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INTRODUCTION

"Marker and Cell” scheme for the Stokes problem

—Au+Vp = f, (1)
Vou = 0 (2)

Unknowns : pressure at the centers of the cells and normal
components of the velocity at the edges
Equations : discretization of (2) on the cells and discretization of
the normal component of (1) on the edges.
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Associated equations

Wil = Yij | Vij+l = Vi

Az Ay =0

TUig1 o+ QUi T Uic1y | WGl 20 Ui | Pig — Picly (F)s;
Az? Ay? Ax T

~Uit1 + i~ Viclj | Vi1 + 25— Vi1, Pij ~Pig-1 _ ey
Ax? * Ay? + Ay (fy)ij

Finite element interpretation (Girault - Raviart 79)




KES EQUATIONS

Finite volume interpretation and generalization to triangular
(Delaunay) meshes by Nicolaides and coworkers (90 - 92 - 96).

Remark : —Au=-VV - -u+V xV xu.

So that the Stokes may be written

VxVxu—-VV.-u+Vp = f, (3)
V-u = 0. (4)

Like in the MAC scheme, unknowns : p at the circumcenters of the
cells and u - n on the edges.
Like in the MAC scheme, equations : integration of (4) over the
cells and finite differences on the normal component of (3) on the
edges.
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Properties
e Duality of the operators V- and —V,; :
(Vi -u,p)g = —(u,Vyp)s+ B.T.
e Vi - (Vox)=0and Vg« x V, =0
e Discrete Hodge decomposition (here in a simply connected
domain)

For a given set of edge normal velocities v,, there exists a unique
set of cell and vertex values (¢x), (¥x+) such that

oL — Ok n Y — P
dy Ly
with ¢ = 0 at the midpoints of boundary edges and
> i+ [P b =0

Proof : Euler's formula (E =T+ V — 1) then Vg - (V,x) =0,
duality between V- and —V, and injectivity of V.

Vg = VU(¢K) + Vg X (wK*) =
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(GENERALIZATION TO NON-ORTHOGONAL MESHES

Orthogonal meshes

General meshes

p at the centers
w at the vertices
u - n at the edges

p at the centers and at the vertices
w at the centers and at the vertices
both components of u at the edges

V - u = 0 primal mesh
w =V X u dual mesh
Normal components at the edges
of the momentum equation

V -u = 0 primal and dual meshes
w = V x u primal and dual meshes
both components
of the momentum equation
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Primal and dual meshes

F1G.: Primal and associated dual meshes
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Diamond mesh

F1aG.: Interior and boundary diamond cells
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DISCRETE DIFFERENTIAL OPERATORS

Discrete gradient and curl
S

~ T _ T o

V¢G11Gzz ~ ¢i2_¢i1 G'l.'}\l,,,A,J_V” N
Vo 5Ee ~ ob b inn
¢ k1Pky ¢k2 ¢k1 G

Skz

We obtain the definition of the discrete gradient V2 on D;
1

(Vi 9); = 2105 [0, — o] 1451 + [0, — 6i,] 144]n; }
and that of the curl V}?x on Dj

1 / /
(VPx0)i = —gypm {10k, — k] 14515 + [of - ol 14s1n} }
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Discrete divergence operator

Definition of the discrete divergence
on the primal cells :

1
(Vi - u)i = T > 1Ajlu; - ny;
" jev)

Definition of the discrete divergence “ni
on the inner dual cells : \

1 - l\\\// . ,’/
(VE - u)p == > [Affu;- ny T Ve
| Py| Py,
je&(k) o
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Definition of the discrete divergence on the boundary dual cells :

1 1
(V5 - u)g = o2 > Ayl Y 514l -0
jeE(k) JEE(k)NOR

We have the following discrete Green formula

(VPO + (- n6)an = 5 [(VE - w.6")r + (V] - ,07)p]



Discrete curls

We define in the same way a discrete scalar curl operator on primal
and dual cells :

1
(Vi x u)i = 7] > 1Ayl
jevi)

1
(VE x u) = — Z | A% |uj -

[P jeE(k)

1 1
(VE x u)p = — Z |A%uj -t + Z _|Aj|uj'tj

|Pe| \
JEE(k) JEE(k)NID

We have the following discrete Green formula

(4, VP % )+ (0 t,0)on = 5 [(VF x . 6")r + (V] x u,6")p]
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PROPERTIES OF THE OPERATORS

For all ¢ = (gb;fp,qbf),
(VE- (VP x¢))i =0 ; (VEx (VP ¢))i=0 VT,
(VE(VExo))e=0; (Vi x(VE @)k =0 VP ¢T

Hodge decomposition (on simply connected domains) : for all
u € (R7)?, there exist ¢ and ¢ such that ¢» = 0 on I and ¢ with
vanishing mean value on  and, for all diamond cells

uj = (V7 0); + (V5 x ¢); .

The decomposition is orthogonal
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APPLICATION TO STOKES

Vorticity velocity pressure formulation

VXVXxu—-VV-u+Vp=f V.-u=0 inQ
with u-n=0, Vxu=0 on lNand [,p=0

(also works for u - t and p given on the boundary.)

1st step :Hodge decomposition of f :
(VP xw); +(VPp), = £, Vjiel[lJ],

T _ P _
Wiel41, 1407 = Ykelk—Jr+1,k] = O

oIl = ) Rl =0

1€[1,1] ke[1,K]
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L APPLICATION TO THE M

Pressure/Vorticity : 2 Laplacians

VOI’thlty (w wlls)ZG[l I+Jr] kE[l K] such that
—(VF-VPw), = (VI xf), ViellI]
—(VP.VPw), = (VP xf)y, Vke[l,K—J

T _ P _
Wielr41,1+7] = Ykelk—Jr+1,K] = 0

Pressure : (p!, p! )Ze[l 1+J7),ke[1, k] Such that
(VI .VPp), = (vT f);, Vie[l,1]

(vﬁ'vh ) = ( )k7 VkE[l,K]
(VPp);j-nj = f-nj, Vje[J—J +1,J]

domlpl = > Rk =0

1€[1,1] ke[1,K]




EQUATIONS

2nd step : Velocity : Solution of a "div-curl” problem

V-u=0, Vxu=w inQandu-n=0onT.
Unknowns : (u;)

(VF.u)y; = 0, VT;
(VP u), = 0, VP,
(VI xu);, = o, vT;

(VP xu),y = wi, VP, ¢T
u;-n; = 0, VDJ'EF

Hodge decomposition : u; = (VP¢); + (VP x ¢);
where ¢ has vanishing mean value and 1) vanishes on '
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The unknowns are (¢a,I+Jr]’¢ﬁ,K]) and (1/)[2;,1+Jr]>1/)[1i,1<])'

(Vi -VP¢) = 0, Vi
(VP .- VPo) = 0, Vk
(VRe);-n; = 0, Vjerl

D ITlel = Y |Bler =0,

1€[1,1] ke[1,K]
(and so ¢ identically zero) and
(VEx VP xvy), = !, Vi
(VEXVE xy)y = wf, VE¢r
=yl =0, VielVkerl
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Numerical analysis of the scheme

Reformulation into three discrete Laplacians (p, w and ). The
numerical analysis has been conducted and we get, on arbitrary
meshes (with a condition on the angles of the diamond cells) and
under regularity conditions of p, w and . (Domelevo Omnes
MZ2AN 2005, Delcourte Domelevo Omnes SIAM J. Num. Anal.

2007)
theoretical | numerical
p (Vp) 1(1) 2(1)
w (V xw) 1(1) 2 (1)
v (Vxy)| 1(1) 2(1)
u 1 1

Superconvergence at the order 1.5 of Vp, V X w, V X ¢ and u
and at the order 2 of p, w and 1) on regularly refined meshes.
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Pressure velocity formulation for Dirichlet B.C. on the velocity
u=20onT, przo

Hypothesis on the primal mesh : boundary primal cells have only
one edge on the boundary.
Unknowns : (u,p) = (uj, p!, pl)

(VP x Vit xu); = (VEVYT cu); + (VEp); = €7, VD ¢T
(Vi -u)i = 0, VT,
(VF u), = 0, VPR,
uj = 0, VD;erl
oImlpi = > IPlpy = 0
1€[1,1] ke[l,K]

Existence and uniqueness : thanks to the div-curl problem for the
velocity and to the hypothesis on the mesh for the pressure
uniqueness. Equivalence with a discrete bilaplacian on . No

numerical analvsis up to now.
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NUMERICAL RESULTS FOR STOKES WITH DIRICHLET
BOUNDARY CONDITIONS

Q =[-0.5;0.5)2

- exp(z) cos(my) _
v= < x sin(my) + cos(mx) > p = zy exp(x) cos(y)

V-u#0inQ and u#0onTl
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Non conforming meshes at the center
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Non conforming meshes
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EXTENSION TO STATIONARY NAVIER-STOKES

—Au4+u-Vu+Vp=f, V.-u=0in Q

andu=0onT, pr:0.

2
. u . .
Since u - Vu = V(?) +(V X u) u x e, and using the "Bernoulli
u2
pressure” ™ =p+ o we obtain :

—VV-u4+VxVxu+(Vxu)uxe,+Vr=Ff V-u=0inQ

andu=0onTl, [,m=0.

Unknowns : (u,7) = (u;, 7, 7f); an iterative procedure is used



THE STOKES EQUATIONS

TP _ n TP n
(vi?xvh xXu )j_(vf?vh -u);

+(V x u"_l)‘Dj u' x e, + (V") = fP, VD;¢T
(VE.u"); = 0, VT;
(Vi -u"), = 0, VP
uj = 0, VDjel
Y ITlal= ) |Alw =0
1€[1,1] ke[1,K]
Existence and uniqueness of the solution (u;-L, 77?, W,f : similarly to

the Stokes problem using the fact that u; x e, -u; = 0.
0 o
We deduce (p!, pl’) by computing : p =7 — %, where u is a
quadrature formula defined on the primal and dual cells, using the
u; defined on the diamond cells. Then, the sets (p!, pl) are

projected so that they have a vanishing mean value.
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CONCLUSION AND PERSPECTIVES

]

Discrete differential operators on arbitrary meshes

(2

Properties analogous to continuous operators

(2

Derivation of a priori error estimations for the Stokes
problem with non-standard B.C.

(2

A priori and a posteriori error estimations for Stokes -
Navier-Stokes

©

Extension to the non stationary Navier-Stokes problem
Extension to 3D

(2
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