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Main motivation

o Numerical simulation of inductive plasma torches (ICP: Inductively Coupled Plasma Torch)

@ This study is part of a TRP (Technology Research Program) with ESA (European Space
Agency)
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Main motivation

o Numerical simulation of inductive plasma torches (ICP: Inductively Coupled Plasma Torch)

@ This study is part of a TRP (Technology Research Program) with ESA (European Space
Agency)

Principle:
o A plasma torch is a quantitative chemical analysis technique (e.g. for detection of trace
metals in environmental samples).

o It consists in ionizing a sample by injecting it in a plasma (generally in Argon): Atoms are
ionized by a hot flame (6000 to 8000 K).

@ The sample experiences fusion (solid), vaporization, and then ionization.

@ High temperature is maintained by magnetic induction (thanks to a HF generator).

o lons are detected either by mass or emission spectrometry.
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Mathematical modelling of ICP takes into account various phenomena;

o Electromagnetic Induction: We use a quasi-static eddy current model (we neglect
displacement currents). The major difficulty lies in the fact that an unknown part of the gas
is transformed into plasma and becomes electrically conducting.

o Gas Dynamics: We are dealing with a compressible flow that we assume stationary and
laminar.

@ We use an axisymmetric description thanks to the device geometry.
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 Amodel for ICP

1. Electromagnetism

Eddy current equations read in quasi-static regime (time harmonic):

curlH =J
iwpoH + curlE =0
J=0E+J

J : Current density

Jo : Source current

E : Electric field

H : Magpnetic field

w : Angular frequency
o : Electric conductivity

1o : Magnetic permeability of the free space
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We neglect here current transport by the fluid flow (In fact, we have J = o (E + u x B) + Jo).
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We neglect here current transport by the fluid flow (In fact, we have J = o (E + u x B) + Jo).
In this model, we choose a formulation in terms of the electric field.
We have
{ curlcurl E + iwpgoE = —iwppdo in R3
[E()| = O(Ix|~1) x| — oo

where o = o(e) with

i <
U(e):{o if e < ep,

> 0 otherwise

where e is the internal energy and ep is the energy required for ionization.
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 Amodel for ICP

2. Flow of gas—plasma

We use compressible Euler equations (we neglect viscosity and thermal diffusion) with the
following features:

@ The gas motion is driven by the Lorentz force that we average on a time period.

o The energy source is given by Joule heating (also time averaged).
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 Amodel for ICP

2. Flow of gas—plasma

We use compressible Euler equations (we neglect viscosity and thermal diffusion) with the
following features:

@ The gas motion is driven by the Lorentz force that we average on a time period.

o The energy source is given by Joule heating (also time averaged).

V- (pu®u)+Vp=pg+ %’Re(Jxﬁ)
V- (pu)=0

1 _
V-((E—&-p)u):ERe(J-E)—R

p=p(p,e)

where u is the velocity, p is the pressure, p is the density, g is the gravity vector, e is the internal
specific energy and E is the total energy defined by E = p (e + % |u|?), R is a radiation source.
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 Amodel for ICP

2. Flow of gas—plasma

We use compressible Euler equations (we neglect viscosity and thermal diffusion) with the
following features:

@ The gas motion is driven by the Lorentz force that we average on a time period.

o The energy source is given by Joule heating (also time averaged).

V- (pu®u)+Vp=pg+ %’Re(Jxﬁ)
V- (pu)=0

1 _
V-((E—&-p)u):ERe(J-E)—R

p=p(p,e)

where u is the velocity, p is the pressure, p is the density, g is the gravity vector, e is the internal
specific energy and E is the total energy defined by E = p (e + % |u|?), R is a radiation source.

In the following, we restrict the model to an ideal gas

p=(y—1)pe ~ : ratio of specific heats
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@ We consider compressible time dependent Euler equations.
@ The geometry of the domain suggests using an axisymmetric model.

o We don’t take into account, in the sequel, sources (Joule and Lorentz)

Porquerolles Workshop S. Clain, D. Rochette, R. Touzani



@ We consider compressible time dependent Euler equations.
@ The geometry of the domain suggests using an axisymmetric model.
o We don’t take into account, in the sequel, sources (Joule and Lorentz)

Let (r, 6, z) stand for cylindrical coordinates and let (ur, ug, u;) stand for the components of a
vector in this system, we obtain the system of equations (taking into account f—invariance):

0 0 0
2 (r0) o (rpur) 4 5 (rpuz) = 0

1o} o] 1o}
7 (roun) + = (rpuf + rp) + o= (rpuruz) = puj + p

0 0
O (rbu) + o (rpurue) + - (rpul + 1) = O

C7( )+8( )+8( )
—(rpu — (rpugu, —(rpuguz) = —pugu
Btpe 6rPGr BZPG pugur

2 (E)+ 2 (runlE + p)) + o= (runlE + ) = O

p=(v—1)pe
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We can write this system under the conservative formulation:

g(rU) + %(rFr(U)) + E;%(rFZ(U)) = G(U)

ot
where
p pur puz 0
pur pui +p puru; puj +p
U= |pu: |, F(U)= puzUr , FR(U)=| pu2+p |, GU) = 0
pug pugur pug Uz —puguy
E Ur(E+p) UZ(E+p) 0

This formulation involves a divergence form that can be discretized by finite volumes, source
terms being treated separately.
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A finite

Consider a triangulation of the domain Q of parameters (r, z). Let:
— T; : Triangle, 1 < i< nt
— ¢j : Common edge to triangles T; and T;

- nj; = (nj,r, njj,z): Unit normal to the triangle T; oriented toward T;

— v(i) : Index set of the (3) neighbour triangles of T;
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Consider a triangulation of the domain Q of parameters (r, z). Let:
— T; : Triangle, 1 < i< nt
— ¢j : Common edge to triangles T; and T;
- nj; = (nj,r, njj,z): Unit normal to the triangle T; oriented toward T;
— v(i) : Index set of the (3) neighbour triangles of T;

Let us integrate the system of equations over a triangle T; and use the divergence theorem. We
get

d r .
— U(r, z, t)rdrder/ (F,(U)n,-j,,+Fz(U)n,-jAZ)rd0':/ G(U)drdz
dt J, oT; ' T;
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A finite

Consider a triangulation of the domain Q of parameters (r, z). Let:
— T; : Triangle, 1 < i< nt
— ¢j : Common edge to triangles T; and T;

- nj; = (nj,r, njj,z): Unit normal to the triangle T; oriented toward T;

— v(i) : Index set of the (3) neighbour triangles of T;

Let us integrate the system of equations over a triangle T; and use the divergence theorem. We

get
d

— U(r,z,t)rdrder/ (F,(U)n,-j,,+Fz(U)n,-jAZ)rd0':/ G(U)drdz
dt o, ' 7

Let (t" = ndt),en denote a uniform subdivision of the interval [0, 00). We have

/ U(r,z, t"YY rdrdz = / U(r,z,t") rdrdz
Ti T;

¢+l

_/ (F(U)nj., + F2(U)ny ) r do dt
oT;

¢+l

/ ) dr dz dt
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Let

\T;\:/ drdz, \T;\,:/ rdrdz, \e,j\:/ do, |e,-]-|,:/ rdo,
JT: JT: Je:: Je::

i i ij ij

and define the approximation

1
U' = —/ U(r,z,t") rdrdz.
|Ti‘r T;
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Let

\T,-|:/ dr dz, T,-\,:/ rdrdz, \eij\:/ do, |e,-j|,:/ rdo,
T: T: e Jei:

i i ij ij

and define the approximation

1
Ul ~ / U(r,z,t") rdrdz.
[Tilr J 7,

We consider the approximate flux:

gL

. :
Fo ~ 7/ / (F-(U)ng., + F2(U)ny ) r do dt
ot|ejlr Jen ejj

and the source term
1 il
G~ / G(U) dr dz dt.
ot ‘ T,'| o JT;
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Let

\T;|:/ dr dz, \T;\,:/ rdrdz, \e,'j\:/ do, |e,-j|,:/ rdo,
T: T: e e

i i ij ij

and define the approximation

1

U' = /U(r,z,t")rdrdz.
ITilr J,

We consider the approximate flux:

L

. :
Fo ~ / / (F-(U)ng., + F2(U)ny ) r do dt
ot|ejlr Jen ejj

and the source term
1 il
G~ / G(U) dr dz dt.
ot ‘ T,'| o JT;

We the define the scheme:

T UTHY = |Til Uf — 6t Y eyl Ff +0t|Ti|G(U)  1<i<nr.
jev(i)
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The finite volume scheme is entirely determined by the choice of F;! and G/ .
For instance, the Rusanov scheme consists in defining the flux:

1 1
Fij = S(Fr(U) + F(Ui)nji,r + 5 (F2(Up) + F2(Uj))njz — As(Uj — Ui)

where \j; is large enough to ensure stability.
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The finite volume scheme is entirely determined by the choice of F;! and G/ .
For instance, the Rusanov scheme consists in defining the flux:

1 1
Fij = S(Fr(U) + F(Ui)nji,r + 5 (F2(Up) + F2(Uj))njz — A(Uj —

U;)

where \j; is large enough to ensure stability.

Other alternative schemes:

o Godunov: It consists in solving exactly the obtained Riemann problems.

o HLL (Harten, Lax, Van Leer): Approximate solution of Riemann problems.

@ HLLC (+ Contact): Adaptation of HLL to contact discontinuities.
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A seco
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A secon

@ The first MUSCL scheme (Monotonic Upwind Scheme for Conservation Laws) is due to Van
Leer ('79) for the 1-D case.

@ There exist a variety of extensions to the multidimensional case.

o T. Buffard, S. Clain and V. Clauzon have proposed a new extension based on the calculation
of directional derivatives.
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@ The first MUSCL scheme (Monotonic Upwind Scheme for Conservation Laws) is due to Van
Leer ('79) for the 1-D case.

@ There exist a variety of extensions to the multidimensional case.

o T. Buffard, S. Clain and V. Clauzon have proposed a new extension based on the calculation
of directional derivatives.

We present an extension to the axisymmetric case.
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MUSC

Consider the conservation law:

0

6':+—f(u)_o XER, t>0
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MUSC

Consider the conservation law:

0

B:Jr—f(u)_o XER, t>0

The basic finite volume scheme uses a piecewise constant approximation. For instance, the
first-order upwind scheme reads:

dui f(ui) — f(ui-1)

=0
dt ox

This scheme is known to be very diffusive i.e. it smooths Shocks and discontinuities.
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MUSCL

Consider the conservation law:

0

a:Jr—f(u)_o XER, t>0

The basic finite volume scheme uses a piecewise constant approximation. For instance, the
first-order upwind scheme reads:

dup Flur) = Flui-1) _
dt ox
This scheme is known to be very diffusive i.e. it smooths Shocks and discontinuities.
To obtain less numerical diffusion, we can consider a piecewise linear approximation like:
du; f(u,+1)ff(ul.7%)
_—t —k < =0
dt ox

where 1 1
Uipl = E(ui +uir1), u_1= E(Uifl + u;).

=3

This scheme is more accurate but is oscillating (i.e. non TVD).
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The total variation is defined by:
V(u) = |uis1 — ul.
i

A scheme is said to be TVD (Total Variation Diminishing) if

v <o
dt

or, after time discretization:
TV(u") < TV(u").
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We can then use a MUSCL scheme:

f'*
du; i+%

T2 "2
dt * ox

Numerical fluxes f_ll correspond to a nonlinear combination of first and second order
1

approximations of f(u).

Wk
Uj—1/2
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We define:
% L R
iy = v (U uhg)

1
ub =+ 5¢(’i)(ui+1 — uj)

I+§
R 1
uy = g1 — 5 ¢(ripa)(Uis2 — vig1)
2 2
Uj — Uj_1
r=
Uiyl — Ui

The function ¢ is a slope limiter ensuring that the obtained solution is TVD, with

p(r)=0 ifr<0, ¢(1)=1
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We define:
* % L R
iy = v (U uhg)
1
L
uiy = ui S e(r)(uivs — u7)
R 1
Yipl = Uil = §¢(ri+1)(ui+2 — Ujt1)
uj — uj—1
= —
Ujy1 — Uj

The function ¢ is a slope limiter ensuring that the obtained solution is TVD, with
Po(r)=0 ifr<0, ¢(1)=1.

The literature contains a large variety of slope limiters.
For instance the limiter minmod is defined by

¢(r) = max(0, min(1, r)), ran;o o(r) =1.
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MUSCL

For a triangle T;, we denote by B; its centroid and by Qj; the intersection of the segment [B;, B)]
with the edge e; for all j € v(i).
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MUSCL

For a triangle T;, we denote by B; its centroid and by Qj; the intersection of the segment [B;, B)]
with the edge e; for all j € v(i).

We introduce the barycentric coordinates (pj);e. (i) by
> piBj=Bn > =1
jev(i) jev(i)
We assume that B; is strictly in the interior of the triangle formed by the centroids of neighbour
triangles. Thus p; > 0.
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MUSCL

For a triangle T;, we denote by B; its centroid and by Qj; the intersection of the segment [B;, B)]
with the edge e; for all j € v(i).

We introduce the barycentric coordinates (pj);e. (i) by
> riB =B > pi=1
jev(i) jev(i)
We assume that B; is strictly in the interior of the triangle formed by the centroids of neighbour

triangles. Thus p; > 0.
We define the direction

tij =
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We obtain the decomposition

pik |BiBx|
tj = Z Bijk tik Bijk = —% \BI-B-\
jev(i) Pij 1BiB;)

ki
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We obtain the decomposition

pik |BiBx|
ti= Y Biktic; Bijk = —— BI-B-\
jev(i) pu‘ iBj

ki

We want now to reconstruct the values Uj; on the edge e;;.
Let v denote any component of U (piecewise constant).
We define a first downwind slope by

+_ Vi
Py |Bi B

Therefore p;. is an approximation of the derivative of v in the direction t;.
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We obtain the decomposition

pik |BiBy|
tj = E Bijk tik Bijk:—% BI-B-\
jev(i) pu‘ iBj

ki

We want now to reconstruct the values Uj; on the edge e;;.
Let v denote any component of U (piecewise constant).
We define a first downwind slope by

+_ Vi
Py |Bi B

Therefore p;. is an approximation of the derivative of v in the direction t;.
The upwind slope is defined by:

Py =— Y Bups ¥ jev(i), 1<i<nr.
kev(i)
k#j
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We obtain the decomposition

pik |BiBy|
tj = E Bijk tik Bijk:—% BI-B-\
jev(i) pu‘ iBj

ki

We want now to reconstruct the values Uj; on the edge e;;.
Let v denote any component of U (piecewise constant).
We define a first downwind slope by

+_ Vi
Py |Bi B

Therefore p;. is an approximation of the derivative of v in the direction t;.
The upwind slope is defined by:

Py =— Y Bups ¥ jev(i), 1<i<nr.
kev(i)
k#j

The slopes pj; are then obtained by a limiter. For instance

pjj := minmod (p}r, pu_)

Porquerolles Workshop S. Clain, D. Rochette, R. Touzani



and the reconstruction of v on ej; is given by

vij := v; + pjj | Bi Qj

Remarks
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and the reconstruction of v on ej; is given by

vij := vi + pjj | B; Qjl

Remarks

@ This reconstruction is exact for affine functions: v(Qj) = vj; if v is piecewise linear.
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and the reconstruction of v on ej; is given by

vij := vi + pjj | B; Qjl

Remarks

@ This reconstruction is exact for affine functions: v(Qj) = vj; if v is piecewise linear.

@ The main advantage is that the reconstruction is typically 1-D. This enables using classical
1-D slope limiters.
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and the reconstruction of v on ej; is given by

vij := vi + pjj | B; Qjl

Remarks

@ This reconstruction is exact for affine functions: v(Qj) = vj; if v is piecewise linear.

@ The main advantage is that the reconstruction is typically 1-D. This enables using classical
1-D slope limiters.

@ The property p; > 0 implies 3jc < 0. Therefore, if v; is a local extremum, we have
p;}'p; < 0. Hence p;; = 0. This means that extrema do not increase.
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and the reconstruction of v on ej; is given by

vij := vi + pjj | B; Qjl

Remarks

@ This reconstruction is exact for affine functions: v(Qj) = vj; if v is piecewise linear.

@ The main advantage is that the reconstruction is typically 1-D. This enables using classical
1-D slope limiters.

@ The property p; > 0 implies 3jc < 0. Therefore, if v; is a local extremum, we have
p;}'p; < 0. Hence p;; = 0. This means that extrema do not increase.

@ For positivity reasons, the reconstruction must use physical variables and not conservative
ones.
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In order to test the numerical scheme, we construct a radial steady state solution of the equations:
We look for a solution (ur, ug, uz, p, €) that depends on r only and such that u, = up = 0. We
obtain the system:
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In order to test the numerical scheme, we construct a radial steady state solution of the equations:
We look for a solution (ur, ug, uz, p, €) that depends on r only and such that u, = up = 0. We

obtain the system:
d
il -0
g (reur)
d
E(’(PUE +p))=p
d
E(f’-’r(e +p))=0

p=(y—1)pe
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In order to test the numerical scheme, we construct a radial steady state solution of the equations:
We look for a solution (ur, ug, uz, p, €) that depends on r only and such that u, = up = 0. We

obtain the system:

%(rpu,) =X0)

d

2o +p) =p
< (rur(e+p)) =0

p=(y—1)pe
We deduce for o, 8 € R
dp P A
= ; , ;=
ci (ap2r2 = 2(1+_1))(7 - Dr pr
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- Numerical tests

@ A stationary radial solution
@ Shock tube (SOD)

© A supersonic flow in a channel
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23 T

22 | 4
"o /
7
3 /
2 A Stationary solution
> —— Second-order HLLC
2 ——- First-order HLLC
< /
fa}
21 | / 4
I
/
I
I
2 L L
0.1 0.2 0.3 0.4

Radial direction (m)
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- Shock tube

Let 2 denote the domain of parameters
Q={(r,z); r€[0,1), z€ (0,1)}.

We define Q; = (0,1) x (0, %) Qr =(0,1) x (%, 1) and the initial conditions:

U, inQp
U(t=0)=
( ) {UR in QR
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We test a configuration with a left rarefaction wave, a contact discontinuity and a right shock
wave. For this we prescribe:

pr=1 pr=0125 u =ugr=0, p =1, pg=01

1 T T T T T 3 T T T T T
r — Exact solution ] 281 — Exact solution
— First-order Rusanov — First-order Rusanov
08— — First-order HLLC h [ — First-order HLLC
06 3
z 2
F 8
H g
04 2
021
L B 16k i
0 . ! . ! . ! . . I . I . I . I .
0 0.2 04 0,6 08 1 0 0,2 0,4 0,6 08 1

Axial direction Axial direction

First Order: Rusanov and HLLC schemes: Mesh size 1/100
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Shock

1 - - T - - 3 - - - - -
[ — Exactsolution ] — Exact solution
— First-order Rusanov r — First-order Rusanov 1
08 — First-order HLLC 7 — First-order HLLC
[ 25 B
06 ]
2z 2
3 5
2t s L ]
3 g
04 £
A
02}~
o . I . I . I . I . 15 . I . I . I . I .
0 02 04 06 08 1 o 0.2 04 06 08 1
Axial direction Axial direction

First Order: Rusanov and HLLC schemes: Mesh size 1/200
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Shock

1 . — . . 3 . — — . .
r — Exact solution 7 — Exact solution
— Second-order Rusanov = — Second-order Rusanov 1
08— — Second-order HLLC - — Second-order HLLC
[ 25 -
06— ?
> 2
z &
s | s | |
H g
04}~ £
L
02
o Y R R B 15 O O RS B
0 02 04 0,6 08 1 0 02 04 06 08 1
Axial direction Axial direction

Second Order: Rusanov and HLLC schemes: Mesh size 1/100
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1 T T T T T 3 T T T T T T
r — Exact solution 1 — Exact solution
— Second-order Rusanov r — Second-order Rusanov
08 — Second-order HLLC - — Second-order HLLC
[ 25
06 ]
z 2
a 5
2 | s |
g g
041 2
2
021
0 . I . I . I . ! . 15 . I . | . I . I
0 02 04 06 08 1 0 02 04 0,6 08
Axial direction Axial direction

Second order: Rusanov and HLLC schemes: Mesh size 1/200
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- Shock tube: Test 2.

We consider a configuration with a double shock and a contact discontinuity. This is obtained
from the conditions:

pL=pr =06, u =196, ug =-6.2, p =460, pgr =46

40 T T T T T 300 T T T /V F
— Exact solution [
— Minmod
30— vanLeer
— van Albada 200
F =
2
z 5
B
c 20— 1 r
H
3
L =
100 — Exact solution
— Minmod
101 — van Leer
— van Albada
0 . I . I . I . I . 0 . I . I . I . I .
0 0,2 04 0,6 08 1 0 02 04 06 08 1
Axial direction Axial direction

Second order: Rusanov and HLLC schemes: Mesh size 1/200

Porqu Norkshop S. Clain, D. Rochette, R. Touzani



We now test a configuration with 2 rarefactions and a contact discontinuity and where the
solution presents a vacuum like situation. This is obtained with the conditions:

pr=pr=1, u =-2, urg=2, p =1, pr=04

1 . . . . y 1 - . . . . . y
[ 7 [ — Exact solution 1
_ " — Minmod
08— T Dxact solution B 08— — van Albada B!
L — van Albada | L — vanLeer ]
— van Leer
06 - So6 N
B 2
2 | 4 > L i
2
041 - 204 N
021 - 02| 4
o . I . I n 1 . | . o . I . I . I . I .
o 02 04 06 08 1 o 02 04 06 08 1
Axial direction Axial direction

Second Order: Rusanov and HLLC: Mesh size 1/200

Porqu Norkshop S. Clain, D. Rochette, R. Touzani



We consider a compressible Euler flow in a channel with an oblique obstacle (10 degrees) forming
a cone.

Problem data:
Poo = 10°Pa, poo = 1.16Kg/m>, Moo = 2
Mesh: 5176 triangles.
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