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Equation

{
−div(Λ∇ū) = f in Ω,
ū = g on ∂Ω

with:

Ω open subset of Rd (d ≥ 2),

Λ : Ω→ Md(R) a (symmetric) uniformly elliptic diffusion
tensor,

f ∈ L2(Ω),

g ∈ H1/2(∂Ω).



Grids and unknowns
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Basic principle

Define consistent flux approximations FK ,σ(u) using u = (uK )K

FK ,σ(u) ≈
∫
σ
−Λ∇ū · nK ,σ.

Once this is done, the scheme is given by:

Flux balance

∀K :
∑
σ∈EK

FK ,σ =

∫
K

f

with EK = edges (faces in 3d) of the cell K .

It might also be reasonnable to have:

Flux conservativity:

∀σ between K and L : FK ,σ + FL,σ = 0.
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A simple case: 2-point flux Finite Volume scheme

Λ = Id (model problem: −∆ū = f ) and

K
L

xL

xK

nK ,σ

With mσ= measure of σ, then FK ,σ ≈
mσ

dist(xK , xL)
(uK − uL).
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First idea: half-diamond gradients

Local gradients ∇K ,σu ≈ (∇u)|4K ,σ
defined by:

Coherent values on the edge

∀σ between K and L , ∀x ∈ σ :

uK + (∇K ,σu) · (x − xK ) = uL + (∇L,σu) · (x − xL)

Conservativity of the fluxes

∀σ between K and L : ΛK (∇K ,σu) · nK ,σ + ΛL(∇L,σu) · nL,σ = 0.

I Not enough relations...
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Group gradients

Groups of edges = sets of d edges of a same cell and with a
common vertex.
KG : cell containing the group G .
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Groups of edges = sets of d edges of a same cell and with a
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Group gradients

For all σ ∈ G and K containing σ, ∇G
K ,σu ≈ (∇u)|4K ,σ

defined by:

Coherent values on the edge

∀x ∈ σ : uK + (∇G
K ,σu) · (x − xK ) = uL + (∇G

L,σu) · (x − xL)

Conservativity of the fluxes

ΛK (∇G
K ,σu) · nK ,σ + ΛL(∇G

L,σu) · nL,σ = 0.

Specific role of KG : we impose that ∇G
KG ,σ

u does not depend on
σ ∈ G , i.e.

∀σ, σ′ ∈ G : ∇G
KG ,σ

u = ∇G
KG ,σ′u (=: ∇G

KG
u)

I These group gradients are (nearly always) uniquely defined from
(uK )K .
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Definition of the fluxes

Group fluxes:

FG
K ,σ(u) = −mσΛK (∇G

K ,σu) · nK ,σ.

Full fluxes: convex combination of all possible group fluxes for
each edge σ.

Gσ = {G group s.t. σ ∈ G},
(θG
σ )G∈Gσ s.t. θG

σ ≥ 0 and
∑

G∈Gσ θ
G
σ = 1,

Fluxes:
FK ,σ(u) =

∑
G∈Gσ

θG
σ FG

K ,σ(u).
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Convergence tools

Coercivity of the scheme: the G-scheme is only conditionnally
coercive.

I Local sufficient coercivity condition (can be numerically tested).

Consistency: let’s see...
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Consistency of the fluxes: not on regular functions

I In general, the gradients ∇G
K ,σu (and thus the fluxes FK ,σ(u))

are not consistent on C∞ functions:

if ϕ ∈ C∞ and ϕT = (ϕ(xK ))K ,

FK ,σ(ϕT ) =

∫
σ
−Λ∇ϕ · nK ,σ + mσO(1)

(we would expect mσO(h)).

Cause: Conservativity of the fluxes.

ΛK (∇G
K ,σu) · nK ,σ + ΛL(∇G

L,σu) · nL,σ = 0

with possibly ΛK 6= ΛL.
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Consistency of the fluxes: for non-standard test
functions

We assume that Λ is piecewise regular on a partition (Ωi )i=1,k of
Ω.

Space of test functions: the fluxes are consistent on the space
S of functions ϕ such that

ϕ : Ω→ R is continuous and vanishes on ∂Ω,

∀i = 1, . . . , k , ϕ|Ωi
∈ C 2(Ωi ),

∀i , j = 1, . . . , k , (Λ∇ϕ)|Ωi
· nΩi

+ (Λ∇ϕ)|Ωj
· nΩj

= 0 on Ωi ∩ Ωj .

Lemma

S is dense in H1
0 (Ω).
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Convergence result

Using the space S and classical discrete compactness results:

Theorem

Under a coercivity assumption and if the grids do not degenerate
as h→ 0, the solution u to the G-scheme converges strongly in L2

to the weak solution ū of the elliptic problem.

The discrete gradients of u also converge in L2 to ∇ū.
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General behavior

I Exact on affine solutions.

I As many other FV method, general order 2 convergence for the
solution and order 1 convergence for the gradient.



A strong anisotropy and heterogeneity test

Λ =

„
100 0
0 0.01

«

Λ =

„
1 0
0 1

«
Λ =

„
0.01 0

0 1

«
Λ =

„
100 0
0 100

«

u = 0

u = 1

u = y u = y



A strong anisotropy and heterogeneity test

Exact solution

HMM solution G-scheme solution



A strong anisotropy and heterogeneity test

I L2 errors:

HMM: 22%

G-scheme: 4%.

I Minima and maxima of the solutions:

min max

theoretical 0 1

HMM −0.36 0.99

G-scheme 0.00967 0.99



An element of comparison with MPFA L

Λ = diag(0.1, 1), ū(x , y) = sin(πx) sin(πy).



... and recall also some results presented in the benchmark
session...



Thanks.

I to lunch!
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