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© Introduction and generic notions



—div(AVD) = f inQ,
ut=g on 092
with:
o Q open subset of RY (d > 2),

o A:Q — My(R) a (symmetric) uniformly elliptic diffusion
tensor,

o fel2(Q),
o g c HY2(09).



Grids and unknowns






Basic principle

Define consistent flux approximations Fy ,(u) using u = (uk)k
FKJ(U) ~ / —AVu- NKo-
g

Once this is done, the scheme is given by:

VK ZFKJ:/f
K

oelk

with Ex= edges (faces in 3d) of the cell K.

Flux balance
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with Ex= edges (faces in 3d) of the cell K.

Flux balance

It might also be reasonnable to have:

Flux conservativity:

Vo between K and L : Fx,+ F, =0.



A simple case: 2-point flux Finite Volume scheme

A =1d (model problem: —Az = f) and

my

With m,= measure of o, then Fi , ~ )(uK — up).

diSt(XK, XL
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First idea: half-diamond gradients

Half-diamond:




First idea: half-diamond gradients

Local gradients Vi su ~ (Vu) s, , defined by:
Coherent values on the edge
Vo between K and L,Vx € 0 :
uk + (Vkou) - (x = xx) = uL + (Viou) - (x — x1)
Conservativity of the fluxes

Vo between K and L : Ax(Vkou) nk o+ N (Viou) -n . =0.
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» Not enough relations...



Group gradients

Groups of edges = sets of d edges of a same cell and with a
common vertex.
Kg: cell containing the group G.

Ke
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Group gradients

For all o € G and K containing o, V,%Gu ~ (Vu)|a., defined by:
Coherent values on the edge

Vx €0 @ uk + (Vﬁ’au) S(x = xk) = uL+ (VE u) - (x —x)
Conservativity of the fluxes

A(V§ gt) Nk o+ AL(VE u) Ny =0.



Group gradients

For all o € G and K containing o, VKGu ~ (Vu)|a., defined by:
Coherent values on the edge

Vx €0 1 uk+ (Vﬁ’au) S(x = xk) = uL+ (VE u) - (x —x)
Conservativity of the fluxes

A(V§ gt) Nk o+ AL(VE u) Ny =0.

Specific role of K;: we impose that Vﬁc’gu does not depend on
oc€Q@G,ie.

Vo,0' € G : Vi _,u=Vgi ou (= Vi.u)

» These group gradients are (nearly always) uniquely defined from
(UK)K-



Definition of the fluxes

Group fluxes:

F,ga(u) = —mU/\K(V;G(’Uu) “NK o

Full fluxes: convex combination of all possible group fluxes for
each edge o.

e G, ={G group s.t. 0 € G},
° (HE)Gegg s.t. 95 >0 and ZGEQU 95 =1,

o Fluxes:

Fro(u)= > 0SF2,(u).
GeGs
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Convergence tools

Coercivity of the scheme: the G-scheme is only conditionnally
coercive.

» Local sufficient coercivity condition (can be numerically tested).
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» Local sufficient coercivity condition (can be numerically tested).

Consistency: let's see...



Consistency of the fluxes: not on regular functions

» In general, the gradients Vﬁ,gu (and thus the fluxes Fk ,(u))
are not consistent on C* functions:

if p € C* and o7 = (p(xk))k,

Fk o(o1) = / —AVy - -ng,+m,0(1)

[

(we would expect m,O(h)).



Consistency of the fluxes: not on regular functions

» In general, the gradients Vﬁ,gu (and thus the fluxes Fk ,(u))
are not consistent on C*° functions:

if o € C* and o7 = (p(xk))k,
Fro(ior) = / _AV - o+ maO(L)

[

(we would expect m,O(h)).

Cause: Conservativity of the fluxes.
G G _
AK(VK,UU) ‘MKt AL(VL,UU) ‘Nio = 0

with possibly Ak # A;.



Consistency of the fluxes: for non-standard test

functions

We assume that A is piecewise regular on a partition (£2;);=1« of
Q.

Space of test functions: the fluxes are consistent on the space
S of functions ¢ such that

¢ : Q — R is continuous and vanishes on 0%,
Vi=1,...,k, g, € C3(Q),
Vi,j=1,...,k, (A\Vp)q, -ng, + (AVy)q, - ng; =0 on QN Q.



Consistency of the fluxes: for non-standard test

functions

We assume that A is piecewise regular on a partition (£2;);=1« of
Q.

Space of test functions: the fluxes are consistent on the space
S of functions ¢ such that

¢ : Q — R is continuous and vanishes on 0%,
Vi=1,...,k, g, € C3(Q),
Vi,j=1,...,k, (A\Vp)q, -ng, + (AVy)q, - ng; =0 on QN Q.

Lemma

S is dense in H3(Q2).



Convergence result

Using the space & and classical discrete compactness results:

Theorem

Under a coercivity assumption and if the grids do not degenerate
as h — 0, the solution u to the G-scheme converges strongly in L?
to the weak solution U of the elliptic problem.

The discrete gradients of u also converge in L? to V.



@ Some numerical results



General behavior

» Exact on affine solutions.

» As many other FV method, general order 2 convergence for the
solution and order 1 convergence for the gradient.



A strong anisotropy and heterogeneity test
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A strong anisotropy and heterogeneity test
I,
Exact solution
P —_—————

HMM solution G-scheme solution



A strong anisotropy and heterogeneity test

» L2 errors:
e HMM: 22%

@ G-scheme: 4%.

» Minima and maxima of the solutions:

min max
theoretical 0 1
HMM —0.36 | 0.99

G-scheme | 0.00967 | 0.99
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. and recall also some results presented in the benchmark
session...



Thanks.



Thanks.

» to lunch!
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