The G-scheme

J. Droniou

Université Montpellier 2, France

joint work with L. Agelas (IFP) and D. Di Pietro (IFP)

Porquerolles; June, 22th-24th 2009.

2 The G-scheme

3 A few words on the theoretical results

$$\begin{cases} -\operatorname{div}(\Lambda \nabla \bar{u}) = f & \text{ in } \Omega, \\ \bar{u} = g & \text{ on } \partial \Omega \end{cases}$$

with:

- Ω open subset of \mathbb{R}^d $(d \ge 2)$,
- $\Lambda:\Omega\to M_d(\mathbb{R})$ a (symmetric) uniformly elliptic diffusion tensor,
- $f \in L^2(\Omega)$,
- $g \in H^{1/2}(\partial \Omega)$.

Grids and unknowns

Grids and unknowns

Basic principle

Define consistent flux approximations $F_{K,\sigma}(u)$ using $u = (u_K)_K$

$$F_{K,\sigma}(u) \approx \int_{\sigma} -\Lambda \nabla \bar{u} \cdot \mathbf{n}_{K,\sigma}.$$

Once this is done, the scheme is given by:

Flux balance

$$\forall K : \sum_{\sigma \in \mathcal{E}_K} F_{K,\sigma} = \int_K f$$

with \mathcal{E}_{K} = edges (faces in 3d) of the cell K.

Basic principle

Define consistent flux approximations $F_{K,\sigma}(u)$ using $u = (u_K)_K$

$$F_{K,\sigma}(u) \approx \int_{\sigma} -\Lambda \nabla \bar{u} \cdot \mathbf{n}_{K,\sigma}.$$

Once this is done, the scheme is given by:

Flux balance

$$\forall K : \sum_{\sigma \in \mathcal{E}_K} F_{K,\sigma} = \int_K f$$

with $\mathcal{E}_{\mathcal{K}}$ = edges (faces in 3d) of the cell \mathcal{K} .

It might also be reasonnable to have:

Flux conservativity:

 $\forall \sigma$ between K and L : $F_{K,\sigma} + F_{L,\sigma} = 0$.

A simple case: 2-point flux Finite Volume scheme

 $\Lambda = \mathrm{Id} \pmod{problem} : -\Delta \bar{u} = f$ and

With m_{σ} = measure of σ , then $F_{K,\sigma} \approx \frac{m_{\sigma}}{\operatorname{dist}(x_K, x_L)}(u_K - u_L)$.

3 A few words on the theoretical results

First idea: half-diamond gradients

Half-diamond:

First idea: half-diamond gradients

Local gradients $\nabla_{K,\sigma} u \approx (\nabla u)_{| \bigtriangleup_{K,\sigma}}$ defined by:

Coherent values on the edge

 $\forall \sigma \text{ between } K \text{ and } L, \forall x \in \sigma : \\ u_K + (\nabla_{K,\sigma} u) \cdot (x - x_K) = u_L + (\nabla_{L,\sigma} u) \cdot (x - x_L)$

Conservativity of the fluxes

 $\forall \sigma \text{ between } K \text{ and } L : \Lambda_K(\nabla_{K,\sigma} u) \cdot \mathbf{n}_{K,\sigma} + \Lambda_L(\nabla_{L,\sigma} u) \cdot \mathbf{n}_{L,\sigma} = 0.$

First idea: half-diamond gradients

Local gradients $\nabla_{K,\sigma} u \approx (\nabla u)_{| \triangle_{K,\sigma}}$ defined by:

Coherent values on the edge

 $\forall \sigma \text{ between } K \text{ and } L, \forall x \in \sigma : \\ u_K + (\nabla_{K,\sigma} u) \cdot (x - x_K) = u_L + (\nabla_{L,\sigma} u) \cdot (x - x_L)$

Conservativity of the fluxes

 $\forall \sigma \text{ between } K \text{ and } L : \Lambda_K(\nabla_{K,\sigma} u) \cdot \mathbf{n}_{K,\sigma} + \Lambda_L(\nabla_{L,\sigma} u) \cdot \mathbf{n}_{L,\sigma} = 0.$

Not enough relations...

Groups of edges = sets of d edges of a same cell and with a common vertex.

 K_G : cell containing the group G.

Groups of edges = sets of d edges of a same cell and with a common vertex.

 K_G : cell containing the group G.

For all $\sigma \in G$ and K containing σ , $\nabla^{G}_{K,\sigma} u \approx (\nabla u)_{| \triangle_{K,\sigma}}$ defined by:

Coherent values on the edge

$$\forall x \in \sigma : u_{K} + (\nabla_{K,\sigma}^{G}u) \cdot (x - x_{K}) = u_{L} + (\nabla_{L,\sigma}^{G}u) \cdot (x - x_{L})$$

Conservativity of the fluxes

$$\Lambda_{\mathcal{K}}(\nabla_{\mathcal{K},\sigma}^{\mathcal{G}}u)\cdot\mathbf{n}_{\mathcal{K},\sigma}+\Lambda_{\mathcal{L}}(\nabla_{\mathcal{L},\sigma}^{\mathcal{G}}u)\cdot\mathbf{n}_{\mathcal{L},\sigma}=0.$$

For all $\sigma \in G$ and K containing σ , $\nabla^{G}_{K,\sigma} u \approx (\nabla u)_{| \triangle_{K,\sigma}}$ defined by:

Coherent values on the edge

$$\forall x \in \sigma : u_{K} + (\nabla_{K,\sigma}^{G}u) \cdot (x - x_{K}) = u_{L} + (\nabla_{L,\sigma}^{G}u) \cdot (x - x_{L})$$

Conservativity of the fluxes

$$\Lambda_{\mathcal{K}}(\nabla^{\mathcal{G}}_{\mathcal{K},\sigma}u)\cdot\mathbf{n}_{\mathcal{K},\sigma}+\Lambda_{\mathcal{L}}(\nabla^{\mathcal{G}}_{\mathcal{L},\sigma}u)\cdot\mathbf{n}_{\mathcal{L},\sigma}=0.$$

Specific role of K_G : we impose that $\nabla^G_{K_G,\sigma} u$ does not depend on $\sigma \in G$, i.e.

$$\forall \sigma, \sigma' \in G : \nabla^{G}_{K_{G},\sigma} u = \nabla^{G}_{K_{G},\sigma'} u \quad (=: \nabla^{G}_{K_{G}} u)$$

▶ These group gradients are (nearly always) uniquely defined from $(u_K)_K$.

Group fluxes:

$$F^{G}_{K,\sigma}(u) = -\mathrm{m}_{\sigma}\Lambda_{K}(\nabla^{G}_{K,\sigma}u) \cdot \mathbf{n}_{K,\sigma}.$$

Full fluxes: convex combination of all possible group fluxes for each edge σ .

- $\mathcal{G}_{\sigma} = \{ G \text{ group s.t. } \sigma \in G \}$,
- $(\theta_{\sigma}^{G})_{G\in\mathcal{G}_{\sigma}}$ s.t. $\theta_{\sigma}^{G}\geq 0$ and $\sum_{G\in\mathcal{G}_{\sigma}}\theta_{\sigma}^{G}=1$,

Fluxes:

$$F_{K,\sigma}(u) = \sum_{G \in \mathcal{G}_{\sigma}} \theta_{\sigma}^{G} F_{K,\sigma}^{G}(u).$$

3 A few words on the theoretical results

Coercivity of the scheme: the G-scheme is only *conditionnally* coercive.

► Local sufficient coercivity condition (can be numerically tested).

Coercivity of the scheme: the G-scheme is only *conditionnally* coercive.

► Local sufficient coercivity condition (can be numerically tested).

Consistency: let's see...

▶ In general, the gradients $\nabla_{K,\sigma}^{G} u$ (and thus the fluxes $F_{K,\sigma}(u)$) are **not consistent** on C^{∞} functions:

if
$$\varphi \in C^{\infty}$$
 and $\varphi_{\mathcal{T}} = (\varphi(x_{\mathcal{K}}))_{\mathcal{K}}$,
 $F_{\mathcal{K},\sigma}(\varphi_{\mathcal{T}}) = \int_{\sigma} -\Lambda \nabla \varphi \cdot \mathbf{n}_{\mathcal{K},\sigma} + m_{\sigma} \mathcal{O}(1)$

(we would expect $m_{\sigma}\mathcal{O}(h)$).

▶ In general, the gradients $\nabla_{K,\sigma}^{G} u$ (and thus the fluxes $F_{K,\sigma}(u)$) are **not consistent** on C^{∞} functions:

if
$$\varphi \in C^{\infty}$$
 and $\varphi_{\mathcal{T}} = (\varphi(x_{\mathcal{K}}))_{\mathcal{K}}$,
 $F_{\mathcal{K},\sigma}(\varphi_{\mathcal{T}}) = \int_{\sigma} -\Lambda \nabla \varphi \cdot \mathbf{n}_{\mathcal{K},\sigma} + m_{\sigma} \mathcal{O}(1)$

(we would expect $m_{\sigma}\mathcal{O}(h)$).

Cause: Conservativity of the fluxes.

$$\Lambda_{\mathcal{K}}(\nabla^{\mathcal{G}}_{\mathcal{K},\sigma}u)\cdot\mathbf{n}_{\mathcal{K},\sigma}+\Lambda_{\mathcal{L}}(\nabla^{\mathcal{G}}_{\mathcal{L},\sigma}u)\cdot\mathbf{n}_{\mathcal{L},\sigma}=0$$

with possibly $\Lambda_K \neq \Lambda_L$.

Consistency of the fluxes: for non-standard test functions

We assume that Λ is piecewise regular on a partition $(\Omega_i)_{i=1,k}$ of Ω .

Space of test functions: the fluxes **are consistent** on the space \mathcal{S} of functions φ such that

$$\begin{split} \varphi : \overline{\Omega} &\to \mathbb{R} \text{ is continuous and vanishes on } \partial\Omega, \\ \forall i = 1, \dots, k, \ \varphi_{|\Omega_i} \in C^2(\overline{\Omega_i}), \\ \forall i, j = 1, \dots, k, \ (\Lambda \nabla \varphi)_{|\Omega_i} \cdot \mathbf{n}_{\Omega_i} + (\Lambda \nabla \varphi)_{|\Omega_j} \cdot \mathbf{n}_{\Omega_j} = 0 \text{ on } \overline{\Omega_i} \cap \overline{\Omega_j}. \end{split}$$

Consistency of the fluxes: for non-standard test functions

We assume that Λ is piecewise regular on a partition $(\Omega_i)_{i=1,k}$ of Ω_i .

Space of test functions: the fluxes **are consistent** on the space \mathcal{S} of functions φ such that

$$\begin{split} \varphi: \overline{\Omega} &\to \mathbb{R} \text{ is continuous and vanishes on } \partial\Omega, \\ \forall i = 1, \dots, k, \; \varphi_{|\Omega_i} \in C^2(\overline{\Omega_i}), \\ \forall i, j = 1, \dots, k, \; (\Lambda \nabla \varphi)_{|\Omega_i} \cdot \mathbf{n}_{\Omega_i} + (\Lambda \nabla \varphi)_{|\Omega_j} \cdot \mathbf{n}_{\Omega_j} = 0 \; \text{on} \; \overline{\Omega_i} \cap \overline{\Omega_j}. \end{split}$$

Lemma

S is dense in $H_0^1(\Omega)$.

Using the space ${\mathcal S}$ and classical discrete compactness results:

Theorem

Under a coercivity assumption and if the grids do not degenerate as $h \rightarrow 0$, the solution u to the G-scheme converges strongly in L^2 to the weak solution \bar{u} of the elliptic problem.

The discrete gradients of u also converge in L^2 to $\nabla \bar{u}$.

2 The G-scheme

3 A few words on the theoretical results

Exact on affine solutions.

► As many other FV method, general order 2 convergence for the solution and order 1 convergence for the gradient.

A strong anisotropy and heterogeneity test

A strong anisotropy and heterogeneity test

Exact solution

HMM solution

G-scheme solution

A strong anisotropy and heterogeneity test

- \blacktriangleright L^2 errors:
 - HMM: 22%
 - G-scheme: 4%.

Minima and maxima of the solutions:

	min	max
theoretical	0	1
НММ	-0.36	0.99
G-scheme	0.00967	0.99

An element of comparison with MPFA L

$$\Lambda = \operatorname{diag}(0.1, 1), \ \overline{u}(x, y) = \sin(\pi x) \sin(\pi y).$$

... and recall also some results presented in the benchmark session...

Thanks.

Thanks.

▶ to lunch!