

Weierstraß-Institut für Angewandte Analysis und Stochastik

Alexander Linke

The Discretization of Coupled Flows and the Problem of Mass Conservation

Maximum Principle and Mass Conservation

We are interested in the solution of viscous conservation laws

$$c_t - \nabla \cdot (D\nabla c - c\mathbf{u}) = 0$$

in bounded, polyhedral domains $\Omega \subset \mathbb{R}^d$ with d = 1, 2, 3.

We further know that there is a weak maximum principle for the following equation

 $u_t + Au = 0$ in Ω for t > 0

with u = g on $\partial\Omega$, $t \ge 0$, u(0) = v in Ω . Here

$$Au = -\sum_{k,l=1}^{d} \frac{\partial}{\partial x_k} \left(a_{kl} \frac{\partial u}{\partial x_l} \right) + \sum_{k=1}^{d} b_k \frac{\partial u}{\partial x_k},$$

where the coefficients $a_{kl}, b_k \in C^d(\overline{\Omega})$ are uniformly continuous and $a_{kl}(\mathbf{x})$ is a symmetric and uniformly positive definite matrix on $\overline{\Omega}$.

Maximum principle: For $Q_T = \Omega \times (0, T)$, T > 0 the maximum and the minimum of a solution $u \in C^2(Q_T) \cap C(\bar{Q_T})$ over $\bar{Q_T}$ occurs on the parabolic boundary $(\partial \Omega \times [0, T]) \cup \Omega \times \{t = 0\}.$

Necessary condition that the above conservation law is of this form: $\nabla \cdot \mathbf{u} = 0!$

The Voronoi FVM

Discretization of a viscous conservation law for c: vertex-based finite volumes with

- Voronoi-boxes as control volumes,
- hinspace ightarrow we need boundary conforming Delaunay triangulations in 3D

FVM approximates:

$$\int_{K} c_{t} dx = \int_{K} \nabla \cdot (D\nabla c - c\mathbf{u}) dx$$
$$= \sum_{L \in \text{Neighbour}(K)} \int_{F_{KL}} (D\nabla c - c\mathbf{u}) \cdot \mathbf{n} ds$$
$$\approx -\sum_{L \in \text{Neighbour}(K)} |F_{KL}| g(c_{K}, c_{L}, U_{KL}, d_{KL}).$$

Here, a steady convection-diffusion with $D = 1.0 \times 10^{-12}$ is coupled with a backward-facing Stokes problem. On the left, we have a divergence-free FE method coupled with a FVM. On the right, we have Taylor-Hood coupled with the same FVM.

For the vertex-based finite volume discretization, a maximum principle can be proven, if the discretized operator A is a **M-Matrix**:

- ▷ positive diagonal entries
- ▷ non-positive off-diagonal entries
- ▷ non-negative row sums
- ▷ at least one positive row sum

Example: Positivity in the elliptic case: M-Matrices are inverse-positive, i.e., $A^{-1} \ge 0! \Rightarrow$

$$Ax = b \qquad \Leftrightarrow \\ x = A^{-1}b \qquad \Rightarrow \\ b \ge 0 \qquad \Rightarrow \qquad x \ge 0.$$

Example: Convective-Diffusive Flux Splitting (I)

$$-\int_{K} \nabla \cdot (D\nabla c - c\mathbf{u}) \, dx \approx \sum_{L \in \text{Neighbour}(K)} |F_{KL}| \, g(c_K, c_L, U_{KL}, d_{KL})$$
$$= \sum_{L \in \text{Neighbour}(K)} |F_{KL}| \left(D \frac{c_K - c_L}{d_{KL}} + c_K U_{KL}^+ - c_L U_{KL}^- \right),$$

with $a^+ := \max(a, 0)$ and $a^- = -\min(a, 0)$.

This **simple upwinding** yields a **first-order scheme** with respect to the consistency of the flux approximation.

For each control volume K, we get **one row** of the stiffness-matrix. Obviously, we have **positive diagonal entries**, and **non-positive off-diagonal** entries.

Example: Convective-Diffusive Flux Splitting (II)

For the third condition of a **non-negative row sum**, we compute

$$\sum_{L \in \text{Neighbour}(K)} |F_{KL}| \left(D \frac{1-1}{d_{KL}} + U_{KL}^+ - U_{KL}^- \right) = \sum_{L \in \text{Neighbour}(K)} |F_{KL}| U_{KL}.$$

This just means $\nabla_h \cdot \mathbf{U} = 0$ in the finite volume sense.

The fourth condition is fulfilled due to appropriate boundary conditions. \Rightarrow Convective-diffusive flux splitting yields a M-Matrix, if the flow field is divergence-free in the FVM-sense. This result can be generalized to some nonlinear viscous conservation laws. For the coupling of fluid flow and the FVM for a viscous conservation law, several possibilities exist.

First approach:

 \triangleright use a H(div)-conforming **AND** divergence-free FEM for an incompressible fluid (Darcy, Navier-Stokes equations, ...) and obtain a divergence-free velocity field u_h ;

possible methods:

Scott-Vogelius, divergence-free DG by Kanschat et al.

- ▷ compute in every time step an average velocity $U_{KL} = \frac{1}{|F_{KL}|} \int_{F_{KL}} \mathbf{u}_h \cdot \mathbf{n}_{KL} dS$ over each Voronoi face F_{KL} ;
- ▷ associate the value U_{KL} to the edge joining the control volumes K and L; then a finite volume flow field is defined along all Delaunay edges which is divergence-free in the FVM sense;
- ▷ then the maximum principle holds for the discretized viscous conservation law

Geometric Operations for the Coupling Procedure

The algorithm for the coupling in 3D works as follows:

- \triangleright triangulate each Voronoi face F_{KL} into triangles T_i
- \triangleright extend each triangle T_i to a plane P_i
- \triangleright compute the cutting figure Q between the plane P_i and the neighboring tetrahedra (quadrangle)
- \triangleright compute the cutting figure *H* between *Q* and *T_i* (hexagon)
- \triangleright triangulate the hexagon H
- using this triangulation, compute exactly

$$U_{KL} := \frac{1}{|F_{KL}|} \int_{F_{KL}} \mathbf{u}_h \cdot \mathbf{n} \, ds.$$

Example: The Incompressible Navier-Stokes Equations in Strong Form

The incompressible Navier-Stokes equations:

$$\mathbf{u}_t - \frac{1}{\mathrm{Re}} \Delta \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \mathbf{f}, \quad \text{in } \Omega$$
$$-\nabla \cdot \mathbf{u} = 0 \quad \text{in } \Omega,$$
$$\mathbf{u} = 0 \quad \text{on } \partial \Omega.$$

This nonlinear partial differential equation describes the time evolution of the velocity field $\mathbf{u}(\mathbf{x}, t)$ within the domain Ω .

Example: The Scott-Vogelius FEM for the Incompressible Navier-Stokes Equations

For a conforming Galerkin mixed FEM discretization we choose discrete spaces $\mathbf{V}_h \subset H_0^1(\Omega)^d$ and $Q_h \subset L_{2,0}(\Omega)$ and pose the following discrete problem: We look for (\mathbf{u}_h, p_h) , with $\mathbf{u}_h \in \mathbf{V}_h$, $p_h \in Q_h$,

$$(\partial_t \mathbf{u}_h, \mathbf{v}_h) + \frac{1}{\text{Re}} (\nabla \mathbf{u}_h, \nabla \mathbf{v}_h) + (\mathbf{u} \cdot \nabla \mathbf{u}_h, \mathbf{v}_h) - (p_h, \nabla \cdot \mathbf{v}_h) - (\nabla \cdot \mathbf{u}_h, q_h) = (\mathbf{f}, \mathbf{v}_h),$$

for all test functions $\mathbf{v}_h \in \mathbf{V}_h$, $q_h \in Q_h$.

On shape regular and locally quasi-uniform macro element meshes for (d=2, 3), we use $V_h = (P_d)^d$ and $Q_h = P_{d-1}^{\text{disc}}$, the classical Scott-Vogelius element.

The Scott-Vogelius element is **LBB-stable on macro element meshes** and **divergence-free** (testing by $\mathbf{v}_h = \mathbf{0}$, and $q_h = \nabla \cdot \mathbf{u}_h$)!

But the use of divergence-free FE methods is expensive. Second approach:

- ▷ **use a non-divergence-free FEM** for the incompressible fluid flow (Darcy, Navier-Stokes, ...) and compute a finite volume flow field U_{KL} along the Delaunay edges as above;
- ▷ in the FVM discretization for the elliptic operator $-\nabla \cdot (D\nabla c c\mathbf{u})$ subtract a discretized term $c\nabla \cdot \mathbf{u}$;
- ▷ then a discretization for $-D\Delta c + \mathbf{u} \cdot \nabla c$ arises, and the discrete maximum principle holds at least for a simple upwinding of the convection term, as shown above

Discrete Coupling between Fluid Flow and FVM (III)

Use of divergence-free FE methods is expensive. **Third approach**:

- \triangleright use a non-divergence-free FE method in order to obtain an incompressible fluid (Darcy, Navier-Stokes, ...) and apply a discrete L^2 or a discrete H^1 projection onto the Delaunay grid (depending on the boundary conditions), in order to obtain a discretely divergence-free velocity field along the Delaunay edges
- ▷ idea: use a Darcy-like equation for the L^2 projection, resp., a Stokes-like equation for the H^1 projection:

$$\mathbf{v} + \nabla \phi = \mathbf{u}$$
$$-\nabla \cdot \mathbf{v} = 0;$$

assuming appropriate boundary conditions, we obtain

$$(\nabla \phi, \nabla \psi) = (\mathbf{u}, \nabla \psi),$$
$$\mathbf{v} = \mathbf{u} - \nabla \phi.$$

▷ The projection only needs integration along Delaunay edges!

Discrete Coupling between Fluid Flow and FVM (IV)

Design a finite volume method resp. covolume method for incompressible fluids on Delaunay meshes such that the natural FVM condition for mass conservation

$$\sum_{L \in \text{Neighbour}(K)} |F_{KL}| U_{KL} = 0$$

is fulfilled on every control volume K.

A natural formulation would yield velocitites which are given along Delaunay edges.

There is an appropriate approach for **Darcy's law in the case of an isotropic permeability tensor**, by solving a potential equation. The velocity field can be obtained through the gradient of the potential along the Delaunay edges.

But what about the Stokes and Navier-Stokes equations, and coupled incompressible fluids? Can we derive a method with velocity variables along the Delaunay edges?

For the Stokes equations the answer is positive, but for the Navier-Stokes equations the convection term makes some trouble. \Rightarrow In the case of the Navier-Stokes equations use, e.g., a collocated scheme with pressure stabilization!

An Application from Electrochemistry —- Electrochemical Flow Cells

Differential electrochemical mass spectroscopy (**DEMS**) is a tool to gain information on **catalytic reactions in fuel cell** catalytic layers.

Classically, theoretical interpretations of electrochemical experiments are based on **asymptotic analysis** for **special experimental situations**, where PDE models in 1D or 2D are valid.

Remarks:

- Experimental devices used in practice often differ from the model devices
- 3D models for the experiments based on PDEs are rarely used by electrochemists

A Calibration Experiment — the Limiting Current

Hydrogen H_2 is dissolved in dilute sulphuric acid H_2SO_4 . An electrode reaction takes place at a platinum Pt electrode

$$H_2 \to 2H^+ + 2e^-.$$

At the electrode, the electrons e^- enter an **external circuit** and recombine with the protons H^+ at a counter electrode outside of the domain of consideration.

The *Limiting Current* experiment clears up for a given experimental device, **at which flow rates asymptotic flow behaviour** can be expected.

The Electrochemical Model for the Limiting Current Experiment

Model assumptions:

- ▷ 3d stationary incompressible Navier-Stokes equation for fluid
- \triangleright 3d stationary convection-diffusion equation for H_2 concentration
- influence of density variations ignored (dissolved species dilute)
- ▷ infinitely fast H_2 oxidation \Rightarrow homogeneous Dirichlet boundary condition c=0 on electrode S_E

$$-\frac{1}{\operatorname{Re}}\Delta\mathbf{u} + (\mathbf{u}\cdot\nabla)\,\mathbf{u} + \nabla p = \mathbf{0} \qquad \qquad \mathbf{x}\in\Omega$$

$$-\nabla \cdot \mathbf{u} = 0 \qquad \qquad \mathbf{x} \in \Omega$$

$$-\nabla \cdot (D\nabla c - c\mathbf{u}) = 0 \qquad \qquad \mathbf{x} \in \Omega$$

Measured quantity: Anodic current

$$I_E = 2F \int_{S_E} \left(D\nabla c - c \mathbf{u} \right) \cdot \mathbf{n} ds = 2F \int_{S_E} D\nabla c \cdot \mathbf{n} ds,$$

with the Faraday constant F.

Some Specifics Concerning the Simulation of the Jusys Flow Cell

- reduction of the computational domain by symmetry assumptions
- anisotropic, flow-aligned mesh near to the electrode (parabolic boundary layer)
- ▷ adaptivity at the transition zones inlet bulk domain, outlet bulk domain
- \triangleright height of domain not exactly known ($h \in [0.05, 0.1]$ mm)
- \triangleright Reynolds number: experiments [3, 60], simulation in [1.4, 240]
- \triangleright Peclet number: experiments $[9.3 \cdot 10^2, 1.7 \cdot 10^4]$, simulation $[4.2 \cdot 10^2, 6.8 \cdot 10^4]$

Qualitative Properties of the Numerical Results

inlet concentration: $6.2 \cdot 10^{-1} \text{mol}/m^3$;

color scale: concentrations $\sim [0, 6.89 \cdot 10^{-1}] \text{ mol}/m^3$;

FVM-Scott-Vogelius fulfills discrete maximum principle

FVM-Taylor-Hood violates it;

Taylor-Hood: divergence-error at edge-singularity transported through the domain, see isoline $c=6.2\cdot 10^{-1}\,{\rm mol}/m^3$

Comparison: Numerical Results & Experiment

FVM-Scott-Vogelius limiting current vs. flow rate, assuming that height of the domain is $h \in \{0.05, 0.075, 0.1\}$ mm

 \Rightarrow Calibration experiment reproduced well, assuming that the height of the domain is h = 0.075mm.

Limiting current by Taylor-Hood yields very similar results, probably since functional is evaluated far away from singularities.

Outlook

- \triangleright Implementation of coupling with discrete L^2 and H^1 projection;
- especially implementation of steady Stokes solver (generalization of MAC scheme);
- Implementation of a collocated solver for the incompressible Navier-Stokes equations within PDELIB (FEM-FVM ?)
- Applications