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Stationary compressible Stokes equations
d=2or3, Q=]0,1[¢ (or Q = U™, R;, where R;'s are rectangles if
d = 2 or parallelipedus rectangulus if d = 3).
y>1,fel?(Q)4and M >0

—Au+Vp=1finQ, u=0on 02,

div(pu) =0 in Q, p>0 in Q, / p(x)dx = M,
Q

p=p’in Q

Aim:
» Discretization by the MAC scheme
» Existence of solution for the discrete problem
» Proof of the convergence (up to subsequence) of the solution
of the discrete problem towards a weak solution of the
continuous problem (no uniqueness result for this problem) as
the mesh size goes to 0



Generalizations

» (Easy) Complete Stokes problem:
—pAu — 5V (divu) + VP = f, with € R given

» (Ongoing work) Navier-Stokes Equations with v > 1 if d =2
and v > % if d = 3 (probably sharp result with respect to
without changing the diffusion term or the EOS)

> (Open question) Other boundary condition. Addition of an
energy equation

» (Open question) Evolution equation (Stokes and
Navier-Stokes)



Weak solution of the stationary compressible Stokes
problem

Functional spaces : u € H}(Q)9, p € L3(Q), p € L?7(Q)

» Momentum equation:

/ Vu:Vv dx—/ pdiv(v) dx :/ f-vdx for all v € H}(Q)?
Q Q Q

» Mass equation:

/pu-V«pdx: 0 for all ¢ € CZ°(Q)
Q

p >0 a.e., /pdx:M
Q

» EOS: p=p7



MAC scheme, choice of the discrete unknowns

» 7 : cartesian mesh of €2, the mesh size is called h
E: edges of T

» Discretization of u p and p by piecewise constant functions.

n, is the normal vector to o, with n, > 0.

Unknowns for u7:
Uy, 0 € £. u, is an approximate value for v - n, (u, € R)
uy, =0 if o C 00

— o K
o Unknowns for pr and pr:
Pk, pk, K € {rectangles}




MAC scheme, discrete functional spaces, d = 2

> pr,p7 € X7, PT = PK, pT = pK in K, K € T (black cell)

> ur = (u(Tl), ug?)) € Hr
u(Tl) = u, in the magenta cell

u(Tz) = U, in the green cell




Discretization of momentum equation (1)

» v € Hr. divzv is constant on K, K € 7 and

|K|divyv = Z €K o Vo|O]

oe€k

€K,o = sign(n, - Nk ), Nk o is the normal vector to o,
outward K

> u,v € Hr, the discretization of [, Vu: Vvdx is:

hO'E
/ V7u:Vyvdx = E = (uy — Us)(Ve — V&)
Q = dcrE
(o, 0)EN 7

dy5: distance between the centers of o and &
hez is equal to |o| or to 3(|o| + |g|), where o and o are
“between” o and &



Discretization of the momentum equation (2)
Computation of h,z for (0,5) € N

» Case 1: |o T s = @]

Q
[S]
>
S

» Case 2:

(Slight modification if o, o C 09, Uz = —uy)

Discrete momentum equation

ur € HT

/ Vryur :Vyvdx — / prdivrvdx = / fvdx, for all v € Hr
Q Q Q



Discretization of the mass equation

Forall K € T, Z |o|poek olic + Mk =0
o€k
with an upstream choice for p,, that is
po = pk if uz >0
pe =pr if uy <0, 0 = K|L

) M
Mk = |K|h*(pk — TQ\)

a>0
The My term gives [, prdx = M
Upwinding is enough to ensure (with M) existence (and

uniqueness) of a positive solution p7, to the discrete mass
equation, for a given uz.



Discretization of the EQS

Discretization of the EOS:

forall K e T

PK



Existence of an approximate solution, convergence result

Existence of a solution vz, pr and p7 of the scheme can be
proven using the Brouwer Fixed Point Theorem.

For v > 1, convergence of the approximate solution can be proven
in the following sense, up to a subsequence:

> ur — uin L2(Q)9, u e H}(Q)
> pr — pin L9(Q) for any 1 < g < 2 and weakly in L?(R)
> p7 — pin L9(Q) for any 1 < g < 27 and weakly in L27()

where (u, p, p) is a weak solution of the compressible Stokes
equations

For v =1, the same result holds, at least with only weak
convergences of py and pr



Proof of convergence, main steps

1. Estimate on the H}(Q)-discrete norm of the components of
ur
2. 1%(Q) estimate on pr and L?7(Q) estimate on pr

These two steps give (up to a subsequence), as h — 0,
» ur — uin L?(Q) and u € H}(Q)?
» pr — p weakly in L2(Q)
» pr — p weakly in L27(Q)
3. (u,p, p) is a weak solution of —Au+ Vp = f, div(pu) =0
p=>0, [opdx=M
4. Main difficulty, if v > 1: p = p” and “strong” convergence of
pr and pr



Preliminary lemma

p€LP(Q),y>1 p>0ae inQ uec (H}Q), div(pu) =0,
then:

/ pdiv(u)dx =0

Q

/ p div(u)dx =0
Q

The first result (and its discrete counterpart) is used for Step 4
(proof of p = p7)

The discrete counterpart (also true for v = 1) of the second result
is used for Step 1 (estimate for uy)



Preliminary lemma for the approximate solution

Discretization of the mass equation div(pu) = 0 and [, pdx = M:
Forall K€ T, Y |olpoek oty + Mk =0

o€k

One proves:

/ pydivy urdx < Ch®,
Q

/ prdivy urdx < Ch®.
Q

C depends on 2, M and ~.

Ch®* is due to Mk
< is due to upwinding



Estimate on us

Taking ur as test function in the discrete momentum equation

/VTUT :Vorur dx—/ prdivy(ur) dx :/ f - urdx.
Q Q Q

But pr = pJ a.e., Discrete mass equation and preliminary lemma
gives [, prdiv(ur) dx < Ch™.
This gives an estimate on u7:

hU,E
da,E

/ Vrur -Vyurdx = (uy — L@)2 < (.
Q

(o,0)eEN

Then, up to a subsequence, u7r — u in L?(Q)9 as h — 0 and
u € H}(Q)?



Estimate on py (inf-sup condition, Necas lemma)

Let my = ﬁfﬂpfdx and g = pr — mr.

Then, there exists vz € (H3(Q))9 s.t. div(vr) = g in Q and
VT ll(Hp ) < Cllalli2(q) where C; only depends on Q

One defines vy € Hy with v, = |71| [ VT - ng foroek.

Then diVT(VT) = p7 — Mt and

hUE
/ Vrvr :Vrvrdx = Z =(vo — VF)Z < C3||‘I||i2(9)
Q

(0,5)eN O

One takes vz as test function in the discrete momentum equation



Estimate on pr (2)

/ Voqur : Vyvrdx — / prdivy(vr) dx = / f - vrdx.
Q Q Q
Using [ divr(vy)dx = 0:

/(pq— — mq—)zdx = /(f vy — Vrur : Vrvr)dx.
Q Q

with the estimate on ug and the bound on v linearly depending
on the L? norm of p;y — m7, the preceding inequality leads to:

lpr — m7|2@) < Ca

where (4 only depends on f and on €.



Estimates on pr and pr

lpr — m7|l2) < Ca

1
/p}dxz/pfdle\/l
Q Q

Iprlli2@) < Gs

Then:

where Cs only depends on f, M, v and Q.

pr = py a.e. in §, then:

1

lpzll2ee) < G = G5 -



Convergence of ur, pr, pr (weak for pr and pr)

Thanks to the estimates on uy, p7, pr, it is possible to assume
(up to a subsequence) that, as h — 0:

ur — uin [2(Q)9 and u € H}(Q)?,
pr — p weakly in LQ(Q),

pr — p weakly in L27(Q).



Passage to the limit in the momentum equation

Classical proof with FV scheme for elliptic equations
u € H}(Q)?

One proves

/Vu:Vvdx—/pdiv(v)dx:/ f - vdx for all v e C°(Q)?
Q Q Q

and then, since u € H}(Q)?, one concludes by density

/ Vu:Vvdx —/ pdiv(v) dx = / f - vdx for all v e H}(Q)?
Q Q Q



Passage to the limit in the mass equation

L*-weak convergence of pr (and pr > 0) gives positivity of p and
convergence of total mass

p>0 in Q, /p(x)dx:l\/l.
Q

Using the fact that uz converges in L2 and p7 weakly in L?, one
proves

/pu-Vgpdx:O for all p € CZ°(Q)
Q

This is quite classical with FV for hyperbolic equations. It uses
some weak-BV estimate (to control px — p if 0 = K|L) coming
from the upwinding of p

Quite easy for v > 2. More difficult for v < 2.



Weak-BV estimate, v > 2

Roughly speaking, upwinding replaces div(pu) = 0 by
div(pu) — hdiv(|u|Vp) = 0 (the term My is easy to handle)
Taking p as test function leads to

1
—/ u- V5 + hlul[Vpl2 =0
2 Jq

which leads to

1
/ ||V o2 = _2/ Fll < €
Q Q

if p is bounded in L*(Q) (since div(u) is bounded in L?(2))
This proves the weak-BV estimate on p if v > 2
It allows to pass to the limit in the mass equation using the weak

convergence of pr in L2(Q) and the convergence of uz in L?(Q)9
ash—20



Weak-BV estimate, v < 2

» Method 1: Use p-weighted weak-BV estimates

» Method 2: Add another diffusion term in the discrrete mass
equation which is a discretization of

hediv(p®~7Vp) =0

& is a parameter, 0 < £ < 2

Small diffusion term (¢ close to 2), leading to a weak-BV
estimate (taking p?~! as test function in the discrete mass
equation)



Passage to the limit in EOS

» No problemifvy=1, p=p
» If v > 1, question:
p=p"in Q7
pr and p7 converge only weakly. ..

Idea : prove fQ prpPT — fQ pp and deduce a.e. convergence (of
pr and p7) and p = p7.



V : V = divdiv + curl - curl
For all &, v in H3(Q)¢,

/Q Vi T = /Q S5 () () - / curl(@) - curl(v).

Q

Assuming, for simplicity that ur € H3(Q)9 and
—Aur + Vpr = fr € [2(Q), fr — f in L2(Q)9 as h — 0 (not
true...). Then, for all v in H}(Q)9

/Q div(u7)div(7) + /Q curl(u7 ) -curl(7) — /Q (7)) = /Q -

Choice of v ? v = v7 with curl(vy) =0, div(vr) = p7 and v
bounded in H} (unfortunately, 0 is impossible).

Then, up to a subsequence,

vz — v in L?(Q) and weakly in H}(Q),

curl(v) = 0, div(v) = p.



Proof using vy (1)

/Qdiv(uT)div(VT)—F/Q curl(uT)-curl(VT)—/

QpTdiV(VT) :/ fr-vr.

Q

But, div(vr) = pr and curl(v7) = 0. Then:

/Q(diV(UT)_PT)PT:/ fr - vr.

Q

Convergence of fr in L2(Q)9 to f and convergence of V7 in
[2(Q)9 to v :

tim, [ (divtur) = prior = [ £-v.



Proof using vy (2)
But, since —Au+ Vp = f:

/Qdiv(u)div(v) +/chr1(u)-curl(v) —/deiv(v) :/Qf~ v.

which gives (using div(v) = p and curl(v) = 0):
/(div(u) —p)p = / f - v. Then:
Q Q

lim /Q (pr — div(ur))or = /Q (b — div(w))p.

Finally, the preliminary lemma gives, thanks to the mass equations,
Jq prdiv(ur) < Ch* and [, pdiv(u) = 0. Then, at least for a

| | / ﬂ‘{ < ‘)

Unfortunately, two difficulties: it is impossible to have v € H}
and (ur, pr) is solution of the discrete momentum equation



First difficulty: not O at the boundary
Let wr € HY(Q), —Awr = pr,
One has wy € H2 (Q) since, for ¢ € C°(Q), one has

loc

A(wrp) € L%(Q) and

d d
> [ oawre)odwre) = Y. [ a0 twre) ooy (wre)

ij=1 ij=1

= / (A(wrg))? < oo
Q

Then, taking v = Vwyr
> vr € (Hp(Q))7,
» div(vy) = pr a.e. in Q,
» curl(vy) =0 a.e. in Q,
> H; (Q)-estimate on vz with respect to o7l 2(0)-

Then, up to a subsequence, as h — 0, v — v in L,20C(Q) and

weakly in HE (Q), curl(v) = 0, div(v) = p.

loc



Proof of [o(pr — div(ur))pre — [o(p — div(u))pe

Let p € C°(Q) (so that vz € H(Q)?)). Taking v = vr:

/Qdiv(uT)diV(ngo)+/chrl(uT)-curl(ngo)—/qu—diV(va)

= [ fr-(vry).
Q

Using a proof smilar to that given if ¢ = 1 (with additionnal terms
involving ), we obtain :

im /Q (pr — div(ur))ore = /Q (p — div(u))ow,

h—0



Proving [o(pr — div(u7))pre — [o(p — div(u))py
Let p € CZ(R) (so that vy € H(Q)9)). Taking v = vr:
Jo div(ur)div(vre) + [ curl(ur) - curl(vre) — [ prdiv(vre)
= Jofr - (vro).
But, div(vry) = pre + vr - Vo and curl(vry) = L(¢)vr, where
L(p) is a matrix involving the first order derivatives of . Then:
Jo(div(ur) = pr)ore = o fr - (vre)
— Jodiv(ur)vr - Vo — [curl(ur) - L(p)vr + [ pTVT - Ve

Weak convergence of ur in H}(Q2)9, weak convergence of pr in
L%(2) and convergence of vz and fr in L2 ()9 and L?(Q)9:
limp—o Jo(div(ur) = pr)pre = o f - (ve)
— Jodiv(u)v - Vo — [curl(u) - L(p)v + [o pv - V.



Proof of [,(pr — div(ur))pre — [o(p — div(u))py

But, since —Au+ Vp = f:

Jo div(u)div(ve) + [, curl(u) curl (vp) — [q pdiv(ve)

=Jaf-

which gives (using div(v) = p and curl(v) = 0):

Ja(div(u) = p)op = [o f - (ve)
— Jodiv(u)v - Vo — [curl(u) - L(p)v + [o pv - Ve

Then:

lim /(PT —div(ur))pre = /Q(p — div(v))pe.

h—0 Jo



Second difficulty: Discrete momentum equation

Miracle for the MAC scheme: for all &, v in Hr,

/Q Tl T = /Q div(3)divr(7) + /Q curly () - curly (7).

Then, for all v in Hf

/divT(uT)diVT(V)+/ curly (ur)-curly (v /p7d1v /f V.
Q

Q

Choice of v ? v = vz with curly(vr) =0, div(vr) = pr and
V7 € H7 and bounded for the natural norm of
Hy...impossible. .. (as in the continuous setting)



Choice of the test function in the momentum equation

Let {wk, K € T} be the FV solution of the —Awy = p7, with the
homogeneous Dirichlet boundary condition, that is, for all K € 7T,
o
> e — wa) = IKlox

o€k g

In the preceding equality, 0 = K|L, with the usual modification at
the boundary
For o € £, 0 = K|L, nk, = ny > 0, one defines v, = u; — ug

A proof similar to the proof for the continous case, gives some
discrete-H2 () estimate on wz and then some discrete-H} ()

estimate on v in term of L% norm of pr

Furthermore, at least “far” from the boundary, divy(vz) = pr and
curly(vr) =0

Then, up to a subsequence, as h — 0, v — v in L%OC(Q) and

v € HL ()9, curl(v) = 0, div(v) = p.

loc



Proof of [,(pr — div(ur))pre — [o(p — div(u))py

Let ¢ € C°(Q) (so that vrpr € Hr). Taking v = vrpr:

/divT(uT)diVT(vT<p) +/ curly (ur) - curly(vror)
Q Q

— Jo prdivr(vreT) = /Q fr - (vreor).

Using a proof smilar to that given in the continuous case we obtain:

lim /Q (s i i — /Q (p— div(u))pw,



Proof of [,(pr — div(ur))pr — [o(p — div(u))p

Lemma : Fr — F in D'(Q), (F7)nen bounded in L9 for some
g > 1. Then Fr — F weakly in L.

With Fr = (pr — div(uz))pr, F = (p — div(u))p and since
~v > 1, the lemma gives

[ (pr = divtur)lor — [ (p - div(u))p.
Q Q



Proving [ prpr — Jq PP

/(PT — div(ur))pr — /(p — div(u))p.
Q Q

But thanks to the mass equations, the preliminary lemma gives:

/diV(UT),OT < Ch*, /div(u)p =0:
Q Q

l < ,
lim /Q proT < /Q pp

Then:



a.e. convergence of pr and pr
Let Gr = (p) — p")(pT — p) € L1(Q) and G7 >0 a.e. in Q.
Futhermore Gr = (pr — p")(pr — p) = PrPT —PTP— P PT + PP

and:
/sz/pfp:r—/pfp—/p”pﬁL/p”p-
Q Q Q Q Q

Using the weak convergence in L?(Q) of pr and pr and
limp—o Jq PTPT < [ PP

|im/GT§0,
h—0 Jo

Then (up to a subsequence), Gr — 0 a.e. and then p7r — p a.e.
(since y +— y7 is an increasing function on R, ). Finally:

pr — pin L9(Q) for all 1 < g < 27,
pr = py — p7in L9(Q) for all 1 < g < 2,
and p = p7.

(~» EOS and EOT ?)



Additional difficulty for stat. comp. NS equations

Q is a bounded open set of RY, d = 2 or 3, with a Lipschitz
continuous boundary, v > 1, f € L2(Q)¢ and M > 0

—Au+div(pu®@u)+Vp=1Ffin Q, uv=0on 09,
div(pu) =0 in Q, p>0 in Q, / p(x) =M,
Q
p=p’in Q
d = 2 : no aditional difficulty

d = 3 : no additional difficulty if v > 3. But for v < 3, no
estimate on p in L?(9Q).



Estimates in the case of NS equations, % <v<3

Estimate on v : Taking u as test function in the momentum leads
to an estimate on u in (H3(Q)? since

/pu®u:Vu:0.
Q

Then, we have also an estimate on v in L°(Q)? (using Sobolev
embedding).

Estimate on p in L9(2), with some 1 < g < 2 and g = 1 when
v = 3 (using Neas Lemma in some L instead of L?).

Estimate on p in L9(£2), with some % <g<6andg= % when
= 3 (since p = p7).

Remark : pu® u € L1(Q), since u € L5(Q)? and p € L2(Q) (and

i B

Lili2=0)



NS equations, v < 3, how to pass to the limit in the EOS

We prove
lim / proy = / pr’,
h—0 Jo Q
with some convenient choice of 6 > 0 instead of 6§ = 1.

This gives, as for § = 1, the a.e. convergence (up to a
subsequence) of pr and pr.



