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Motivations and objectives

Work focusing on the constraint of free divergence

@ How to deal efficiently with the free-divergence constraint with
splitting methods (prediction-correction steps) ?

@ How to overcome the major drawbacks of the usual projection
methods including a scalar correction step of the Lagrange
multiplier with a solution of a Poisson-type equation ?

= Key idea : introduce a splitting penalty method for the velocity...

Example of fluid-type models with the pressure field as
Lagrange multiplier

=> solution of unsteady incompressible Navier-Stokes problems with the
primitive variables (velocity and pressure) : V-v = 0

long time simulations, coupling with an advection-dispersion problem,
variable density flows...

= very small velocity divergence at each time step.. !

Other examples
= solution of magnetohydrodynamics (MHD) problems : V-B = 0

Introduction
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Navier-Stokes problem for incompressible flows

Incompressible and variable density flows of Newtonian fluids
Navier-Stokes equations in 2 C R with mixed boundary conditions :
Dirichlet on 822p and open (outflow) B.C. on 882N

do

a_|_u.VQ:0 in @x]0, T
ou .

Q{a—i-(u'V)u} —V-.r(u)+Vp=f inQx]0,T|

V-u=0 in 2x]0, T

u = up on 0p x]0, T

—pn+71(u) -n = fn on 892N x]0, T'|

0 = 0o, and u = ug in @ x {0}

V.7(u) = V- [u(Vu 4+ VuT)], or pAu (for a constant viscosity)

For an homogeneous fluid with constant density, we set g = 1.

Projection methods for incompressible flows Non-homogeneous incompressible flows



Semi-implicit method : coupled vs splitted solvers

@ Fractional-step methods for NS generally cheaper than fully coupled
implicit solvers
9 Free-divergence FEM are too much expensive

Theoretical basis of projection methods
= Helmholtz-Hodge decomposition of LZ(2)¢ = H @ H~L with :
H={uecL*(N)% V-u=0, uun=0onT},
H' ={V¢, ¢ € H'(V)}
=> Py : Leray orthogonal projection onto the space of solenoidal fields H

see [LERAY, 1934 — TEMAM, 1986 — GIRAULT AND RAVIART, 1986]

Non-homogeneous incompressible flows

Projection methods for incompressible flows



Fractional-step and projection-type methods

Projection scheme with scalar pressure-correction
[CHORIN, 1968 - TEMAM, 1969 - Goba, 1979 - VAN KAN, 1986...]
Recent review : [GUERMOND, MINEV, SHEN, CMAME 2006]

Prediction step — ex. for Euler scheme : Da™t1 = q»t1 — u™
Dan—‘,—l
Qn—i—l _|_ (u*,n—i-l . V)an—i-l N vAN T(,&n—i—l) _|_ Vpn — fn+1
ot

antl = ug"'l on 09p
—p"n 4+ (@) - n = 2" on 8Oy
Projection step — ex. for Euler scheme : 84 =1

un+1 _ an—|—1
ﬂq9n+1T + V=0
=V¢ - -n =0 on dQp (necessary since here (v — u) - n = 0)
¢ = 0 on 9NN (sufficient by orthogonal projection onto H)
n+1 ot ~n+41
V-.u =0 = -V Vo | =—-p4V-u

Qn+1
Pressure-correction step : ¢ pressure increment
Pttt =p"+ ¢

Projection methods for incomp Fractional-step and projection methods 7




Fractional-step and projection-type methods

Major drawbacks of the incremental projection methods

@ Time order of the splitting error ? generally O(8t2) or O(t2)
i.e. error between the numerical solutions of the implicit (or
semi-implicit) method and the fractional-step method

@ Vop-n =0 on d0p
= existence of an artificial pressure boundary layer in space

@ ¢ =0 on 9NN
=> convergence in time and space spoiled for outflow boundary
conditions : splitting error varying like O(ét%) (pressure) and no
more negligible (for both velocity and pressure) with respect to the
time and space discretization error (whatever the time scheme)
cf the analysis in [Guermond et al., 2005]

@ Pressure-correction step strongly dependent on density and viscosity
for non-homogeneous flows
=> very poor convergence for large ratios of g ~ 1000 to get a small
divergence, see [Guermond & Quartapelle, JCP 2000].

Projection methods for incompressible flows Fractional-step and projection methods



Numerical tests (from [Jobelin et al., JCP 2006])

Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.
Velocity error (discrete 12(0, T'; L2(£2)?) norm) versus time step dt
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splitting error in O(5t?)
Time convergence in O(6t?) with 2nd-order Gear (BDF2) scheme
Stagnation threshold = space discretization error in O (h?)
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Outlines

@ Scalar penalty-projection methods

Scalar penalty-projection methods



Scalar penalty-projection methods

cf. [JOBELIN ET AL., JCP 2006]

@ prediction step with an augmented Lagrangian term for » > 0

@ consistent projection step by scalar pressure-correction

Previous ideas

@ [SHEN, 1992] : 7 = 1/8t* > 1 with a different correction of
pressure; only for a theoretical purpose, no numerical experiment

@ [CALTAGIRONE AND BREIL, 1999] : 7 > 0 with a singular
projection operator...

Scalar penalty-projection methods Penalty-projection methods 10



Scalar penalty-projection methods

Penalty-prediction step : augmentation parameter » > 0
Dun+1
Qn+1 57 + (u*,n+1 . V),&n-i-l . VAN T(’l],n+1)
—riV (V-anth) 4+ vpm = it

a™tt = u on Qp

—p"n+ (@) - n = 2 on 8QN
Projection step

un+1 _ ,an+1

Bag™ e + Vp =0

=V¢-n =0 on dQp (necessary since here (u — u) - n = 0)
¢ = 0 on 9NN (sufficient by orthogonal projection onto H)

V=0 5 (5V6) =

Pressure-correction step : ¢ consistent pressure increment
pn—l—l =p _,’,,2V un+1 + ¢ ~n+1 + ¢

Scalar penalty-projection methods Penalty-projection methods
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Scalar penalty-projection methods

Algebraic FEM formulation for the Navier-Stokes system

Pang, Gntt 4 BTV (BfJ"+1 - G) +BTP"

6t Q 1 pl B
+AU™ =F

L,® = % (BO™+ - )

Pt = P oM (BOUMT - G 4+ @

M,U™ = M,U™ ! + O pre
Bq
= Preconditioning the prediction step by one iteration of
augmented Lagrangian and consistent scalar projection
= r1 = ry = r : penalty-projection method [JOBELIN ET AL., 2006]
= r; =71, r2 = r + 1/Re : rotational penalty-projection
N.B. r; = r2 = 0 : incremental projection method [GODA, 1979]
r1 = 0, ro = 1/Re : rotational projection [TIMMERMANS ET AL., 1996]

Scalar penalty-projection methods Penalty-projection methods

11



Numerical experiments [Jobelin et al., JCP 2006]

Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.
Velocity error (discrete 12(0, T'; L2(£2)?) norm) versus time step t
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Numerical experiments

Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.
Pressure error (discrete 12(0,T; L2(£2)) norm) versus time step ot
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Numerical experiments

Artificial pressure boundary layer : Stokes with Dirichlet B.C.
on a disk

incremental projection penalty-projection r=1
lph — PllLe () = 1.5 1072 lpr — PllLe=(0) = 2.8 1073

ion methods Numerical experiments
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Numerical experiments

Artificial pressure boundary layer : Stokes with Dirichlet B.C.
on a disk

penalty-projection r=100 implicit scheme
lpr — PllLe=(0) = 2.8 107* lph — PllLe=() = 1.8 107*

r penalty-pr on methods Numerical experiments 14



Numerical experiments

Stokes with open boundary condition at a channel outflow
Velocity error (discrete 12(0, T'; L2(£2)?) norm) versus time step t
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Numerical experiments

Stokes with open boundary condition at a channel outflow
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Some remarks

Interests of penalty-projection methods

ot
@ Reduce the splitting error, varying as O(—) for » > 0, up to make
T

it negligible with respect to the discretization error

@ Suppress pressure boundary layers for moderate values of r» € [1,10]

@ Recover suitable velocity and pressure optimal convergence with
outflow B.C. for » ~ 10

@ Require efficient preconditioning of the prediction step for large
values of r since Cond = O(53) for r > 0
see [Févrieére et al., LNCS 2008 - JCAM 2009]
=> multi-level preconditioner for 4th-order compact FVM on MAC
mesh (implicit scheme) : see [KORTAS, PHD 1997].

Other works

@ Generalization to dilatable and low Mach number flows : V-u = G
[JOBELIN ET AL., EJCM 2008]

@ Theoretical error analysis for fully discrete Stokes problems
(Irst-order Euler scheme) [ANGOT ET AL., IJFV 2009]

@ Theoretical error analysis for Navier-Stokes problems (2nd-order
BDF2 scheme) [FEVRIERE ET AL., JCAM 2009]

Scalar penalty-projection methods Numerical experiments 17



Theoretical analysis for Dirichlet-Stokes problem

[SHEN, 1992-95 - GUERMOND, 1996] : standard projection
(pressure-correction form)

[GUERMOND AND SHEN, 2003] : standard projection (velocity-correction)
[GUERMOND AND SHEN, 2004] : rotational variant of [TIMMERMANS ET AL.,
1996]

[ANcoT, JoBELIN, LaTCcHE, IJFV 2009] : penalty-projection

Analysis for small values of the augmentation parameter r

Theorem (Splitting error - fully discrete case in time and space)

Energy estimates of splitting errors compared to Euler implicit scheme
there exists ¢ = ¢(Q2, T, f,ug, h) > 0 such that : for 1 <n < N,

5t3/2

n % " %
L;)(St ||ek||g] + L;](st ||ék||g] S Cmin(&tz,m)

3/2,
< e¢max(1, 1/2 —=)ot

[Z 5t | |Vé’“||0] [Z Jt “ek“o

k=0

v

Scalar penalty-projection methods Analysis of the scalar penalty-projection method 18




Theoretical analysis for Dirichlet-Stokes problem

Analysis for large values of the augmentation parameter r

Theorem (Splitting error - fully discrete case in time and space)

Energy estimates of splitting errors compared to Fuler implicit scheme
there exists ¢ = ¢(Q2, T, f,ug, h) > 0 such that : for 1 <n < N,

| <

lle™]lo + [I€™lo + [Z 6t ||ver|2 <c
k=0 "
Lo ) 5t
" [z st nékn3] -
k=0

[Z ot ||6k||§]
k=0

€™ {1

IA
o)

N[

IA
o

[z 5t neknf,]
k=0

Scalar penalty-projection methods Analysis of the scalar penalty-projection method 19



Outlines

© Vector penalty-projection (VPP,.) methods

Vector penalty-projection (VPP o) methods
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New approach : a splitting penalty method...

Solve the saddle-point problem (algebraic form)

. A BT\ (v f
At each time step t,, = ndt, (B 0 ) (p) = <O)

=> Solve the Uzawa augmented Lagrangian problem for v

(A+rBTB)v=f—-BTp=F

1
but ill-conditionned and expensive to solve for r = — > 1!

€
= Solve the splitting penalty problem (equivalent) for v = v + ¥
with a penalty parameter 0 < e < 1

Av =F
1 oo, 1 7
(A+-B"B)y =——-B " Bv
€ €
some pressure reconstruction : e.g. Uzawa...
The limit problem for € — 0 of the velocity correction
(eA+ BTB)Y. = —BTBv

has non unique solutions since Ker(BT B) # {0}
|| Bve||L2 = O(g), = approximate projection method

new family of vector penalty-projection

A
Vector penalty-projection (VPP o) methods [tS3:tY:E]
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A new family of vector penalty-projection methods

The two-parameter family of (VPP, ) methods
v0 € HY(2)4, p® € LZ(Q) given, for allm € Ns.t. (n+1)6t < T,

Penalty-prediction step with an augmentation parameter r > 0
{,n+1 —_yn
+ (vn. V){]n+1 _ A~n+1
ot Re
—rV (V- \7""‘1) + Vp? =f*tl  in Q

Nk~ vg"l on T = 9N
prtl=p —rV.¥" Tl in Q

Vector penalty-projection step with a penalty parameter 0 < e < 1
{}n+1 1 1 +1
€ + (v"™ v —AV"
ot V= ¥y Re
-V (V-4mtH) =V (V-v"T1) inQ

9"t =0 onT = N

Correction step for velocity and pressure

1
Vn+1 — {,n—f—l + \f\,n—l—l and pn-l—l — pn —rv. ‘~/n+1 _ —V' vn-l—l

new family of vector penalty-projection

Vector penalty-projection (VPP, o) methods method
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A new family of vector penalty-projection methods

(VPP,..) methods for open boundary conditions on a part I'

For a given stress vector on a part 'y of I = 9Q =Tp UT'N :
(c(v,p):n)ry = —pn+p(Vv+(Vv)')-n=g

we get for the Dirichlet and Neumann velocity boundary conditions :

Penalty-prediction step :

cn—+1 n+1
D

A% =v onI'p

_pn n+ Hn—}-l (V{,n—i-l + (Von—}-l)T) n = gn—i—l on T'n
Vector penalty-projection step :

\A/'n+1 =0 on FD

—(@E" = pM)n+ pnt (VI 4 (V9T)T)n=0 onTy

= Original boundary conditions not spoiled through a scalar projection
step with a Poisson-like pressure correction

A new family of vector penalty-projection
Vector penalty-projection (VPP o) methods [tS3:tY:E] 23




A new family of vector penalty-projection methods

(VPP, ) methods for incompressible and variable density flows
Advection step for density :
Qn-‘r-l

at
Penalty-prediction step :

n {;n—‘rl - v" n =n n ~n ~n
o (T ) g (Ve (v )

+V-(e"t'v") =0

—rv (V") 4 vpn =

Vector penalty—projection step :

s(g”“(w + (v )“"*1)—V~u"+l(vw+l + (Ve TH” ))

-V (V-o"“) -V (V-v"“)

Correction step for velocity and pressure :
v = ¢t 4 g7 and pntt = pt — Py gt lv_vn+1
€

= Velocity correction ¥ all the more quasi-independent on the density @
or viscosity u as € — 0 and terms possibly dropped in practice

new family of vector penalty-projection
Vector penalty-projection (VPP ¢) methods methaos 24




Well-posedness of the (VPP,.) methods

Theorem (Global solvability of the (VPP,..) method.)

With f € L?(0,T; H-1(Q)4), v° € H'(2)? and p® € L3(Q) given,
both the prediction and correction steps of the (VPP ) method are
well-posed for all 0t > 0, r > 0 and € > 0, i.e. for alln € N such that
(n + 1)dt < T, there exists a unique solution

(vrti,pntl) € HY(R2)% x L2(R2) to the (VPP,) scheme such that :

yntl _ym 1
T + (Vn' V)Vn+1 — ﬁAvn"'l + Vpn+1 = fn+1 imn

™

p"tt—p

(edt) g

4+ V.-v?tl L e V.97t =0 in Q

which is the discrete problem effectively solved by the splitting scheme.

4

N.B. Idem for the fully implicit nonlinear scheme with : (v*+1. v)vn+1
if 8t is taken sufficiently small, as in [Lions, 1969|.

A new family of vector penalty-projection
Vector penalty-projection (VPP o) methods [tS3:tY:E] 25



A new two-step artificial compressibility method

An artificial compressibility method with two parameters
with V. = vp, ¥¢ = 0 on I" and V. (0) = vg, ¥<(0) = 0, p(0) given :

1
OeVe + (Ve V)Ve = o A¥e = 1V (V-¥e) + Vpe = f

1
e (atve + (Ve V)¥e — R—Ave) _V(V-9) = V (V%)
e
Ve =Ve+ V. and (e0t)Ope + V-ve +1reV-Vv. =0

Convergence in some sense to the Navier-Stokes system when € — 0 for
all» > 0 and 6t > 0

= Better convergence properties than the one-step artificial
compressibility method of Chorin (1967) and Temam (1968) which
suffers from a temporal boundary layer of pressure

1
Osve + (Vs' V)Vs - aAvs + Vp. =f
€0p.+V-ve =0

with ve = vp on T, v.(0) = vg and also ps(0) given.

Vector penalty-projection (VPP o) methods A new two-step artificial compressibility method



Stability analysis for small values of r > 0

Theorem (A priori estimates for VPP, . and stability for N.S.)

There evists K = K (||f||L2(0,T;H_1), lIvoll1, ||p0||0) > 0, 8to > 0 and ro
small enough satisfying the additionnal assumption :

(Hr,e) 4ro(Re+¢) <1, 4c(R)VReroe < Vit, 0 < dt < dto

where ¢(S2) 1is the Poincaré constant, such that for all v < ro we have :

G IR + e ™ + 3 o9
2 (1
+30 (I = I+ ot gt - pR) < K
k=0

(@) > etlp*tE < C

k=0

(iid) > 6t||V-v*HH|§ < Ce.

k=0

= Convergence result with compactness arguments when 6t tends to 0
Convergence analysis and error estimates
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Convergence analysis forr >0 and 0 < e <1

Theorem (Basic error estimates for VPP, . (Stokes problem).)

Assume (v, p) the solution of the Dirichlet-Stokes problem smooth enough in
time and space, well-prepared initial conditions v° € H* ()%, p® € LE(Q)
such that :
1 o2, 0t o2 2
(Ho) 1+E lle ||0+7||7" llo <edt”y, 0<ot<1
then there exists C = C(2, T, Re, f,vo, e, 7°) > 0 such that we have for all
n € N with (n + 1)0t < T,

] n+1,2 edt ntipz , N~ Ot k412 2 at
@) ™IS + g I ||0+’§)Re||ve I8 < C (6t* + e

@) Y otllmt TR < © (1 +re)dt+ = +¢?)

k=0
(@id) D St||[V-vEHIE =D 6t || V-5 < C(r,e) 6t
k=0 k=0

= Improved error estimates with bounds on the time translates errors...
Convergence analysis and error estimates 28



Convergence analysis for small values of r > 0

= Analysis of Navier-Stokes problems with practical algorithms

Theorem (Error estimates for VPP, . with the Stokes problem.)

Assume (v, p) the solution of the Dirichlet-Stokes problem smooth enough in
time and space, well-prepared initial conditions and small enough parameters
such that, c() being the Poincaré constant :

(Hr,e) 4r(Re+¢e) <1, 4c(2)VRere < Viot, 0<dt<1
then there exists C = C (2, T, Re, f,vo, e?, ®°) > 0 such that we have for all
n € N with (n + 1)dt < T,
@) 11" IS + ot || T[5 + Z ||V < (5t +eot3
(#4) Z ot || 7 T3 < © (6t + £26t), ||[Ve" |5 < CRe® (6t + €°
k=0

(iii) Y St[|V-v*THG =D 6t ||V-e |5 < C (8t + ) edt?.

k=0

Vector penalty-projection (VPP, o) methods Convergence analysis and error estimates
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Convergence analysis for small values of r > 0

PROOF : main steps

@ basic energy estimates of the errors €™ = v™ — v(t,),
e" =V" —v(t,), ™" - p(tn)
¢ eliminate the term (71'"+1, V.emnth)
¢ use Necas lemma to calculate and estimate :
(7w +, 6p™ ) = (2™, V- u™ ) for some u™ Tt € HE(Q)? ...
o estimate the term (7", V.&" 1) by suitable bounds of |§" 11,
|[vertt|, |V-&"t| with an energy inequality for ¥™F? ...
¢ absorption of some terms on the left-hand side if 7, € small enough
@ well-prepared initial conditions
@ idem for bounds of the time increments de™t1 = e 1 — ™,
6ﬂ.n+l — 7.l.'n—f-l —_an
=> needs :
- additional regularity assumptions
- stronger assumptions on well-prepared initial conditions

@ establish improved error estimates (quasi-optimal)

It seems also working for regular Navier-Stokes solutions (at least in 2-D)

Vector penalty-projection (VPP, o) methods Convergence analysis and error estimates
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Numerical results

Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.
Velocity error (discrete 1°°(0, T; L?(€2)?) norm) versus time step t

—F—v-r=1

——vy_r=102

1072 ——vy_r=10"*

=0= " div-r=1074

Velocity and divergence errors — 12-norm

10 107 10°

time step &t
Velocity convergence in time at Re=100,t=10- h=1/512,e=1

= Time convergence in O(dt) — ||V-v"™||gz = O(dt) for small r
Stagnation threshold = space discretization error in O(h?)

Vector penalty-projection (VPP o) methods Numerical experiments with (VPP o) methods
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Numerical results

Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.
Pressure error (discrete 1°°(0, T; L2(€2)) norm) versus time step dt

Pressure error — L2-norm

10 10 107 10°
time step &t

Pressure convergence in time at Re=100, t=10- h=1/512, =1

= Time convergence in O(dt)
Stagnation threshold = space discretization error in O(h?)

Vector penalty-projection (VPP o) methods Numerical experiments with (VPP o) methods
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Numerical results

Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.
Divergence (discrete 1°°(0,T’; L?(€2)) norm) versus penalty e

10 . . ‘
—F— 5t=10""
107° k| —=—s5t=1072 4
——5t=10"2
107
£
[s]
T
o, 10”
]
[0
2
g 107
s
=
(=)
107 Y
107
107" 4 - 3 - 2 - 1 0
10” 10" 10” 10 10

penalty parameter €
Divergence at Re=100, t=10 - h=1/512, r=1, |res|> < 10710
= ||V'Vn||L2 = O(E(St)

Vector penalty-projection (VPP o) methods Numerical experiments with (VPP o) methods
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Numerical results

Rayleigh-Bénard natural convection in a heated cavity
Convergence of the penalty-correction step : divergence L2-norm &

10°
ol

10 F

107 F

107 1 1 1 |
10 10" 10° 10" € 10"

Natural convection at Ra=10% and t= 2§t with 6t=1, h=1/256 —
=0 or 1.85107° (idem) and p=1.8510"1.

= ||V-v||r2z = O(e) until 10715 (machine zero)

Vector penalty-projection (VPP o) methods Numerical experiments with (VPP o) methods




Numerical results

Rayleigh-Bénard natural convection in a heated cavity
Cost of the penalty-correction step : number of MILU-BiCGStab solver
iterations versus n=¢/dt

201
n;/

15

10

]
10° 10° 107 10" 10° 10® T‘l 10"

Ra=10° and t =26t with §t=1, h=1/256, |rg|2 < 1076,
Nirneien| Garermneete wiih (WViPlPms) mmaiiech IR



Outlines

@ Conclusion and perspectives

n and perspectives

36



Concluston

Vector penalty-projection methods for incompressible flows
[ANcoT, CALTAGIRONE AND FaBRIE, FVCAS5 2008, ...|

@ The Lagrangian augmentation with » > 0 in the prediction step
plays the role of a preconditioner

@ Small values of 0 < r < 10~2 sufficient to get a good pressure field
For » = 0, the pressure converges only poorly...

@ Approximate projection with a vector penalty-correction step all the
cheaper as edt — 0

@ Same convergence properties as the scalar penality-projection
method for 7 > 0

@ Vector penalty-correction step all the less dependent on density or
viscosity as €dt — 0

@ L2-norm of velocity divergence as O(edt) until machine precision
= cheap method for small values of < 1072 and ¢ < 102

Conclusion and perspectives



Some perspectives...

@ Other numerical experiments (in progress)

@ Other convergence analysis for Navier-Stokes :
outflow boundary conditions
variable density flows

@ improve the pressure reconstruction by using a consistent pressure
correction, as for the scalar penalty-projection method...

= V-( V¢>=V-ﬂ"+1

Qn—i—l
only solved to get the pressure

= precision of 1072 generally sufficient
but not to get a free-divergence velocity field!

THANK YOU

Conclusion and perspectives 38



	Introduction
	Projection methods for incompressible flows
	Non-homogeneous incompressible flows
	Fractional-step and projection methods

	Scalar penalty-projection methods
	Penalty-projection methods
	Numerical experiments
	Analysis of the scalar penalty-projection method for the Stokes problem

	Vector penalty-projection (VPPr,) methods
	A new family of vector penalty-projection methods
	A new two-step artificial compressibility method
	Convergence analysis and error estimates
	Numerical experiments with (VPPr,) methods

	Conclusion and perspectives

