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Maximum Principle and Mass Conservation

We are interested in the solution of viscous conservation laws

ct −∇ · (D∇c− cu) = 0

in bounded, polyhedral domains Ω ⊂ Rd with d = 1, 2, 3.
We further know that there is a weak maximum principle for the following equation

ut +Au = 0 in Ω for t > 0

with u = g on ∂Ω, t ≥ 0, u(0) = v in Ω.
Here

Au = −
d∑

k,l=1

∂

∂xk

(
akl

∂u

∂xl

)
+

d∑
k=1

bk
∂u

∂xk
,

where the coefficients akl, bk ∈ Cd(Ω̄) are uniformly continuous and akl(x) is a
symmetric and uniformly positive definite matrix on Ω̄.
Maximum principle: For QT = Ω× (0, T ), T > 0 the maximum and the minimum of
a solution u ∈ C2(QT ) ∩ C(Q̄T ) over Q̄T occurs on the parabolic boundary
(∂Ω× [0, T ]) ∪ Ω× {t = 0}.
Necessary condition that the above conservation law is of this form: ∇ ·u = 0!
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The Voronoi FVM

Discretization of a viscous conservation law for c: vertex-based finite volumes with
. Voronoi-boxes as control volumes,
. ⇒ we need boundary conforming Delaunay triangulations in 3D

FVM approximates:∫
K

ctdx =
∫

K

∇ · (D∇c− cu) dx

=
∑

L∈Neighbour(K)

∫
FKL

(D∇c− cu) ·nds

≈ −
∑

L∈Neighbour(K)

|FKL| g(cK , cL, UKL, dKL).
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An Example

Weak mass conservation can lead to considerable errors.

Here, a steady convection-diffusion with D = 1.0× 10−12 is coupled with a
backward-facing Stokes problem. On the left, we have a divergence-free FE method
coupled with a FVM. On the right, we have Taylor-Hood coupled with the same FVM.
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The Discrete Maximum Principle and the Voronoi FVM

For the vertex-based finite volume discretization, a maximum principle can be proven,
if the discretized operator A is a M-Matrix:

. positive diagonal entries

. non-positive off-diagonal entries

. non-negative row sums

. at least one positive row sum

Example: Positivity in the elliptic case: M-Matrices are inverse-positive, i.e.,
A−1 ≥ 0! ⇒

Ax =b ⇔
x =A−1b ⇒

b ≥ 0 ⇒ x ≥ 0.
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Example: Convective-Diffusive Flux Splitting (I)

−
∫

K

∇ · (D∇c− cu) dx ≈
∑

L∈Neighbour(K)

|FKL| g(cK , cL, UKL, dKL)

=
∑

L∈Neighbour(K)

|FKL|
(
D
cK − cL
dKL

+ cKU
+
KL − cLU

−
KL

)
,

with a+ := max(a, 0) and a− = −min(a, 0).
This simple upwinding yields a first-order scheme with respect to the consistency
of the flux approximation.
For each control volume K, we get one row of the stiffness-matrix. Obviously, we
have positive diagonal entries, and non-positive off-diagonal entries.
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Example: Convective-Diffusive Flux Splitting (II)

For the third condition of a non-negative row sum, we compute∑
L∈Neighbour(K)

|FKL|
(
D

1− 1
dKL

+ U+
KL − U−KL

)
=

∑
L∈Neighbour(K)

|FKL|UKL.

This just means ∇h ·U = 0 in the finite volume sense.

The fourth condition is fulfilled due to appropriate boundary conditions.
⇒ Convective-diffusive flux splitting yields a M-Matrix, if the flow field is
divergence-free in the FVM-sense. This result can be generalized to some
nonlinear viscous conservation laws.
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Discrete Coupling between Fluid Flow and FVM (I)

For the coupling of fluid flow and the FVM for a viscous conservation law, several
possibilities exist.
First approach:

. use a H(div)-conforming AND divergence-free FEM for an incompressible fluid
(Darcy, Navier-Stokes equations, . . . ) and obtain a divergence-free velocity field
uh;
possible methods:
Scott-Vogelius, divergence-free DG by Kanschat et al.

. compute in every time step an average velocity UKL = 1
|FKL|

∫
FKL

uh ·nKLdS
over each Voronoi face FKL;

. associate the value UKL to the edge joining the control volumes K and L; then
a finite volume flow field is defined along all Delaunay edges which is
divergence-free in the FVM sense;

. then the maximum principle holds for the discretized viscous conservation law
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Geometric Operations for the Coupling Procedure

The algorithm for the coupling in 3D works as follows:
. triangulate each Voronoi face FKL into triangles Ti

. extend each triangle Ti to a plane Pi

. compute the cutting figure Q between the plane Pi and the neighboring
tetrahedra (quadrangle)

. compute the cutting figure H between Q and Ti (hexagon)

. triangulate the hexagon H

. using this triangulation, compute exactly

UKL :=
1

|FKL|

∫
FKL

uh ·nds.
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Example: The Incompressible Navier-Stokes Equations in Strong Form

The incompressible Navier-Stokes equations:

ut −
1

Re
∆u + u · ∇u +∇p = f , in Ω

−∇ ·u = 0 in Ω,
u = 0 on ∂Ω.

This nonlinear partial differential equation describes the time evolution of the velocity
field u(x, t) within the domain Ω.
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Example: The Scott-Vogelius FEM for the Incompressible Navier-Stokes Equations

For a conforming Galerkin mixed FEM discretization we choose discrete spaces
Vh ⊂ H1

0 (Ω)d and Qh ⊂ L2,0(Ω) and pose the following discrete problem: We look
for (uh, ph), with uh ∈ Vh, ph ∈ Qh,

(∂tuh,vh)+
1

Re
(∇uh,∇vh)+(u · ∇uh,vh)− (ph,∇ ·vh)− (∇ ·uh, qh) = (f ,vh),

for all test functions vh ∈ Vh, qh ∈ Qh.
On shape regular and locally quasi-uniform macro element meshes for (d=2, 3), we
use Vh = (Pd)d and Qh = P disc

d−1 , the classical Scott-Vogelius element.

The Scott-Vogelius element is LBB-stable on macro element meshes and
divergence-free (testing by vh = 0, and qh = ∇ ·uh)!
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Discrete Coupling between Fluid Flow and FVM (II)

But the use of divergence-free FE methods is expensive.
Second approach:

. use a non-divergence-free FEM for the incompressible fluid flow (Darcy,
Navier-Stokes, . . . ) and compute a finite volume flow field UKL along the
Delaunay edges as above;

. in the FVM discretization for the elliptic operator −∇ · (D∇c− cu) subtract a
discretized term c∇ ·u;

. then a discretization for −D∆c+ u · ∇c arises, and the discrete maximum
principle holds at least for a simple upwinding of the convection term, as shown
above
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Discrete Coupling between Fluid Flow and FVM (III)

Use of divergence-free FE methods is expensive.
Third approach:

. use a non-divergence-free FE method in order to obtain an incompressible fluid
(Darcy, Navier-Stokes, . . . ) and apply a discrete L2 or a discrete H1 projection
onto the Delaunay grid (depending on the boundary conditions), in order to
obtain a discretely divergence-free velocity field along the Delaunay edges

. idea: use a Darcy-like equation for the L2 projection, resp., a Stokes-like
equation for the H1 projection:

v +∇φ = u

−∇ ·v = 0;

. assuming appropriate boundary conditions, we obtain

(∇φ,∇ψ) = (u,∇ψ),
v = u−∇φ.

. The projection only needs integration along Delaunay edges!
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Discrete Coupling between Fluid Flow and FVM (IV)

Design a finite volume method resp. covolume method for incompressible fluids on
Delaunay meshes such that the natural FVM condition for mass conservation∑

L∈Neighbour(K)

|FKL|UKL = 0

is fulfilled on every control volume K.

A natural formulation would yield velocitites which are given along Delaunay
edges.
There is an appropriate approach for Darcy’s law in the case of an isotropic
permeability tensor, by solving a potential equation. The velocity field can be
obtained through the gradient of the potential along the Delaunay edges.

But what about the Stokes and Navier-Stokes equations, and coupled
incompressible fluids? Can we derive a method with velocity variables along the
Delaunay edges?
For the Stokes equations the answer is positive, but for the Navier-Stokes
equations the convection term makes some trouble. ⇒ In the case of the
Navier-Stokes equations use, e.g., a collocated scheme with pressure stabilization!
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An Application from Electrochemistry —- Electrochemical Flow Cells

teflon spacer
Ar flux

working chamber

working electrode

electrolyte inlet

electrolyte outlet

+ counter electrode

reference and

counter electrode

six capillaries
mass spectroscope

MS compartment

Differential electrochemical mass spectroscopy (DEMS) is a tool to gain information
on catalytic reactions in fuel cell catalytic layers.
Classically, theoretical interpretations of electrochemical experiments are based on
asymptotic analysis for special experimental situations, where PDE models in 1D
or 2D are valid.
Remarks:

. Experimental devices used in practice often differ from the model devices

. 3D models for the experiments based on PDEs are rarely used by
electrochemists
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A Calibration Experiment — the Limiting Current

Hydrogen H2 is dissolved in dilute sulphuric acid H2SO4. An electrode reaction
takes place at a platinum Pt electrode

H2 → 2H+ + 2e−.

At the electrode, the electrons e− enter an external circuit and recombine with the
protons H+ at a counter electrode outside of the domain of consideration.

The Limiting Current experiment clears up for a given experimental device, at which
flow rates asymptotic flow behaviour can be expected.
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The Electrochemical Model for the Limiting Current Experiment

Model assumptions:
. 3d stationary incompressible Navier-Stokes equation for fluid
. 3d stationary convection-diffusion equation for H2 concentration
. influence of density variations ignored (dissolved species dilute)
. infinitely fast H2 oxidation ⇒ homogeneous Dirichlet boundary condition

c=0 on electrode SE

− 1
Re

∆u + (u · ∇)u +∇p = 0 x ∈ Ω

−∇ ·u = 0 x ∈ Ω
−∇ · (D∇c− cu) = 0 x ∈ Ω

Measured quantity: Anodic current

IE = 2F
∫

SE

(D∇c− cu) ·nds = 2F
∫

SE

D∇c ·nds,

with the Faraday constant F .
Discretization of Coupled Flows Porquerolles, 2009-06-25 17 (21)



Some Specifics Concerning the Simulation of the Jusys Flow Cell

. reduction of the computational domain by symmetry assumptions

. anisotropic, flow-aligned mesh near to the electrode (parabolic boundary
layer)

. adaptivity at the transition zones inlet - bulk domain, outlet - bulk domain

. height of domain not exactly known (h ∈ [0.05, 0.1]mm)

. Reynolds number: experiments [3, 60], simulation in [1.4, 240]

. Peclet number: experiments [9.3 · 102, 1.7 · 104], simulation [4.2 · 102, 6.8 · 104]
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Qualitative Properties of the Numerical Results

inlet concentration: 6.2 · 10−1mol/m3;
color scale: concentrations ∼ [0, 6.89 · 10−1] mol/m3;
FVM-Scott-Vogelius fulfills discrete maximum principle
FVM-Taylor-Hood violates it;
Taylor-Hood: divergence-error at edge-singularity transported through the domain,
see isoline c = 6.2 · 10−1 mol/m3
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Comparison: Numerical Results & Experiment

FVM-Scott-Vogelius limiting current vs. flow rate, assuming that height of the
domain is h ∈ {0.05, 0.075, 0.1}mm
⇒ Calibration experiment reproduced well, assuming that the height of the
domain is h = 0.075mm.
Limiting current by Taylor-Hood yields very similar results, probably since
functional is evaluated far away from singularities.
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Outlook

. Implementation of coupling with discrete L2 and H1 projection;

. especially implementation of steady Stokes solver (generalization of MAC
scheme);

. Implementation of a collocated solver for the incompressible Navier-Stokes
equations within PDELIB (FEM-FVM ?)

. Applications
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