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Motivations and objectives

Work focusing on the constraint of free divergence

How to deal efficiently with the free-divergence constraint with
splitting methods (prediction-correction steps) ?
How to overcome the major drawbacks of the usual projection
methods including a scalar correction step of the Lagrange
multiplier with a solution of a Poisson-type equation ?

⇒ Key idea : introduce a splitting penalty method for the velocity...

Example of fluid-type models with the pressure field as
Lagrange multiplier

⇒ solution of unsteady incompressible Navier-Stokes problems with the
primitive variables (velocity and pressure) : ∇· v = 0
long time simulations, coupling with an advection-dispersion problem,
variable density flows...
⇒ very small velocity divergence at each time step.. !

Other examples
⇒ solution of magnetohydrodynamics (MHD) problems : ∇·B = 0
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Navier-Stokes problem for incompressible flows

Incompressible and variable density flows of Newtonian fluids
Navier-Stokes equations in Ω ⊂ Rd with mixed boundary conditions :
Dirichlet on ∂ΩD and open (outflow) B.C. on ∂ΩN





∂%

∂t
+ u · ∇% = 0 in Ω×]0, T [

%

[
∂u

∂t
+ (u · ∇)u

]
−∇ · τ(u) +∇p = f in Ω×]0, T [

∇ · u = 0 in Ω×]0, T [

u = uD on ∂ΩD×]0, T [

−pn+ τ(u) · n = fN on ∂ΩN×]0, T [

% = %0, and u = u0 in Ω× {0}

∇ · τ(u) = ∇ · [µ(∇u+∇uT)], or µ∆u (for a constant viscosity)

For an homogeneous fluid with constant density, we set % = 1.
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Semi-implicit method : coupled vs splitted solvers

Fractional-step methods for NS generally cheaper than fully coupled
implicit solvers
Free-divergence FEM are too much expensive

Theoretical basis of projection methods

⇒ Helmholtz-Hodge decomposition of L2(Ω)d = H⊕H⊥ with :

H = {u ∈ L2(Ω)d, ∇· u = 0, u·n = 0 on Γ},

H⊥ = {∇φ, φ ∈ H1(Ω)}
⇒ PH : Leray orthogonal projection onto the space of solenoidal fields H

see [Leray, 1934 – Temam, 1986 – Girault and Raviart, 1986]
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Fractional-step and projection-type methods

Projection scheme with scalar pressure-correction
[Chorin, 1968 - Temam, 1969 - Goda, 1979 - Van Kan, 1986...]
Recent review : [Guermond, Minev, Shen, CMAME 2006]




Prediction step – ex. for Euler scheme : Dũn+1 = ũn+1 − un

%n+1

(
Dũn+1

δt
+ (u?,n+1 · ∇)ũn+1

)
−∇ · τ(ũn+1) +∇pn = fn+1

ũn+1 = un+1
D on ∂ΩD

−pnn+ τ(ũn+1) · n = fn+1
N on ∂ΩN

Projection step – ex. for Euler scheme : βq = 1∣∣∣∣∣∣∣∣∣∣∣∣∣

βq%
n+1u

n+1 − ũn+1

δt
+∇φ = 0

⇒∇φ · n = 0 on ∂ΩD (necessary since here (u− ũ) · n = 0)
φ = 0 on ∂ΩN (sufficient by orthogonal projection onto H)

∇ · un+1 = 0 ⇒ −∇ ·
(

δt

%n+1
∇φ

)
= −βq∇ · ũn+1

Pressure-correction step : φ pressure increment
pn+1 = pn + φ
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Fractional-step and projection-type methods

Major drawbacks of the incremental projection methods

Time order of the splitting error ? generally O(δt2) or O(δt
3
2 )

i.e. error between the numerical solutions of the implicit (or
semi-implicit) method and the fractional-step method
∇φ · n = 0 on ∂ΩD

⇒ existence of an artificial pressure boundary layer in space
φ = 0 on ∂ΩN

⇒ convergence in time and space spoiled for outflow boundary
conditions : splitting error varying like O(δt

1
2 ) (pressure) and no

more negligible (for both velocity and pressure) with respect to the
time and space discretization error (whatever the time scheme)
cf the analysis in [Guermond et al., 2005]
Pressure-correction step strongly dependent on density and viscosity
for non-homogeneous flows
⇒ very poor convergence for large ratios of % ∼ 1000 to get a small
divergence, see [Guermond & Quartapelle, JCP 2000].
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Numerical tests (from [Jobelin et al., JCP 2006])

Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.
Velocity error (discrete l2(0, T ;L2(Ω)d) norm) versus time step δt
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splitting error in O(δt2)
Time convergence in O(δt2) with 2nd-order Gear (BDF2) scheme

Stagnation threshold = space discretization error in O(h2)
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Scalar penalty-projection methods

cf. [Jobelin et al., JCP 2006]

prediction step with an augmented Lagrangian term for r > 0

consistent projection step by scalar pressure-correction

Previous ideas
[Shen, 1992] : r = 1/δt2 � 1 with a different correction of
pressure ; only for a theoretical purpose, no numerical experiment
[Caltagirone and Breil, 1999] : r > 0 with a singular
projection operator...
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Scalar penalty-projection methods





Penalty-prediction step : augmentation parameter r ≥ 0

%n+1

(
Dũn+1

δt
+ (u?,n+1 · ∇)ũn+1

)
−∇ · τ(ũn+1)

−r1∇
(∇ · ũn+1

)
+∇pn = fn+1

ũn+1 = un+1
D on ∂ΩD

−pnn+ τ(ũn+1) · n = fn+1
N on ∂ΩN

Projection step∣∣∣∣∣∣∣∣∣∣∣∣∣

βq%
n+1u

n+1 − ũn+1

δt
+∇φ = 0

⇒∇φ · n = 0 on ∂ΩD (necessary since here (u− ũ) · n = 0)
φ = 0 on ∂ΩN (sufficient by orthogonal projection onto H)

∇ · un+1 = 0 ⇒ −∇ ·
(

δt

%n+1
∇φ

)
= −βq∇ · ũn+1

Pressure-correction step : φ consistent pressure increment
pn+1 = pn−r2∇ · ũn+1 + φ = p̃n+1 + φ
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Scalar penalty-projection methods

Algebraic FEM formulation for the Navier-Stokes system





βq

δt
M%Ũ

n+1 + r1BTM−1
pl

(
BŨn+1 −G

)
+ BTPn

+AŨn+1 = F

L%Φ =
βq

δt

(
BŨn+1 −G

)

Pn+1 = Pn + r2M−1
pl

(
BŨn+1 −G

)
+ Φ

M%U
n+1 = M%Ũ

n+1 +
δt

βq
BTΦ

⇒ Preconditioning the prediction step by one iteration of
augmented Lagrangian and consistent scalar projection
⇒ r1 = r2 = r : penalty-projection method [Jobelin et al., 2006]
⇒ r1 = r, r2 = r + 1/Re : rotational penalty-projection
N.B. r1 = r2 = 0 : incremental projection method [Goda, 1979]
r1 = 0, r2 = 1/Re : rotational projection [Timmermans et al., 1996]
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Numerical experiments [Jobelin et al., JCP 2006]

Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.
Velocity error (discrete l2(0, T ;L2(Ω)d) norm) versus time step δt
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Numerical experiments

Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.
Pressure error (discrete l2(0, T ;L2(Ω)) norm) versus time step δt
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Numerical experiments

Artificial pressure boundary layer : Stokes with Dirichlet B.C.
on a disk

incremental projection
‖ph − p‖L∞(Ω) = 1.5 10−2

penalty-projection r=1
‖ph − p‖L∞(Ω) = 2.8 10−3
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Numerical experiments

Artificial pressure boundary layer : Stokes with Dirichlet B.C.
on a disk

penalty-projection r=100
‖ph − p‖L∞(Ω) = 2.8 10−4

implicit scheme
‖ph − p‖L∞(Ω) = 1.8 10−4
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Numerical experiments

Stokes with open boundary condition at a channel outflow
Velocity error (discrete l2(0, T ;L2(Ω)d) norm) versus time step δt
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Numerical experiments

Stokes with open boundary condition at a channel outflow
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Some remarks

Interests of penalty-projection methods

Reduce the splitting error, varying as O(
δt

r
) for r > 0, up to make

it negligible with respect to the discretization error
Suppress pressure boundary layers for moderate values of r ∈ [1, 10]
Recover suitable velocity and pressure optimal convergence with
outflow B.C. for r ' 10
Require efficient preconditioning of the prediction step for large
values of r since Cond = O( r

h2 ) for r > 0
see [Févrière et al., LNCS 2008 - JCAM 2009]
⇒ multi-level preconditioner for 4th-order compact FVM on MAC
mesh (implicit scheme) : see [Kortas, PhD 1997].

Other works
Generalization to dilatable and low Mach number flows : ∇· u = G
[Jobelin et al., EJCM 2008]
Theoretical error analysis for fully discrete Stokes problems
(1rst-order Euler scheme) [Angot et al., IJFV 2009]
Theoretical error analysis for Navier-Stokes problems (2nd-order
BDF2 scheme) [Févrière et al., JCAM 2009]
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Theoretical analysis for Dirichlet-Stokes problem

[Shen, 1992-95 - Guermond, 1996] : standard projection
(pressure-correction form)
[Guermond and Shen, 2003] : standard projection (velocity-correction)
[Guermond and Shen, 2004] : rotational variant of [Timmermans et al.,
1996]
[Angot, Jobelin, Latché, IJFV 2009] : penalty-projection

Analysis for small values of the augmentation parameter r

Theorem (Splitting error - fully discrete case in time and space)

Energy estimates of splitting errors compared to Euler implicit scheme
there exists c = c(Ω, T, f, u0, h) > 0 such that : for 1 ≤ n ≤ N ,

[
n∑

k=0

δt ||ek||20
] 1

2

+

[
n∑

k=0

δt ||ẽk||20
] 1

2

≤ cmin(δt2,
δt3/2

r1/2
)

[
n∑

k=0

δt ||∇ẽk||20
] 1

2

+

[
n∑

k=0

δt ||εk||20
] 1

2

≤ cmax(1,
1

r1/2
)δt3/2.
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Theoretical analysis for Dirichlet-Stokes problem

Analysis for large values of the augmentation parameter r

Theorem (Splitting error - fully discrete case in time and space)

Energy estimates of splitting errors compared to Euler implicit scheme
there exists c = c(Ω, T, f, u0, h) > 0 such that : for 1 ≤ n ≤ N ,

||en||0 + ||ẽn||0 +

[
n∑

k=0

δt ||∇ẽk||20
] 1

2

≤ c
√
δt

r

[
n∑

k=0

δt ||ek||20
] 1

2

+

[
n∑

k=0

δt ||ẽk||20
] 1

2

≤ cδt
r

||εn||h ≤ c 1√
r

[
n∑

k=0

δt ||εk||20
] 1

2

≤ c 1

r
.
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New approach : a splitting penalty method...

Solve the saddle-point problem (algebraic form)

At each time step tn = nδt,
(
A BT

B 0

)(
v
p

)
=

(
f
0

)

⇒ Solve the Uzawa augmented Lagrangian problem for v

(A+ r BTB)v = f −BTp = F

but ill-conditionned and expensive to solve for r =
1

ε
� 1 !

⇒ Solve the splitting penalty problem (equivalent) for v = ṽ + v̂
with a penalty parameter 0 < ε� 1





Aṽ = F

(A+
1

ε
BTB)v̂ = −1

ε
BTBṽ

some pressure reconstruction : e.g. Uzawa...

The limit problem for ε→ 0 of the velocity correction

(εA+BTB)v̂ε = −BTBṽ

has non unique solutions since Ker(BTB) 6= {0}
||Bvε||L2 = O(ε),⇒ approximate projection method

Vector penalty-projection (VPPr,ε) methods
A new family of vector penalty-projection

methods 21



A new family of vector penalty-projection methods

The two-parameter family of (VPPr,ε) methods
v0 ∈ H1(Ω)d, p0 ∈ L2

0(Ω) given, for all n ∈ N s.t. (n+ 1)δt ≤ T ,




Penalty-prediction step with an augmentation parameter r ≥ 0
ṽn+1 − vn

δt
+ (vn·∇)ṽn+1 − 1

Re
∆ṽn+1

−r∇ (∇· ṽn+1
)

+∇pn = fn+1 in Ω

ṽn+1 = vn+1
D on Γ = ∂Ω

p̃n+1 = pn − r∇· ṽn+1 in Ω

Vector penalty-projection step with a penalty parameter 0 < ε ≤ 1

ε

(
v̂n+1

δt
+ (vn· ∇)v̂n+1 − 1

Re
∆v̂n+1

)

−∇ (∇· v̂n+1
)

= ∇ (∇· ṽn+1
)

in Ω
v̂n+1 = 0 on Γ = ∂Ω

Correction step for velocity and pressure

vn+1 = ṽn+1 + v̂n+1 and pn+1 = pn − r∇· ṽn+1 − 1

ε
∇· vn+1

Vector penalty-projection (VPPr,ε) methods
A new family of vector penalty-projection
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A new family of vector penalty-projection methods

(VPPr,ε) methods for open boundary conditions on a part ΓN

For a given stress vector on a part ΓN of Γ = ∂Ω = ΓD ∪ ΓN :

(σ(v, p)· n)|ΓN ≡ −p n + µ
(∇v + (∇v)T

) · n = g

we get for the Dirichlet and Neumann velocity boundary conditions :

Penalty-prediction step :
ṽn+1 = vn+1

D on ΓD

−pn n + µn+1
(∇ṽn+1 + (∇ṽn+1)T

) ·n = gn+1 on ΓN

Vector penalty-projection step :
v̂n+1 = 0 on ΓD

−(p̃n+1 − pn) n + µn+1
(∇v̂n+1 + (∇v̂n+1)T

) · n = 0 on ΓN

⇒ Original boundary conditions not spoiled through a scalar projection
step with a Poisson-like pressure correction

Vector penalty-projection (VPPr,ε) methods
A new family of vector penalty-projection
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A new family of vector penalty-projection methods

(VPPr,ε) methods for incompressible and variable density flows

Advection step for density :
%n+1 − %n

δt
+∇· (%n+1vn) = 0

Penalty-prediction step :

%n+1

„
ṽn+1 − vn

δt
+ (vn·∇)ṽn+1

«
−∇·µn+1

“
∇ṽn+1 + (∇ṽn+1)T

”

−r∇
“
∇· ṽn+1

”
+∇pn = fn+1

Vector penalty-projection step :

ε

„
%n+1

„
v̂n+1

δt
+ (vn·∇)v̂n+1

«
−∇·µn+1

“
∇v̂n+1 + (∇v̂n+1)T

”«

−∇
“
∇· v̂n+1

”
= ∇

“
∇· ṽn+1

”

Correction step for velocity and pressure :

vn+1 = ṽn+1 + v̂n+1 and pn+1 = pn − r∇· ṽn+1 − 1

ε
∇· vn+1

⇒ Velocity correction v̂ all the more quasi-independent on the density %
or viscosity µ as ε→ 0 and terms possibly dropped in practice

Vector penalty-projection (VPPr,ε) methods
A new family of vector penalty-projection

methods 24



Well-posedness of the (VPPr,ε) methods

Theorem (Global solvability of the (VPPr,ε) method.)

With f ∈ L2(0, T ;H−1(Ω)d), v0 ∈ H1(Ω)d and p0 ∈ L2
0(Ω) given,

both the prediction and correction steps of the (VPPr,ε) method are
well-posed for all δt > 0, r ≥ 0 and ε > 0, i.e. for all n ∈ N such that
(n+ 1)δt ≤ T , there exists a unique solution
(vn+1, pn+1) ∈ H1(Ω)d × L2

0(Ω) to the (VPPr,ε) scheme such that :

vn+1 − vn

δt
+ (vn·∇)vn+1 − 1

Re
∆vn+1 +∇pn+1 = fn+1 in Ω

(εδt)
pn+1 − pn

δt
+∇· vn+1 + rε∇· ṽn+1 = 0 in Ω

which is the discrete problem effectively solved by the splitting scheme.

N.B. Idem for the fully implicit nonlinear scheme with : (vn+1· ∇)vn+1

if δt is taken sufficiently small, as in [Lions, 1969].

Vector penalty-projection (VPPr,ε) methods
A new family of vector penalty-projection
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A new two-step artificial compressibility method

An artificial compressibility method with two parameters
with ṽε = vD, v̂ε = 0 on Γ and ṽε(0) = v0, v̂ε(0) = 0, pε(0) given :

∂tṽε + (vε· ∇)ṽε −
1

Re
∆ṽε − r∇ (∇· ṽε) +∇pε = f

ε

(
∂tv̂ε + (vε· ∇)v̂ε −

1

Re
∆v̂ε

)
−∇ (∇· v̂ε) = ∇ (∇· ṽε)

vε = ṽε + v̂ε and (εδt)∂tpε +∇· vε + rε∇· ṽε = 0

Convergence in some sense to the Navier-Stokes system when ε→ 0 for
all r ≥ 0 and δt > 0
⇒ Better convergence properties than the one-step artificial
compressibility method of Chorin (1967) and Temam (1968) which
suffers from a temporal boundary layer of pressure

∂tvε + (vε· ∇)vε −
1

Re
∆vε +∇pε = f

ε ∂tpε +∇· vε = 0

with vε = vD on Γ, vε(0) = v0 and also pε(0) given.
Vector penalty-projection (VPPr,ε) methods A new two-step artificial compressibility method 26



Stability analysis for small values of r ≥ 0

Theorem (A priori estimates for VPPr,ε and stability for N.S.)

There exists K = K
“
||f ||L2(0,T ;H−1), ||v0||1, ||p0||0

”
> 0, δt0 > 0 and r0

small enough satisfying the additionnal assumption :

(Hr,ε) 4r0(Re + ε) ≤ 1, 4c(Ω)
√

Re r0ε ≤
√
δt, 0 < δt ≤ δt0

where c(Ω) is the Poincaré constant, such that for all r ≤ r0 we have :

(i) ||vn+1||20 + εδt ||pn+1||20 +

nX

k=0

δt

16Re
||∇vk+1||20

+

nX

k=0

„
1

4
||vk+1 − vk||20 + εδt ||pk+1 − pk||20

«
≤ K

(ii)

nX

k=0

δt ||pk+1||20 ≤ C

(iii)
nX

k=0

δt ||∇· vk+1||20 ≤ C ε.

⇒ Convergence result with compactness arguments when δt tends to 0
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Convergence analysis for r > 0 and 0 < ε ≤ 1

Theorem (Basic error estimates for VPPr,ε (Stokes problem).)

Assume (v, p) the solution of the Dirichlet-Stokes problem smooth enough in
time and space, well-prepared initial conditions v0 ∈ H1(Ω)d, p0 ∈ L2

0(Ω)
such that :

(H0)

„
1 +

1

rε

«
||e0||20 +

δt

r
||π0||20 ≤ c δt2, 0 < δt ≤ 1

then there exists C = C(Ω, T,Re, f , v0, e
0, π0) > 0 such that we have for all

n ∈ N with (n+ 1)δt ≤ T ,

(i) ||en+1||20 +
εδt

1 + rε
||πn+1||20 +

nX

k=0

δt

Re
||∇ek+1||20 ≤ C

„
δt2 + ε

δt

r

«

(ii)
nX

k=0

δt ||πk+1||20 ≤ C
“
(1 + rε)δt+

ε

r
+ ε2

”

(iii)
nX

k=0

δt ||∇· vk+1||20 =
nX

k=0

δt ||∇· ek+1||20 ≤ C(r, ε) ε2δt.

⇒ Improved error estimates with bounds on the time translates errors...
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Convergence analysis for small values of r ≥ 0

⇒ Analysis of Navier-Stokes problems with practical algorithms

Theorem (Error estimates for VPPr,ε with the Stokes problem.)

Assume (v, p) the solution of the Dirichlet-Stokes problem smooth enough in
time and space, well-prepared initial conditions and small enough parameters
such that, c(Ω) being the Poincaré constant :

(Hr,ε) 4r(Re + ε) ≤ 1, 4c(Ω)
√

Re rε ≤
√
δt, 0 < δt ≤ 1

then there exists C = C(Ω, T,Re, f , v0, e
0, π0) > 0 such that we have for all

n ∈ N with (n+ 1)δt ≤ T ,

(i) ||en+1||20 + εδt ||πn+1||20 +

nX

k=0

δt

Re
||∇ek+1||20 ≤ C

“
δt2 + ε2δt

3
2

”

(ii)

nX

k=0

δt ||πk+1||20 ≤ C
`
δt2 + ε2δt

´
, ||∇en+1||20 ≤ C Re2 `δt+ ε2´

(iii)

nX

k=0

δt ||∇· vk+1||20 =

nX

k=0

δt ||∇· ek+1||20 ≤ C (δt+ ε) εδt2.
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Convergence analysis for small values of r ≥ 0

Proof : main steps
1 basic energy estimates of the errors en = vn − v(tn),

ẽn = ṽn − v(tn), πn = pn − p(tn)

eliminate the term (πn+1,∇· en+1)
use Nečas lemma to calculate and estimate :
(πn+1, δp̄n+1) = (πn+1,∇·un+1) for some un+1 ∈ H1

0 (Ω)d ...
estimate the term (πn+1,∇· ẽn+1) by suitable bounds of |ẽn+1|,
|∇ẽn+1|, |∇· ẽn+1| with an energy inequality for v̂n+1...
absorption of some terms on the left-hand side if r, ε small enough
well-prepared initial conditions

2 idem for bounds of the time increments δen+1 = en+1 − en,
δπn+1 = πn+1 − πn
⇒ needs :
- additional regularity assumptions
- stronger assumptions on well-prepared initial conditions

3 establish improved error estimates (quasi-optimal)

It seems also working for regular Navier-Stokes solutions (at least in 2-D)
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Numerical results

Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.
Velocity error (discrete l∞(0, T ;L2(Ω)d) norm) versus time step δt
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Velocity convergence in time at Re=100, t=10 - h=1/512, ε=1

⇒ Time convergence in O(δt) – ||∇· vn||L2 = O(δt) for small r
Stagnation threshold = space discretization error in O(h2)
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Numerical results

Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.
Pressure error (discrete l∞(0, T ;L2(Ω)) norm) versus time step δt
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Pressure convergence in time at Re=100, t=10 - h=1/512, ε=1

⇒ Time convergence in O(δt)
Stagnation threshold = space discretization error in O(h2)
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Numerical results

Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.
Divergence (discrete l∞(0, T ;L2(Ω)) norm) versus penalty ε
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Divergence at Re=100, t=10 - h=1/512, r=1, |res|2 < 10−10

⇒ ||∇· vn||L2 = O(εδt)
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Numerical results

Rayleigh-Bénard natural convection in a heated cavity
Convergence of the penalty-correction step : divergence L2-norm δ

10-1610-1110-610-110410-16
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100
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δ

Natural convection at Ra=105 and t=2δt with δt=1, h=1/256 –
µ=0 or 1.85 10−5 (idem) and µ=1.85 10−1.

⇒ ||∇· v||L2 = O(ε) until 10−15 (machine zero)
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Numerical results

Rayleigh-Bénard natural convection in a heated cavity
Cost of the penalty-correction step : number of MILU-BiCGStab solver
iterations versus η=ε/δt
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Ra=105 and t=2δt with δt=1, h=1/256, |rk|2 ≤ 10−6.
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Outlines

1 Projection methods for incompressible flows

2 Scalar penalty-projection methods

3 Vector penalty-projection (VPPr,ε) methods

4 Conclusion and perspectives
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Conclusion

Vector penalty-projection methods for incompressible flows
[Angot, Caltagirone and Fabrie, FVCA5 2008, ...]

The Lagrangian augmentation with r > 0 in the prediction step
plays the role of a preconditioner
Small values of 0 < r ≤ 10−2 sufficient to get a good pressure field
For r = 0, the pressure converges only poorly...
Approximate projection with a vector penalty-correction step all the
cheaper as εδt→ 0

Same convergence properties as the scalar penality-projection
method for r > 0

Vector penalty-correction step all the less dependent on density or
viscosity as εδt→ 0

L2-norm of velocity divergence as O(εδt) until machine precision
⇒ cheap method for small values of r ≤ 10−2 and ε ≤ 10−2
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Some perspectives...

Other numerical experiments (in progress)
Other convergence analysis for Navier-Stokes :
outflow boundary conditions
variable density flows
improve the pressure reconstruction by using a consistent pressure
correction, as for the scalar penalty-projection method...

⇒ ∇ ·
(

δt

%n+1
∇φ

)
= ∇ · ũn+1

only solved to get the pressure
⇒ precision of 10−3 generally sufficient
but not to get a free-divergence velocity field !

Thank you
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