it gives a uniform
estimate on ∫∫

Q
b(vh(· − ∆t))

∣

∣vh(·)|
∣

∣

2
.

where b(z) := h(z)/z is ≥ 0 , by the assumptions on h.

We also have a uniform L2(QT ) bound on vh .

Notice that the assumption r ≤ 4 yields 0 ≤ b(z) ≤ const z2.

This allows to deduce an L1(Q) integrability estimate on the ionic current
term from the decomposition
|b(vh(· − ∆t)) vh(·)| ≤ α b(vh(· − ∆t)) + 1

α
b(vh(· − ∆t))

∣

∣vh(·)
∣

∣

2
.

This trick allows to bypass the difficulty and get strong compactness of (vh)h.
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A parabolic-hyperbolic problem

Now, consider degenerate hyperbolic-parabolic problems of the form
{

∂tu + div f(u) − div a(∇A(u)) = s in Q := (0, T ) × Ω,

u = 0 on Σ = (0, T ) × ∂Ω, u|t=0 = u0 in Ω.

Here A is continuous, non-decreasing ; a is Leray-Lions, the data are L∞.
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– on time translates of A(u).

Notice that the time translates estimate cannot be obtained by the Kruzhkov
Lemma (lack of the control of space translates of u !).
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Here the technique (standard in the FV community, for problems “in L2”) is :

– integrate the equation between t et t + ∆;
– take A(u)(· + ∆) − A(u)(·) for the test function, use Fubini and get
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Q
|u(t + ∆) − u(t)| |A(u(t + ∆)) − A(u(t))| ≤ Const |∆| .

– if A is Lipschitz, we deduce L2 translates on A(u) .
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Notice that the time translates estimate cannot be obtained by the Kruzhkov
Lemma (lack of the control of space translates of u !).

Here the technique (standard in the FV community, for problems “in L2”) is :

– integrate the equation between t et t + ∆;
– take A(u)(· + ∆) − A(u)(·) for the test function, use Fubini and get

∫∫

Q
|u(t + ∆) − u(t)| |A(u(t + ∆)) − A(u(t))| ≤ Const |∆| .

– if A is Lipschitz, we deduce L2 translates on A(u) .

And if A is not Lipschitz ?



Kruzhkov’s lemma An adaptation to FV A 2D reconstruction property

Standard method

The standard method and its variant

As in the standard “L2” method, we start with the bound

(∗)
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|u(t + ∆) − u(t)| |A(u(t + ∆)) − A(u(t))| ≤ Const |∆| .
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(∗)
∫∫
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|u(t + ∆) − u(t)| |A(u(t + ∆)) − A(u(t))| ≤ Const |∆| .

Now, let π be a concave modulus of continuity for A, Π be its inverse,
and set Π̃(r) = r Π(r). Let π̃ be the inverse of Π̃. Note that π̃ is concave,
continuous, and π̃(0) = 0 .
Set v(t , x) = u(t + ∆, x) and y(t , x) = u(t , x). We have (Jenssen ineq.!)

∫

Q
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.
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Since |A(v) − A(y)| ≤ π(|v − y |) , we have Π(|A(v) − A(y)|) ≤ |v − y | and

Π̃(|A(v) − A(y)|) = Π(|A(v) − A(y)|)|A(v) − A(y)|≤ |v − y | |A(v) − A(y)|.
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Therefore, estimate (∗) implies
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Much more work (hyperbolic degeneracy) =⇒ convergence of DDFV on orthogonal

2D and 3D meshes (A.,Bendahmane,Karlsen ).
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Standard method

One application: a two-phase flow model

Model (Eymard, Ghilani, Marhraoui and Eymard, Henry, Hilhorst ):

ut − div (kw (u)∇p) = fµ(c)s+ − fµ(u)s−

(1−u)t − div (µka(u)∇(p+pc(u))) = (1−fµ(c))s+ − (1−fµ(u))s−

two-phase flow, no gravity, particular structure of the source term.
Coefficient ka is degenerate at u = 1, kw is degenerate at u = 0.
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(1−u)t − div (µka(u)∇(p+pc(u))) = (1−fµ(c))s+ − (1−fµ(u))s−

two-phase flow, no gravity, particular structure of the source term.
Coefficient ka is degenerate at u = 1, kw is degenerate at u = 0.

The following estimates can obtained:
∫∫

Q ka(uµ)|∇pµ+ ∇pc(uµ)|2 ≤ const
µ

,
∫∫

Q | ∇pµ|2 ≤ const ,
∫∫

Q | ∇ζ(uµ)|2 ≤ const,

where ζ(s) =

∫ s

0

√

ka(r) p′
c(r)dr is the “quantity to look at”.
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Model (Eymard, Ghilani, Marhraoui and Eymard, Henry, Hilhorst ):

ut − div (kw (u)∇p) = fµ(c)s+ − fµ(u)s−

(1−u)t − div (µka(u)∇(p+pc(u))) = (1−fµ(c))s+ − (1−fµ(u))s−

two-phase flow, no gravity, particular structure of the source term.
Coefficient ka is degenerate at u = 1, kw is degenerate at u = 0.

The following estimates can obtained:
∫∫

Q ka(uµ)|∇pµ+ ∇pc(uµ)|2 ≤ const
µ

,
∫∫

Q | ∇pµ|2 ≤ const ,
∫∫

Q | ∇ζ(uµ)|2 ≤ const,

where ζ(s) =

∫ s

0

√

ka(r) p′
c(r)dr is the “quantity to look at”.

There is no particular reason to assume that ζ is Lipschitz;
fortunately, one gets the time translates of ζ(uµ)
with the help of the above “moduli of continuity” technique .
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Notation and example

We consider a family of finite volume schemes written under the general
abstract form

(#) for n = 1..N,
uT,n − uT,(n−1)

∆t
= div T[ ~FT,n] + f T,n.

The statement of the Lemma does not depend on the exact nature of the
finite volume mesh and the associated discrete divergence operator, but only
on a few structural properties shared by many known schemes.
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We consider a family of finite volume schemes written under the general
abstract form

(#) for n = 1..N,
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The statement of the Lemma does not depend on the exact nature of the
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d , ∆t is a positive time discretization

step. We mean that T and ∆t are parametrized by a parameter h > 0.

Thus in (#),
uh :=

(

uT,n )n=0..N and f h :=
(

f T,n )n=1..N are “discrete functions”
(defined per volume) associated with T and ∆t ;
~Fh :=

(

~FT,n
)

n=1,...,N
is a “discrete field”

(defined per interface between volumes);

and div T is a discrete divergence operator defined on the mesh T.
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A mesh T consists of volumes supplied with so-called centers; and also of
the interfaces between adjacent volumes.
A generic volume is denoted by K , and its center is denoted by xK .
The interface between two neighbours K , L is denoted by K|L.
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Notation

Notation and example (cont d)

A mesh T consists of volumes supplied with so-called centers; and also of
the interfaces between adjacent volumes.
A generic volume is denoted by K , and its center is denoted by xK .
The interface between two neighbours K , L is denoted by K|L.
With each volume K , a value of a discrete function is associated;
any set of values (vK )K , denoted vT, is called a discrete function.

The volumes adjacent to the boundary ∂Ω are marked “boundary volumes”;
a discrete function vT is said to be null on ∂Ω,
if the entry vK is zero for all boundary volume K .

The d-dimensional Lebesgue measure of K is denoted by mK ;
the (d − 1)-dimensional Lebesgue measure of K|L is denoted by mK|L.

A discrete function vT is identified with
∑

K
vK 1lK (x) ∈ L1(Ω),

where 1lK (·) stands for the characteristic function of K .

Therefore, the norm ‖vT‖L1(Ω) of a discrete function vT

is calculated as
∑

K mK |vK |.
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Notation

Notation and example (cont d)

Further, with each interface K|L, one can associate a value ~FK|L

Any set of such values ( ~FK|L)K|L, denoted ~FT, is called a discrete field.

The L1 norm ‖ ~FT‖L1(Ω) of a discrete field ~FT

is the sum 1
d

∑

K|L mK|LdKL| ~FK|L|, where dKL := |xK − xL|.
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Notation and example (cont d)

Further, with each interface K|L, one can associate a value ~FK|L

Any set of such values ( ~FK|L)K|L, denoted ~FT, is called a discrete field.

The L1 norm ‖ ~FT‖L1(Ω) of a discrete field ~FT

is the sum 1
d

∑

K|L mK|LdKL| ~FK|L|, where dKL := |xK − xL|.

In particular, this norm is used for discrete gradients;

for a given discrete function vT,
its discrete gradient is a certain discrete field, denoted ∇TvT = (∇K|LvT)K|L .

For the case of standard “admissible meshes”, ∇K|Lv
T = d

vL − vK

dKL
νK,L,

where ~νK,L is the unit normal vector to K|L pointing from K to L: ~νK,L = xL−xK
dKL

.

Further, for a given discrete field ~FT, its discrete divergence is usually
defined as the discrete function div T ~FT = (div K

~FT)K with entries

div K
~FT :=

1
mK

∑

L∈N (K )

mK|L
~FK|L · ~νK,L,

where the summation runs over volumes L belonging to the set N(K) of all
the neighbours of K , and K is not a boundary volume.
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Notation

Notation and example (cont d)

For our purposes, the exact nature of div T and ∇T is immaterial; we only
require that the following estimate hold:

∣

∣

∣

∑

K

mK vK div K
~FT

∣

∣

∣
≤ C max

K|L
|(∇TvT)K|L| × ‖ ~FT‖L1(Ω)

for all discrete function vT null on ∂Ω.
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(this is trivial for our case of “admissible meshes”)
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Notation

Notation and example (cont d)

For our purposes, the exact nature of div T and ∇T is immaterial; we only
require that the following estimate hold:

∣

∣

∣

∑

K

mK vK div K
~FT

∣

∣

∣
≤ C max

K|L
|(∇TvT)K|L| × ‖ ~FT‖L1(Ω)

for all discrete function vT null on ∂Ω. This property usually comes from the
summation-by-parts procedure and the consistency of fluxes. In the case of

“admissible meshes",
∑

K
mK div K

~FT vK =
∑

K|L
mK|LdKL

~FK|L · (vL − vK

dKL
~νK,L).

We also need one property which ensures the W 1,1 discrete Poincaré
inequality: |vK − vL|

dKL
≤ C |∇K|Lv

T|,

(this is trivial for our case of “admissible meshes”)

and a stability bound for discretization of functions in W 1,∞
0 (Ω):

for all v ∈ W 1,∞
0 (Ω), setting vK = 1

mK

∫

K
v

one has max
K|L

|(∇TvT)K|L| ≤ C ‖∇v‖∞

(this imposes a mild regularity assumption on the meshes ).
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Discrete functions and fields on Q = (0, T ) × Ω depend in addition on the
time discretization parameter ∆t > 0 ;

e.g. vh = ( vT,n )n=0..N is a discrete function on Q which consists in N + 1
discrete functions vT,n on Ω with their entries denoted by vn

K .

Such a discrete function is identified with the function
∑N

n=1

∑

K vn
K 1lQn

K
on Q,

where Qn
K :=

(

(n−1)∆t , n∆t
]

× K is the cylinder associated with the space
volume K and the time step n;
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Notation

Notation and example

Discrete functions and fields on Q = (0, T ) × Ω depend in addition on the
time discretization parameter ∆t > 0 ;

e.g. vh = ( vT,n )n=0..N is a discrete function on Q which consists in N + 1
discrete functions vT,n on Ω with their entries denoted by vn

K .

Such a discrete function is identified with the function
∑N

n=1

∑

K vn
K 1lQn

K
on Q,

where Qn
K :=

(

(n−1)∆t , n∆t
]

× K is the cylinder associated with the space
volume K and the time step n;

the norm of vh in L1(Q) is therefore defined as
∑N

n=1 ∆t
∑

K mK |vn
K |.

For a discrete field ~Fh =
(

~FT,n )n=1..N on Q,

its norm in L1(Q) is defined as
∑N

n=1 ∆t
∑

K|L mK|LdKL| ~Fn
K|L|.

The discrete gradient and divergence operators act separately on each time
step n, i.e., ∇Tvh =

(

∇TvT,n )n=1..N and div T ~Fh =
(

div T ~FT,n )n=1..N .
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Let Ω be an open domain in R
d , T > 0, Q = (0, T ) × Ω. Let (Th)h be a family

of meshes of Ω and (∆th)h be the associated time steps.
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Let Ω be an open domain in R
d , T > 0, Q = (0, T ) × Ω. Let (Th)h be a family

of meshes of Ω and (∆th)h be the associated time steps.

Lemma (the discrete statement)

Assume that for some constant C independent of h,
the discrete gradient and divergence operators associated with T

h verify

the “summation-by-parts inequality”:
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∣

∣
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K
mK

(

div T ~FT
)

K
vK

∣

∣

∣
≤ C max

K|L
|(∇TvT)K|L| × ‖ ~FT‖L1(Ω′)
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Statement (“discrete”)

The statement (“discrete”)

Let Ω be an open domain in R
d , T > 0, Q = (0, T ) × Ω. Let (Th)h be a family

of meshes of Ω and (∆th)h be the associated time steps.

Lemma (the discrete statement)

Assume that for some constant C independent of h,
the discrete gradient and divergence operators associated with T

h verify

the “summation-by-parts inequality”:
∣

∣

∣

∑

K
mK

(

div T ~FT
)

K
vK

∣

∣

∣
≤ C max

K|L
|(∇TvT)K|L| × ‖ ~FT‖L1(Ω′)

the “key to the Discrete Poincaré property”
|vK − vL|

dKL
≤ C |∇K|LvT|,

the property of stability for functions in W 1,∞
0 (Ω):

for all v ∈ W 1,∞
0 (Ω), setting vK = 1

mK

∫

K
v

one has max
K|L

|(∇TvT)K|L| ≤ C ‖∇v‖∞.
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The statement (“discrete”)

Lemma (continued) (the discrete statement)

For all h, assume that uh =
(

uT,n )n=1..N , f h =
(

f T,n )n=1..N and
~Fh =

(

~FT,n
)

n=1,...,N
satisfy the discrete evolution equations

for n = 1..N,
uT,n − uT,(n−1)

∆t
= div T[ ~FT,n] + f T,n

with a family (uh
0)h of initial data, uh

0 := u0,T.
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Statement (“discrete”)

The statement (“discrete”)

Lemma (continued) (the discrete statement)

For all h, assume that uh =
(

uT,n )n=1..N , f h =
(

f T,n )n=1..N and
~Fh =

(

~FT,n
)

n=1,...,N
satisfy the discrete evolution equations

for n = 1..N,
uT,n − uT,(n−1)

∆t
= div T[ ~FT,n] + f T,n

with a family (uh
0)h of initial data, uh

0 := u0,T.

(i) Assume that for all h, uh is null on ∂Ω , that the families (uh)h, (f h)h, ( ~Fh)h

and (∇Tuh)h are bounded in L1(Q) , and that (uh
0)h is bounded in L1(Ω) .

Then there exists a sequence (hi)i∈N such that (uhi )i is convergent in L1(Q).
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Statement (“discrete”)

The statement (“discrete”)

Lemma (continued) (the discrete statement)

For all h, assume that uh =
(

uT,n )n=1..N , f h =
(

f T,n )n=1..N and
~Fh =

(

~FT,n
)

n=1,...,N
satisfy the discrete evolution equations

for n = 1..N,
uT,n − uT,(n−1)

∆t
= div T[ ~FT,n] + f T,n

with a family (uh
0)h of initial data, uh

0 := u0,T.

(i) Assume that for all h, uh is null on ∂Ω , that the families (uh)h, (f h)h, ( ~Fh)h

and (∇Tuh)h are bounded in L1(Q) , and that (uh
0)h is bounded in L1(Ω) .

Then there exists a sequence (hi)i∈N such that (uhi )i is convergent in L1(Q).

(ii) Assume that the family of discrete gradients (∇Tuh)h

is bounded in L1
loc([0, T ] × Ω) , i.e., for all h, for all Ω′

⋐ Ω,

∑N

n=1

∥

∥ ∇TuT,n ∥

∥

L1(Ω′)
≤ M(Ω′).

Assume that the families (uh)h, ( ~Fh)h and (f h)h are bounded in
L1

loc([0, T ] × Ω), and the family (uh
0)h is bounded in L1

loc(Ω).

Then the claim of (i) holds with L1(Q) replaced by L1
loc([0, T ] × Ω) .
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Comments

In some applications, the general local result of the Lemma is not sufficient,
because one is interested in compactness of (uh)h up to the boundary
(0, T )×∂Ω. Yet:
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Comments

In some applications, the general local result of the Lemma is not sufficient,
because one is interested in compactness of (uh)h up to the boundary
(0, T )×∂Ω. Yet:

• Whenever a uniform estimate of (uh)h in some Lp(Q), p > 1, is available,
the L1

loc compactness in Q implies readily the L1(Q) compactness ( extract an
a.e. convergent on Q diagonal subsequence and use the Vitali theorem).
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In some applications, the general local result of the Lemma is not sufficient,
because one is interested in compactness of (uh)h up to the boundary
(0, T )×∂Ω. Yet:

• Whenever a uniform estimate of (uh)h in some Lp(Q), p > 1, is available,
the L1

loc compactness in Q implies readily the L1(Q) compactness ( extract an
a.e. convergent on Q diagonal subsequence and use the Vitali theorem).

• If only L1(Q) estimates on (uh)h are available, Lemma (i) is one particular
case where the L1(Q) compactness of (uh)h holds true. The assumption that
uh is null on ∂Ω corresponds to the case of the homogeneous Dirichlet
boundary condition on the discrete function uh.
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Statement (“discrete”)

Comments

In some applications, the general local result of the Lemma is not sufficient,
because one is interested in compactness of (uh)h up to the boundary
(0, T )×∂Ω. Yet:

• Whenever a uniform estimate of (uh)h in some Lp(Q), p > 1, is available,
the L1

loc compactness in Q implies readily the L1(Q) compactness ( extract an
a.e. convergent on Q diagonal subsequence and use the Vitali theorem).

• If only L1(Q) estimates on (uh)h are available, Lemma (i) is one particular
case where the L1(Q) compactness of (uh)h holds true. The assumption that
uh is null on ∂Ω corresponds to the case of the homogeneous Dirichlet
boundary condition on the discrete function uh.

• For the case of other boundary conditions, different techniques of extension
of uh in a neighbourhood of Q yield compactness results analogous to
Lemma (i); one only needs to ensure a uniform L1(Neighb(Q)) bound on
(∇Tuh)h (=⇒ a uniform space translation estimate on (uh)h).
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from the L1 bound on ∇Tuh, get L1 translates in space on uh ( trivial ),
then on the piecewise affine in t interpolation ũh of uh

write the discrete equations as evolution equation ∂t ũh = div T[ ~Fh] + f h

set w(t , x) := ũh(t + τ, x) − ũh(t , x)

integrate the equation to make appear w(t , x) in the left-h.side

try to take sign w for the test function in the equation obtained.
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try to take sign w for the test function in the equation obtained. Namely,
introduce φ the regularization of sign w by convolution with
parameter δ; notice that ‖∇φ‖∞ ≤ const δ−d .
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from the L1 bound on ∇Tuh, get L1 translates in space on uh ( trivial ),
then on the piecewise affine in t interpolation ũh of uh

write the discrete equations as evolution equation ∂t ũh = div T[ ~Fh] + f h

set w(t , x) := ũh(t + τ, x) − ũh(t , x)

integrate the equation to make appear w(t , x) in the left-h.side

try to take sign w for the test function in the equation obtained. Namely,
introduce φ the regularization of sign w by convolution with
parameter δ; notice that ‖∇φ‖∞ ≤ const δ−d .
consider its space discretization φh and multiply (pointwise in t) the
equation in volume K by φK

“integrate” on Q, use summation-by-parts , the L1 bounds on ~Fh,f h

and Fubini to get
∫∫

Q
w(t , x)φ(t , x) ≤ C τ (1 + ‖∇φ‖∞) = C τ (1 + δ−d).



Kruzhkov’s lemma An adaptation to FV A 2D reconstruction property

Proof

Proof (sketched)

from the L1 bound on ∇Tuh, get L1 translates in space on uh ( trivial ),
then on the piecewise affine in t interpolation ũh of uh

write the discrete equations as evolution equation ∂t ũh = div T[ ~Fh] + f h

set w(t , x) := ũh(t + τ, x) − ũh(t , x)

integrate the equation to make appear w(t , x) in the left-h.side

try to take sign w for the test function in the equation obtained. Namely,
introduce φ the regularization of sign w by convolution with
parameter δ; notice that ‖∇φ‖∞ ≤ const δ−d .
consider its space discretization φh and multiply (pointwise in t) the
equation in volume K by φK

“integrate” on Q, use summation-by-parts , the L1 bounds on ~Fh,f h

and Fubini to get
∫∫

Q
w(t , x)φ(t , x) ≤ C τ (1 + ‖∇φ‖∞) = C τ (1 + δ−d).

it remains to compare
∫∫

Q w(t , x)φ(t , x) with
∫∫

Q w(t , x)sign w(t , x) .
Here, the space translates of w enter the stage : the above difference is
controlled by the L1 modulus of continuity ω(δ) of (ũh)h.
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Proof

Proof (sketched)

from the L1 bound on ∇Tuh, get L1 translates in space on uh ( trivial ),
then on the piecewise affine in t interpolation ũh of uh

write the discrete equations as evolution equation ∂t ũh = div T[ ~Fh] + f h

set w(t , x) := ũh(t + τ, x) − ũh(t , x)

integrate the equation to make appear w(t , x) in the left-h.side

try to take sign w for the test function in the equation obtained. Namely,
introduce φ the regularization of sign w by convolution with
parameter δ; notice that ‖∇φ‖∞ ≤ const δ−d .
consider its space discretization φh and multiply (pointwise in t) the
equation in volume K by φK

“integrate” on Q, use summation-by-parts , the L1 bounds on ~Fh,f h

and Fubini to get
∫∫

Q
w(t , x)φ(t , x) ≤ C τ (1 + ‖∇φ‖∞) = C τ (1 + δ−d).

it remains to compare
∫∫

Q w(t , x)φ(t , x) with
∫∫

Q w(t , x)sign w(t , x) .
Here, the space translates of w enter the stage : the above difference is
controlled by the L1 modulus of continuity ω(δ) of (ũh)h.

optimizing in δ > 0 the bound C τ (1 + δ−d ) + ω(δ),
we get a modulus of continuity for the L1 time translates of ũh and uh.
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A RECONSTRUCTION PROPERTY
ON THE PLANE
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Formula and motivation

The formula

x∗
σ

−−→
x∗
σ
x∗1,2

x∗2x∗1,2x∗5 ≡x∗1

m2,3

area

x∗3

x∗4

~n

signed
area m4,5

Polygon σ⊂Π, oriented by ~n⊥Π

−→n×
−−→
x∗
σ
x∗1,2

Let Π be a plane in R
3 with a unit normal

vector ~n, and σ ⊂ Π be a polygon.
Let x∗σ ∈ Π be a distinguished point .

Introduce the vertices x∗
i , i = 1, . . . , l

(clockwise); and take x∗
i,i+1 the midpoints

of the edges .

Then mi,i+1 = 1
2 〈~n,

−−−→
x∗σx∗

i,i+1,
−−−→
x∗

i x∗
i+1 〉 is the

(signed) area of the triangle x∗
i x∗σx∗

i+1 .
Denote the area of σ by m; we have
m =

∑l
i=1 mi,i+1 .

Lemma

For all~r ‖Π, ~r =
1
m

l
∑

i=1

(~r ·
−−−→
x∗

i x∗
i+1)

[

~n ×
−−−→
x∗σx∗

i,i+1

]

.

The proof combines two well-known simple formulae
(cf. in particular Eymard, Droniou ).
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Formula and motivation

The formula (cont d)

Corollary ( Consistency of the gradient reconstruction )

Take (w∗
i )l

i=1 ⊂ R, w∗
l+1 := w∗

1 . Consider the expression

1
m

∑l

i=1
(w∗

i+1 − w∗
i )

[

~n ×
−−−→
x∗
σ
x∗

i,i+1

]

.

If w∗
i are the values of an affine function w at the vertices x∗i of the

polygon σ, the above expression gives ∇w.
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Applications

The “complementary volumes” schemes in 2D

The 2D “complementary volumes schemes” were proposed independently in
several works in the late 90th and early 00th (Afif and Amaziane ;
Handlovičová, Mikula, and Sgallari ; A., Gutnic and Wittbold , ..?).

The idea was to reconstruct the discrete gradient on a given triangulation
(affine per triangle) and then write the FV scheme on the dual mesh .

Thus the triangles play the role of “diamonds” of the DDFV schemes.
The structural properties of this construction are extremely similar (but
simpler !) to those of DDFV schemes.
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The 2D “complementary volumes schemes” were proposed independently in
several works in the late 90th and early 00th (Afif and Amaziane ;
Handlovičová, Mikula, and Sgallari ; A., Gutnic and Wittbold , ..?).

The idea was to reconstruct the discrete gradient on a given triangulation
(affine per triangle) and then write the FV scheme on the dual mesh .

Thus the triangles play the role of “diamonds” of the DDFV schemes.
The structural properties of this construction are extremely similar (but
simpler !) to those of DDFV schemes.

diamond
cells D

x∗D

x∗4 is its centre xK∗

control volume K∗,

x∗D

x∗3

x∗2

x∗5

x∗1,2 x∗1 ≡x∗6

x∗4,5x∗3,4
x∗4

x∗i

sub-x∗i+1

σ∗S

SD
i,i+1diamond

~n∗S

We use the “median dual mesh” (≡“Donald dual mesh”).
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Applications

The “complementary volumes” schemes in 2D (cont d)

diamond
cells D

x∗D

x∗4 is its centre xK∗

control volume K∗,

x∗D

x∗3

x∗2

x∗5

x∗1,2 x∗1 ≡x∗6

x∗4,5x∗3,4
x∗4

x∗i

sub-x∗i+1

σ∗S

SD
i,i+1diamond

~n∗S

Here, we do not necessarily need σ’s (the “diamonds”) to be triangles;
any polygon would do (in particular, quadrilaterals are welcome).
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The “complementary volumes” schemes in 2D (cont d)

diamond
cells D

x∗D

x∗4 is its centre xK∗

control volume K∗,

x∗D

x∗3

x∗2

x∗5

x∗1,2 x∗1 ≡x∗6

x∗4,5x∗3,4
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Here, we do not necessarily need σ’s (the “diamonds”) to be triangles;
any polygon would do (in particular, quadrilaterals are welcome).

We associate to each “diamond” a value of the discrete gradient
(reconstructed from the formula of the Corollary) .
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We associate to each “diamond” a value of the discrete gradient
(reconstructed from the formula of the Corollary) .

We associate to the mesh the standard FV discrete divergence operator .
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Applications

The “complementary volumes” schemes in 2D (cont d)

diamond
cells D

x∗D

x∗4 is its centre xK∗

control volume K∗,

x∗D

x∗3

x∗2

x∗5

x∗1,2 x∗1 ≡x∗6

x∗4,5x∗3,4
x∗4

x∗i

sub-x∗i+1

σ∗S

SD
i,i+1diamond

~n∗S

Here, we do not necessarily need σ’s (the “diamonds”) to be triangles;
any polygon would do (in particular, quadrilaterals are welcome).

We associate to each “diamond” a value of the discrete gradient
(reconstructed from the formula of the Corollary) .

We associate to the mesh the standard FV discrete divergence operator .

Theorem (for 2D complementary volumes schemes)

These discrete gradient and divergence operators are linked by the discrete
duality (integration-by-parts) formula.

Rq.: a slight “ideological” difference wrt the Mimetic FD approach.
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Applications

A “DDFV” scheme in 3D ( cf. Hermeline; Pierre; Coudière and Hubert )

xK⊕

xK⊕

xK⊕

xK∗2

volume
K⊙

interface

xK⊙|K⊕

DK⊙|K⊕

diamond

xK∗2
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xK∗3|K
∗
1
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K⊙|K⊕
K∗3|K

∗
1
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xK⊙

xK⊙

xK∗3|K
∗
1

xK⊙

xK∗3

xK∗3|K
∗
1

xK∗1

xK∗1

xK∗3

xK⊙|K⊕

xK∗1

volume
K⊕

orientation

xK⊙|K⊕
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A “DDFV” scheme in 3D ( cf. Hermeline; Pierre; Coudière and Hubert )
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We associate to each “diamond” a value of the discrete gradient:

– its 1D projection on −−−−→xK⊙xK⊕ is reconstructed from the difference
uK⊕

−uK⊙
dKL

– its 2D projection on the interface K⊙|K⊕ is reconstructed using the Corollary.
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A “DDFV” scheme in 3D ( cf. Hermeline; Pierre; Coudière and Hubert )
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We associate to each “diamond” a value of the discrete gradient:

– its 1D projection on −−−−→xK⊙xK⊕ is reconstructed from the difference
uK⊕

−uK⊙
dKL

– its 2D projection on the interface K⊙|K⊕ is reconstructed using the Corollary.

We associate to the mesh the standard (DD)FV discrete divergence operator.

Theorem (for the 3D DDFV schemes of the above kind)

These discrete gradient and divergence operators are linked by the discrete
duality (integration-by-parts) formula.
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A “DDFV” scheme in 3D ( cf. Hermeline; Pierre; Coudière and Hubert )

xK⊕

xK⊕

xK⊕

xK∗2

volume
K⊙

interface

xK⊙|K⊕

DK⊙|K⊕

diamond

xK∗2

subdiamond

xK∗3|K
∗
1

K⊙|K⊕

S
K⊙|K⊕
K∗3|K

∗
1

xK∗3

xK⊙
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xK∗3|K
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xK∗3|K
∗
1

xK∗1

xK∗1

xK∗3

xK⊙|K⊕

xK∗1

volume
K⊕

orientation

xK⊙|K⊕

We associate to each “diamond” a value of the discrete gradient:

– its 1D projection on −−−−→xK⊙xK⊕ is reconstructed from the difference
uK⊕

−uK⊙
dKL

– its 2D projection on the interface K⊙|K⊕ is reconstructed using the Corollary.

We associate to the mesh the standard (DD)FV discrete divergence operator.

Theorem (for the 3D DDFV schemes of the above kind)

These discrete gradient and divergence operators are linked by the discrete
duality (integration-by-parts) formula.

Rq.: consistency + discrete duality =⇒ convergence proofs !
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And that’s all...

Thank you !
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