
A finite volume method for the Stokes

equations

S. Delcourte1,2, K. Domelevo3, P. Omnes1

1. CEA Saclay
2. Institut Camille Jordan, Université Claude Bernard, Lyon I
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Introduction

Introduction

”Marker and Cell” scheme for the Stokes problem

−∆u + ∇p = f, (1)

∇ · u = 0 (2)

Unknowns : pressure at the centers of the cells and normal
components of the velocity at the edges

Equations : discretization of (2) on the cells and discretization of
the normal component of (1) on the edges.
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Introduction

Associated equations

ui+1,j − ui,j

∆x
+
vi,j+1 − vi,j

∆y
= 0

−ui+1,j + 2ui,j − ui−1,j

∆x2
+
−ui,j+1 + 2ui,j − ui,j−1

∆y2
+
pi,j − pi−1,j

∆x
= (fx)i,j

−vi+1,j + 2vi,j − vi−1,j

∆x2
+
−vi,j+1 + 2vi,j − vi,j−1

∆y2
+
pi,j − pi,j−1

∆y
= (fy)i,j

Finite element interpretation (Girault - Raviart 79)
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Finite volume interpretation and generalization to triangular
(Delaunay) meshes by Nicolaides and coworkers (90 - 92 - 96).

Remark : −∆u = −∇∇ · u + ∇×∇× u.

So that the Stokes may be written

∇×∇× u −∇∇ · u + ∇p = f, (3)

∇ · u = 0. (4)

Like in the MAC scheme, unknowns : p at the circumcenters of the
cells and u · n on the edges.

Like in the MAC scheme, equations : integration of (4) over the
cells and finite differences on the normal component of (3) on the

edges.
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(∇ · u)K =
1

|K|

∫

K

∇ · u =
1

|K|

∫

∂K

u · n ≈
1

|K|

∑

σ⊂∂K

ℓσuσ · nσ,K

∇p·nσ,KL ≈
pL − pK

dσ
; ∇(∇·u)·nσ,KL ≈

(∇ · u)L − (∇ · u)K
dσ

∇× (∇×u) ·nσ,KL = ∇(∇×u) · tσ,KL ≈
(∇× u)L∗ − (∇× u)K∗

ℓσ

l
σ

dσ

tσ
nσ

p

p

K

L

K

L

K

L*

*
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(∇× u)K∗ =
1

|K∗|

∫

K∗

∇× u =
1

|K∗|

∫

∂K∗

u · t

≈
1

|K∗|

∑

σ=K|L⊥σ∗⊂∂K∗

dσuσ · nσ,K

u.n

p

w
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Introduction

Properties

• Duality of the operators ∇K · and −∇σ :
(∇K · u, p)K = −(u,∇σp)σ+ B.T.

• ∇K · (∇σ×) = 0 and ∇K∗ ×∇σ = 0

• Discrete Hodge decomposition (here in a simply connected
domain)

For a given set of edge normal velocities vσ, there exists a unique
set of cell and vertex values (φK), (ψK∗) such that

vσ = ∇σ(φK) + ∇σ × (ψK∗) =
φL − φK

dσ

+
ψL∗ − ψK∗

ℓσ

with φK = 0 at the midpoints of boundary edges and∑
K∗ |PK∗ |ψK∗ = 0

Proof : Euler’s formula (E = T + V − 1) then ∇K · (∇σ×) = 0,
duality between ∇K · and −∇σ and injectivity of ∇σ.
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Generalization

Generalization to non-orthogonal meshes

Orthogonal meshes General meshes

p at the centers p at the centers and at the vertices
ω at the vertices ω at the centers and at the vertices
u · n at the edges both components of u at the edges

∇ · u = 0 primal mesh ∇ · u = 0 primal and dual meshes
ω = ∇× u dual mesh ω = ∇× u primal and dual meshes

Normal components at the edges both components
of the momentum equation of the momentum equation
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Generalization

Primal and dual meshes

Pk

Ti

Sk

Gi

Fig.: Primal and associated dual meshes
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Generalization

Diamond mesh

G

S

Gi 2

S

1i

k

k2

jD1

S

Gi

Sk

k

jD

G

2

1

1

i2

Fig.: Interior and boundary diamond cells
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Discrete differential operators

Discrete gradient and curl

∇φ ·
−−−−→
Gi1Gi2 ≈ φT

i2
− φT

i1

∇φ ·
−−−−→
Sk1

Sk2
≈ φP

k2
− φP

k1

Sk2

Sk1

D j

A’j

n’j

i1G

i2G

A
n
j

j

We obtain the definition of the discrete gradient ∇D
h on Dj

(∇D
h φ)j :=

1

2 |Dj |

{[
φP

k2
− φP

k1

]
|A′

j |n
′
j +

[
φT

i2
− φT

i1

]
|Aj |nj

}

and that of the curl ∇D
h × on Dj

(∇D
h ×φ)j := −

1

2 |Dj|

{[
φP

k2
− φP

k1

]
|A′

j |n
′⊥
j +

[
φT

i2
− φT

i1

]
|Aj |n

⊥
j

}



A finite volume method for the Stokes equations

Definition of discrete differential operators

Discrete divergence operator

Definition of the discrete divergence
on the primal cells :

(∇T
h · u)i :=

1

|Ti|

∑

j∈V(i)

|Aj |uj · nji

nji

A jTi

Definition of the discrete divergence
on the inner dual cells :

(∇P
h · u)k :=

1

|Pk|

∑

j∈E(k)

|A′
j |uj · n′

jk Pk

n’jk
A’ j
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Definition of discrete differential operators

Pk

A’ j n’jk

A j jin

Definition of the discrete divergence on the boundary dual cells :

(∇P
h · u)k :=

1

|Pk|




∑

j∈E(k)

|A′
j |uj · n′

jk +
∑

j∈E(k)∩∂Ω

1

2
|Aj |uj · nj




We have the following discrete Green formula

−(u,∇D
h φ)D + (u · n, φ)∂Ω =

1

2

[
(∇T

h · u, φT )T + (∇P
h · u, φP )P

]
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Definition of discrete differential operators

Discrete curls

We define in the same way a discrete scalar curl operator on primal
and dual cells :

(∇T
h × u)i :=

1

|Ti|

∑

j∈V(i)

|Aj |uj · tji

(∇P
h × u)k :=

1

|Pk|

∑

j∈E(k)

|A′
j |uj · t′jk

(∇P
h × u)k :=

1

|Pk|




∑

j∈E(k)

|A′
j |uj · t′jk +

∑

j∈E(k)∩∂Ω

1

2
|Aj |uj · tj




We have the following discrete Green formula

(u,∇D
h ×φ)D +(u ·t, φ)∂Ω =

1

2

[
(∇T

h × u, φT )T + (∇P
h × u, φP )P

]
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Properties of the discrete operators

Properties of the operators

For all φ = (φT
i , φ

P
k ),

(∇T
h · (∇D

h × φ))i = 0 ; (∇T
h × (∇D

h φ))i = 0 ∀Ti

(∇P
h · (∇D

h × φ))k = 0 ; (∇P
h × (∇D

h φ))k = 0 ∀Pk /∈ Γ

Hodge decomposition (on simply connected domains) : for all
u ∈ (IRJ)2, there exist φ and ψ such that ψ = 0 on Γ and φ with

vanishing mean value on Ω and, for all diamond cells

uj = (∇D
h φ)j + (∇D

h × ψ)j .

The decomposition is orthogonal
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Application to Stokes

Vorticity velocity pressure formulation

∇×∇× u −∇∇ · u + ∇p = f, ∇ · u = 0 in Ω
with u · n = 0, ∇× u = 0 on Γ and

∫
Ω p = 0

(also works for u · t and p given on the boundary.)

1st step :Hodge decomposition of f :





(∇D
h × ω)j + (∇D

h p)j = fj , ∀j ∈ [1, J ],

ωT
i∈[I+1,I+JΓ]

= ωP
k∈[K−JΓ+1,K]

= 0,
∑

i∈[1,I]

|Ti| p
T
i =

∑

k∈[1,K]

|Pk| p
P
k = 0
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Application to the Stokes problem

Pressure/Vorticity : 2 Laplacians

Vorticity : (ωT
i , ω

P
k )i∈[1,I+JΓ],k∈[1,K] such that





−(∇T
h · ∇D

h ω)i = (∇T
h × f)i, ∀i ∈ [1, I]

−(∇P
h · ∇D

h ω)k = (∇P
h × f)k, ∀k ∈ [1,K − JΓ]

ωT
i∈[I+1,I+JΓ]

= ωP
k∈[K−JΓ+1,K]

= 0

Pressure : (pT
i , p

P
k )i∈[1,I+JΓ],k∈[1,K] such that





(∇T
h · ∇D

h p)i = (∇T
h · f)i, ∀i ∈ [1, I]

(∇P
h · ∇D

h p)k = (∇P
h · f)k, ∀k ∈ [1,K]

(∇D
h p)j · nj = fj · nj, ∀j ∈ [J − JΓ + 1, J ]

∑

i∈[1,I]

|Ti| p
T
i =

∑

k∈[1,K]

|Pk| p
P
k = 0
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Application to the Stokes problem

2nd step : Velocity : Solution of a ”div-curl” problem

∇ · u = 0 , ∇× u = ω in Ω and u · n = 0 on Γ.

Unknowns : (uj)

(∇T
h · u)i = 0, ∀Ti

(∇P
h · u)k = 0, ∀Pk

(∇T
h × u)i = ωT

i , ∀Ti

(∇P
h × u)k = ωP

k , ∀Pk /∈ Γ

uj · nj = 0, ∀Dj ∈ Γ

Hodge decomposition : uj = (∇D
h φ)j + (∇D

h × ψ)j
where φ has vanishing mean value and ψ vanishes on Γ
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Application to the Stokes problem

The unknowns are (φT
[1,I+JΓ]

, φP
[1,K]) and (ψT

[1,I+JΓ]
, ψP

[1,K]).





(∇T
h · ∇D

h φ)i = 0, ∀i

(∇P
h · ∇D

h φ)k = 0, ∀k

(∇D
h φ)j · nj = 0, ∀j ∈ Γ

∑

i∈[1,I]

|Ti|φ
T
i =

∑

k∈[1,K]

|Pk|φ
P
k = 0,

(and so φ identically zero) and





(∇T
h ×∇D

h × ψ)i = ωT
i , ∀i

(∇P
h ×∇D

h × ψ)k = ωP
k , ∀k /∈ Γ

ψT
i = ψP

k = 0, ∀i ∈ Γ,∀k ∈ Γ
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Application to the Stokes problem

Numerical analysis of the scheme

Reformulation into three discrete Laplacians (p, ω and ψ). The
numerical analysis has been conducted and we get, on arbitrary

meshes (with a condition on the angles of the diamond cells) and
under regularity conditions of p, ω and ψ. (Domelevo Omnes

M2AN 2005, Delcourte Domelevo Omnes SIAM J. Num. Anal.
2007)

theoretical numerical
p (∇p) 1 (1) 2 (1)

ω (∇× ω) 1 (1) 2 (1)
ψ (∇× ψ) 1 (1) 2 (1)

u 1 1

Superconvergence at the order 1.5 of ∇p, ∇× ω, ∇× ψ and u

and at the order 2 of p, ω and ψ on regularly refined meshes.
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Application to the Stokes problem

Pressure velocity formulation for Dirichlet B.C. on the velocity
u = 0 on Γ,

∫
Ω p = 0

Hypothesis on the primal mesh : boundary primal cells have only
one edge on the boundary.

Unknowns : (u, p) = (uj , p
T
i , p

P
k )

(∇D
h ×∇T,P

h × u)j − (∇D
h ∇T,P

h · u)j + (∇D
h p)j = fD

j , ∀Dj /∈ Γ

(∇T
h · u)i = 0, ∀Ti

(∇P
h · u)k = 0, ∀Pk

uj = 0, ∀Dj ∈ Γ
∑

i∈[1,I]

|Ti| p
T
i =

∑

k∈[1,K]

|Pk| p
P
k = 0

Existence and uniqueness : thanks to the div-curl problem for the
velocity and to the hypothesis on the mesh for the pressure
uniqueness. Equivalence with a discrete bilaplacian on ψ. No

numerical analysis up to now.
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Numerical results

Numerical results for Stokes with Dirichlet

boundary conditions

Ω = [−0.5; 0.5]2

u =

(
exp(x) cos(πy)

x sin(πy) + cos(πx)

)
p = xy exp(x) cos(πy)

∇ · u 6= 0 in Ω and u 6= 0 on Γ
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Numerical results

Unstructured meshes
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Numerical results

Non conforming meshes at the center
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Numerical results

Non conforming meshes
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Extension to Navier-Stokes

Extension to stationary Navier-Stokes

−∆u + u · ∇u + ∇p = f, ∇ · u = 0 in Ω

and u = 0 on Γ,
∫
Ω p = 0.

Since u · ∇u = ∇(
u2

2
) + (∇× u) u × ez , and using the ”Bernoulli

pressure” π = p+
u2

2
, we obtain :

−∇∇·u+∇×∇×u+(∇×u) u× ez +∇π = f, ∇·u = 0 in Ω

and u = 0 on Γ,
∫
Ω π = 0.

Unknowns : (u, π) = (uj , π
T
i , π

P
k ) ; an iterative procedure is used
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Extension to Navier-Stokes

(∇D
h ×∇T,P

h × un)j − (∇D
h ∇T,P

h · un)j

+(∇× un−1)|Dj
un

j × ez + (∇D
h π

n)j = fD
j , ∀Dj /∈ Γ

(∇T
h · un)i = 0, ∀Ti

(∇P
h · un)k = 0, ∀Pk

un
j = 0, ∀Dj ∈ Γ

∑

i∈[1,I]

|Ti| π
T
i =

∑

k∈[1,K]

|Pk| π
P
k = 0

Existence and uniqueness of the solution (un
j , π

T
i , π

P
k ) : similarly to

the Stokes problem using the fact that uj × ez · uj = 0.

We deduce (pT
i , p

P
k ) by computing : p = π − |eu|2

2 , where ũ is a
quadrature formula defined on the primal and dual cells, using the

uj defined on the diamond cells. Then, the sets (pT
i , p

P
k ) are

projected so that they have a vanishing mean value.
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Conclusion and perspectives

Conclusion and perspectives

Discrete differential operators on arbitrary meshes

Properties analogous to continuous operators

Derivation of a priori error estimations for the Stokes

problem with non-standard B.C.

A priori and a posteriori error estimations for Stokes -

Navier-Stokes

Extension to the non stationary Navier-Stokes problem

Extension to 3D
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