Convergence of the MAC scheme for the stationary compressible Stokes equations

R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché

Porquerolles, june 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Stationary compressible Stokes equations

 $d = 2 \text{ or } 3, \ \Omega =]0, 1[^d \text{ (or } \Omega = \bigcup_{i=1}^n R_i, \text{ where } R_i\text{'s are rectangles if } d = 2 \text{ or parallelipedus rectangulus if } d = 3).$ $\gamma \ge 1, \ f \in L^2(\Omega)^d \text{ and } M > 0$

$$\begin{aligned} -\Delta u + \nabla p &= f \text{ in } \Omega, \ u &= 0 \text{ on } \partial \Omega, \\ \operatorname{div}(\rho u) &= 0 \ \text{ in } \Omega, \ \rho \geq 0 \ \text{ in } \Omega, \ \int_{\Omega} \rho(x) dx = M, \\ p &= \rho^{\gamma} \text{ in } \Omega \end{aligned}$$

Aim:

- Discretization by the MAC scheme
- Existence of solution for the discrete problem
- Proof of the convergence (up to subsequence) of the solution of the discrete problem towards a weak solution of the continuous problem (no uniqueness result for this problem) as the mesh size goes to 0

Generalizations

- ► (Easy) Complete Stokes problem: $-\mu\Delta u - \frac{\mu}{3}\nabla(\operatorname{div} u) + \nabla P = f$, with $\mu \in \mathbb{R}^{\star}_{+}$ given
- Ongoing work) Navier-Stokes Equations with γ > 1 if d = 2 and γ > ³/₂ if d = 3 (probably sharp result with respect to γ without changing the diffusion term or the EOS)
- (Open question) Other boundary condition. Addition of an energy equation

 (Open question) Evolution equation (Stokes and Navier-Stokes)

Weak solution of the stationary compressible Stokes problem

Functional spaces : $u \in H^1_0(\Omega)^d$, $p \in L^2(\Omega)$, $\rho \in L^{2\gamma}(\Omega)$

Momentum equation:

$$\int_{\Omega} \nabla u : \nabla v \, dx - \int_{\Omega} p \operatorname{div}(v) \, dx = \int_{\Omega} f \cdot v \, dx \text{ for all } v \in H^1_0(\Omega)^d$$

Mass equation:

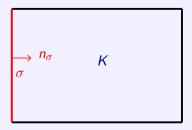
$$\int_{\Omega} \rho u \cdot \nabla \varphi \, dx = 0 \text{ for all } \varphi \in C_c^{\infty}(\Omega)$$
$$\rho \ge 0 \text{ a.e.}, \quad \int_{\Omega} \rho \, dx = M$$

• EOS: $p = \rho^{\gamma}$

MAC scheme, choice of the discrete unknowns

- *T*: cartesian mesh of Ω, the mesh size is called h
 E: edges of *T*
- Discretization of u p and ρ by piecewise constant functions.

 n_{σ} is the normal vector to σ , with $n_{\sigma} \ge 0$. Unknowns for $u_{\mathcal{T}}$: $u_{\sigma}, \sigma \in \mathcal{E}. \ u_{\sigma}$ is an approximate value for $u \cdot n_{\sigma} \ (u_{\sigma} \in \mathbb{R})$ $u_{\sigma} = 0$ if $\sigma \subset \partial \Omega$

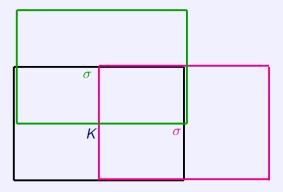


Unknowns for p_T and ρ_T : p_K , ρ_K , $K \in \{\text{rectangles}\}$

MAC scheme, discrete functional spaces, d = 2

▶
$$p_T, \rho_T \in X_T, p_T = p_K, \rho_T = \rho_K \text{ in } K, K \in T \text{ (black cell)}$$

▶ $u_T = (u_T^{(1)}, u_T^{(2)}) \in H_T$
 $u_T^{(1)} = u_\sigma \text{ in the magenta cell}$
 $u_T^{(2)} = u_\sigma \text{ in the green cell}$



Discretization of momentum equation (1)

▶ $v \in H_T$. div_T v is constant on K, $K \in T$ and

$$|\mathcal{K}| \mathrm{div}_{\mathcal{T}} \mathbf{v} = \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \varepsilon_{\mathcal{K},\sigma} \mathbf{v}_{\sigma} |\sigma|$$

 $\varepsilon_{K,\sigma} = \operatorname{sign}(n_{\sigma} \cdot n_{K,\sigma}), n_{K,\sigma}$ is the normal vector to σ , outward K

• $u, v \in H_T$, the discretization of $\int_{\Omega} \nabla u : \nabla v \, dx$ is:

$$\int_{\Omega} \nabla_{\mathcal{T}} u : \nabla_{\mathcal{T}} v \, dx = \sum_{(\sigma,\overline{\sigma}) \in \mathcal{N}} \frac{h_{\sigma,\overline{\sigma}}}{d_{\sigma,\overline{\sigma}}} (u_{\sigma} - u_{\overline{\sigma}}) (v_{\sigma} - v_{\overline{\sigma}})$$

 $d_{\sigma,\overline{\sigma}}$: distance between the centers of σ and $\overline{\sigma}$ $h_{\sigma,\overline{\sigma}}$ is equal to $|\sigma|$ or to $\frac{1}{2}(|\underline{\sigma}| + |\underline{\sigma}|)$, where $\underline{\sigma}$ and $\underline{\sigma}$ are "between" σ and $\overline{\sigma}$ Discretization of the momentum equation (2) Computation of $h_{\sigma,\overline{\sigma}}$ for $(\sigma,\overline{\sigma}) \in \mathcal{N}$

• Case 1:
$$\sigma$$
 $\overline{\sigma}$ $h_{\sigma,\overline{\sigma}} = |\sigma|$
• Case 2: $\underline{\sigma} \quad \overline{\sigma} \quad \underline{\sigma} \quad h_{\sigma,\overline{\sigma}} = \frac{1}{2}(|\underline{\sigma}| + |\underline{\sigma}|)$

(Slight modification if $\underline{\sigma}, \underline{\sigma} \subset \partial \Omega, u_{\overline{\sigma}} = -u_{\sigma}$)

Discrete momentum equation

$$u_{\mathcal{T}} \in H_{\mathcal{T}}$$
$$\int_{\Omega} \nabla_{\mathcal{T}} u_{\mathcal{T}} : \nabla_{\mathcal{T}} v \, dx - \int_{\Omega} p_{\mathcal{T}} \operatorname{div}_{\mathcal{T}} v \, dx = \int_{\Omega} f v \, dx, \text{ for all } v \in H_{\mathcal{T}}$$

Discretization of the mass equation

For all
$$K \in T$$
, $\sum_{\sigma \in \mathcal{E}_{K}} |\sigma| \rho_{\sigma} \varepsilon_{K,\sigma} u_{\sigma} + M_{K} = 0$
with an upstream choice for ρ_{σ} , that is
 $\rho_{\sigma} = \rho_{K}$ if $u_{\sigma} \ge 0$
 $\rho_{\sigma} = \rho_{L}$ if $u_{\sigma} < 0$, $\sigma = K|L$
 $M_{K} = |K|h^{\alpha}(\rho_{K} - \frac{M}{|\Omega|})$

lpha > 0

The M_K term gives $\int_{\Omega} \rho_T dx = M$

Upwinding is enough to ensure (with M) existence (and uniqueness) of a positive solution ρ_T , to the discrete mass equation, for a given u_T .

Discretization of the EOS

Discretization of the EOS:

 $p_{K} = \rho_{K}^{\gamma}$

for all $K \in \mathcal{T}$

Existence of an approximate solution, convergence result

Existence of a solution u_T , p_T and ρ_T of the scheme can be proven using the Brouwer Fixed Point Theorem.

For $\gamma > 1$, convergence of the approximate solution can be proven in the following sense, up to a subsequence:

•
$$u_{\mathcal{T}}
ightarrow u$$
 in $L^2(\Omega)^d$, $u \in H^1_0(\Omega)^d$

•
$$p_T \rightarrow p$$
 in $L^q(\Omega)$ for any $1 \le q < 2$ and weakly in $L^2(\Omega)$

• $\rho_T \rightarrow \rho$ in $L^q(\Omega)$ for any $1 \le q < 2\gamma$ and weakly in $L^{2\gamma}(\Omega)$

where (u, p, ρ) is a weak solution of the compressible Stokes equations

For $\gamma=$ 1, the same result holds, at least with only weak convergences of p_{T} and ρ_{T}

Proof of convergence, main steps

- 1. Estimate on the $H_0^1(\Omega)$ -discrete norm of the components of u_T
- 2. $L^2(\Omega)$ estimate on p_T and $L^{2\gamma}(\Omega)$ estimate on ρ_T

These two steps give (up to a subsequence), as $h \rightarrow 0$,

- $u_T \to u$ in $L^2(\Omega)$ and $u \in H^1_0(\Omega)^d$
- $p_T \rightarrow p$ weakly in $L^2(\Omega)$
- $\rho_T \rightarrow \rho$ weakly in $L^{2\gamma}(\Omega)$
- 3. (u, p, ρ) is a weak solution of $-\Delta u + \nabla p = f$, $\operatorname{div}(\rho u) = 0$ $\rho \ge 0$, $\int_{\Omega} \rho dx = M$
- 4. Main difficulty, if $\gamma > 1$: $p = \rho^{\gamma}$ and "strong" convergence of p_{T} and ρ_{T}

Preliminary lemma

 $ho \in L^{2\gamma}(\Omega)$, $\gamma > 1$, $\rho \ge 0$ a.e. in Ω , $u \in (H_0^1(\Omega))^d$, $\operatorname{div}(\rho u) = 0$, then:

$$\int_{\Omega} \rho \operatorname{div}(u) dx = 0$$
$$\int_{\Omega} \rho^{\gamma} \operatorname{div}(u) dx = 0$$

The first result (and its discrete counterpart) is used for Step 4 (proof of $p = \rho^{\gamma}$)

The discrete counterpart (also true for $\gamma = 1$) of the second result is used for Step 1 (estimate for u_T)

Preliminary lemma for the approximate solution

Discretization of the mass equation $\operatorname{div}(\rho u) = 0$ and $\int_{\Omega} \rho \, dx = M$: For all $K \in \mathcal{T}$, $\sum_{\sigma \in \mathcal{E}_K} |\sigma| \rho_{\sigma} \varepsilon_{K,\sigma} u_{\sigma} + M_K = 0$

One proves:

$$\int_{\Omega} \rho_T^{\gamma} \operatorname{div}_{\mathcal{T}} u_{\mathcal{T}} dx \leq Ch^{\alpha},$$
$$\int_{\Omega} \rho_T \operatorname{div}_{\mathcal{T}} u_{\mathcal{T}} dx \leq Ch^{\alpha}.$$

C depends on Ω , M and γ .

 Ch^{α} is due to $M_{\mathcal{K}}$ \leq is due to upwinding

Estimate on u_T

Taking u_T as test function in the discrete momentum equation

$$\int_{\Omega} \nabla_{\mathcal{T}} u_{\mathcal{T}} : \nabla_{\mathcal{T}} u_{\mathcal{T}} \, dx - \int_{\Omega} p_{\mathcal{T}} \operatorname{div}_{\mathcal{T}} (u_{\mathcal{T}}) \, dx = \int_{\Omega} f \cdot u_{\mathcal{T}} \, dx.$$

But $p_T = \rho_T^{\gamma}$ a.e., Discrete mass equation and preliminary lemma gives $\int_{\Omega} p_T \operatorname{div}(u_T) dx \leq Ch^{\alpha}$. This gives an estimate on u_T :

$$\int_{\Omega} \nabla_{\mathcal{T}} u_{\mathcal{T}} \cdot \nabla_{\mathcal{T}} u_{\mathcal{T}} dx = \sum_{(\sigma,\overline{\sigma})\in\mathcal{N}} \frac{h_{\sigma,\overline{\sigma}}}{d_{\sigma,\overline{\sigma}}} (u_{\sigma} - u_{\overline{\sigma}})^2 \leq C_1.$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Then, up to a subsequence, $u_T \to u$ in $L^2(\Omega)^d$ as $h \to 0$ and $u \in H^1_0(\Omega)^d$

Estimate on p_T (inf-sup condition, Nečas lemma)

Let
$$m_T = \frac{1}{|\Omega|} \int_{\Omega} p_T dx$$
 and $q = p_T - m_T$.

Then, there exists $\overline{v}_{\mathcal{T}} \in (H^1_0(\Omega))^d$ s.t. $\operatorname{div}(\overline{v}_{\mathcal{T}}) = q$ in Ω and $\|\overline{v}_{\mathcal{T}}\|_{(H^1_0(\Omega))^d} \leq C_2 \|q\|_{L^2(\Omega)}$ where C_2 only depends on Ω

One defines $v_{\mathcal{T}} \in H_{\mathcal{T}}$ with $v_{\sigma} = \frac{1}{|\sigma|} \int_{\sigma} \overline{v}_{\mathcal{T}} \cdot n_{\sigma}$ for $\sigma \in \mathcal{E}$.

Then $\operatorname{div}_{\mathcal{T}}(v_{\mathcal{T}}) = p_{\mathcal{T}} - m_{\mathcal{T}}$ and

$$\int_{\Omega} \nabla_{\mathcal{T}} v_{\mathcal{T}} : \nabla_{\mathcal{T}} v_{\mathcal{T}} \, dx = \sum_{(\sigma,\overline{\sigma})\in\mathcal{N}} \frac{h_{\sigma,\overline{\sigma}}}{d_{\sigma,\overline{\sigma}}} (v_{\sigma} - v_{\overline{\sigma}})^2 \leq C_3 \|q\|_{L^2(\Omega)}^2$$

One takes v_T as test function in the discrete momentum equation

Estimate on p_T (2)

$$\int_{\Omega} \nabla_{\mathcal{T}} u_{\mathcal{T}} : \nabla_{\mathcal{T}} v_{\mathcal{T}} \, dx - \int_{\Omega} p_{\mathcal{T}} \operatorname{div}_{\mathcal{T}} (v_{\mathcal{T}}) \, dx = \int_{\Omega} f \cdot v_{\mathcal{T}} \, dx.$$

Using $\int_{\Omega} \operatorname{div}_{\mathcal{T}}(v_{\mathcal{T}}) dx = 0$:

$$\int_{\Omega} (p_T - m_T)^2 dx = \int_{\Omega} (f \cdot v_T - \nabla_T u_T : \nabla_T v_T) dx.$$

with the estimate on u_T and the bound on v_T linearly depending on the L^2 norm of $p_T - m_T$, the preceding inequality leads to:

$$\|p_{\mathcal{T}} - m_{\mathcal{T}}\|_{L^2(\Omega)} \leq C_4$$

where C_4 only depends on f and on Ω .

Estimates on p_T and ρ_T

 $\|p_{\mathcal{T}}-m_{\mathcal{T}}\|_{L^2(\Omega)}\leq C_4.$

$$\int_{\Omega} p_{\mathcal{T}}^{\frac{1}{\gamma}} dx = \int_{\Omega} \rho_{\mathcal{T}} dx = M$$

Then:

 $\|p_T\|_{L^2(\Omega)} \le C_5$ where C_5 only depends on f, M, γ and Ω . $p_T = \rho_T^{\gamma}$ a.e. in Ω , then:

$$\|
ho_{\mathcal{T}}\|_{L^{2\gamma}(\Omega)}\leq C_6=C_5^{rac{1}{\gamma}}.$$

Convergence of u_T , p_T , ρ_T (weak for p_T and ρ_T)

Thanks to the estimates on u_T , p_T , ρ_T , it is possible to assume (up to a subsequence) that, as $h \rightarrow 0$:

 $u_T \to u \text{ in } L^2(\Omega)^d \text{ and } u \in H^1_0(\Omega)^d,$ $p_T \to \rho \text{ weakly in } L^2(\Omega),$ $\rho_T \to \rho \text{ weakly in } L^{2\gamma}(\Omega).$

Passage to the limit in the momentum equation

Classical proof with FV scheme for elliptic equations $u \in H^1_0(\Omega)^d$

One proves

$$\int_{\Omega} \nabla u : \nabla v \, dx - \int_{\Omega} p \operatorname{div}(v) \, dx = \int_{\Omega} f \cdot v \, dx \text{ for all } v \in C^{\infty}_{c}(\Omega)^{d}$$

and then, since $u \in H^1_0(\Omega)^d$, one concludes by density

$$\int_{\Omega} \nabla u : \nabla v \, dx - \int_{\Omega} p \operatorname{div}(v) \, dx = \int_{\Omega} f \cdot v \, dx \text{ for all } v \in H^1_0(\Omega)^d$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ●

Passage to the limit in the mass equation

 L^1 -weak convergence of ρ_T (and $\rho_T \ge 0$) gives positivity of ρ and convergence of total mass

$$\rho \geq 0$$
 in Ω , $\int_{\Omega} \rho(x) dx = M$.

Using the fact that u_T converges in L^2 and ρ_T weakly in L^2 , one proves

$$\int_{\Omega} \rho u \cdot \nabla \varphi \, dx = 0 \text{ for all } \varphi \in C^{\infty}_{c}(\Omega)$$

This is quite classical with FV for hyperbolic equations. It uses some weak-BV estimate (to control $\rho_K - \rho_L$ if $\sigma = K|L$) coming from the upwinding of ρ

Quite easy for $\gamma \geq 2$. More difficult for $\gamma < 2$.

Weak-BV estimate, $\gamma \geq 2$

Roughly speaking, upwinding replaces $\operatorname{div}(\rho u) = 0$ by $\operatorname{div}(\rho u) - h \operatorname{div}(|u|\nabla \rho) = 0$ (the term M_K is easy to handle) Taking ρ as test function leads to

$$-\frac{1}{2}\int_{\Omega}u\cdot\nabla\rho^{2}+h|u||\nabla\rho|^{2}=0$$

which leads to

$$\int_{\Omega} h|u| |\nabla \rho|^2 = -\frac{1}{2} \int_{\Omega} \operatorname{div}(u) \rho^2 \leq C$$

if ρ is bounded in $L^4(\Omega)$ (since div(u) is bounded in $L^2(\Omega)$) This proves the weak-BV estimate on ρ if $\gamma \ge 2$

It allows to pass to the limit in the mass equation using the weak convergence of ρ_T in $L^2(\Omega)$ and the convergence of u_T in $L^2(\Omega)^d$ as $h \to 0$

Weak-BV estimate, $\gamma < 2$

- Method 1: Use ρ-weighted weak-BV estimates
- Method 2: Add another diffusion term in the discrrete mass equation which is a discretization of

$$h^{\boldsymbol{\xi}} \operatorname{div}(\rho^{2-\gamma} \nabla \rho) = \mathbf{0}$$

 ξ is a parameter, $0 < \xi < 2$ Small diffusion term (ξ close to 2), leading to a weak-BV estimate (taking $\rho^{\gamma-1}$ as test function in the discrete mass equation)

Passage to the limit in EOS

- No problem if $\gamma = 1$, $p = \rho$
- If $\gamma > 1$, question:

 $p = \rho^{\gamma}$ in Ω ?

 $p_{\mathcal{T}}$ and $\rho_{\mathcal{T}}$ converge only weakly...

Idea : prove $\int_{\Omega} p_T \rho_T \rightarrow \int_{\Omega} p\rho$ and deduce a.e. convergence (of p_T and ρ_T) and $p = \rho^{\gamma}$.

 $\nabla : \nabla = \operatorname{divdiv} + \operatorname{curl} \cdot \operatorname{curl}$ For all \bar{u}, \bar{v} in $H_0^1(\Omega)^d$,

$$\int_{\Omega} \nabla \bar{u} : \nabla \bar{v} = \int_{\Omega} \operatorname{div}(\bar{u}) \operatorname{div}(\bar{v}) + \int_{\Omega} \operatorname{curl}(\bar{u}) \cdot \operatorname{curl}(\bar{v}).$$

Assuming, for simplicity that $u_T \in H_0^1(\Omega)^d$ and $-\Delta u_T + \nabla p_T = f_T \in L^2(\Omega), f_T \to f \text{ in } L^2(\Omega)^d$ as $h \to 0$ (not true...). Then, for all \bar{v} in $H_0^1(\Omega)^d$

$$\int_{\Omega} \operatorname{div}(u_{\mathcal{T}}) \operatorname{div}(\bar{v}) + \int_{\Omega} \operatorname{curl}(u_{\mathcal{T}}) \cdot \operatorname{curl}(\bar{v}) - \int_{\Omega} p_{\mathcal{T}} \operatorname{div}(\bar{v}) = \int_{\Omega} f_{\mathcal{T}} \cdot \bar{v}.$$

Choice of \bar{v} ? $\bar{v} = \bar{v}_T$ with $\operatorname{curl}(\bar{v}_T) = 0$, $\operatorname{div}(\bar{v}_T) = \rho_T$ and \bar{v}_T bounded in H_0^1 (unfortunately, 0 is impossible).

Then, up to a subsequence,

$$\bar{\nu}_{\mathcal{T}} \to v$$
 in $L^2(\Omega)$ and weakly in $H^1_0(\Omega)$,
curl $(v) = 0$, div $(v) = \rho$.

Proof using \bar{v}_{T} (1)

$$\int_{\Omega} \operatorname{div}(u_{\mathcal{T}}) \operatorname{div}(\bar{v}_{\mathcal{T}}) + \int_{\Omega} \operatorname{curl}(u_{\mathcal{T}}) \cdot \operatorname{curl}(\bar{v}_{\mathcal{T}}) - \int_{\Omega} p_{\mathcal{T}} \operatorname{div}(\bar{v}_{\mathcal{T}}) = \int_{\Omega} f_{\mathcal{T}} \cdot \bar{v}_{\mathcal{T}}$$

But, $\operatorname{div}(\bar{v}_{\mathcal{T}}) = \rho_{\mathcal{T}}$ and $\operatorname{curl}(\bar{v}_{\mathcal{T}}) = 0$. Then:

$$\int_{\Omega} (\operatorname{div}(u_{\mathcal{T}}) - p_{\mathcal{T}}) \rho_{\mathcal{T}} = \int_{\Omega} f_{\mathcal{T}} \cdot \bar{v}_{\mathcal{T}}.$$

Convergence of f_T in $L^2(\Omega)^d$ to f and convergence of \bar{v}_T in $L^2(\Omega)^d$ to v:

$$\lim_{h\to 0}\int_{\Omega}(\operatorname{div}(u_{\mathcal{T}})-p_{\mathcal{T}})\rho_{\mathcal{T}}=\int_{\Omega}f\cdot v.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Proof using \bar{v}_T (2) But, since $-\Delta u + \nabla p = f$:

$$\int_{\Omega} \operatorname{div}(u) \operatorname{div}(v) + \int_{\Omega} \operatorname{curl}(u) \cdot \operatorname{curl}(v) - \int_{\Omega} p \operatorname{div}(v) = \int_{\Omega} f \cdot v.$$

which gives (using $\operatorname{div}(v) = \rho$ and $\operatorname{curl}(v) = 0$): $\int_{\Omega} (\operatorname{div}(u) - p)\rho = \int_{\Omega} f \cdot v.$ Then:

$$\lim_{h\to 0}\int_{\Omega}(p_{\mathcal{T}}-\operatorname{div}(u_{\mathcal{T}}))\rho_{\mathcal{T}}=\int_{\Omega}(p-\operatorname{div}(u))\rho.$$

Finally, the preliminary lemma gives, thanks to the mass equations, $\int_{\Omega} \rho_{\mathcal{T}} \operatorname{div}(u_{\mathcal{T}}) \leq Ch^{\alpha}$ and $\int_{\Omega} \rho \operatorname{div}(u) = 0$. Then, at least for a subsequence

$$\lim_{h\to 0}\int_{\Omega}p_{\mathcal{T}}\rho_{\mathcal{T}}\leq \int_{\Omega}p\rho.$$

Unfortunately, two difficulties: it is impossible to have $\bar{\nu}_T \in H_0^1$ and (u_T, p_T) is solution of the discrete momentum equation

First difficulty: not 0 at the boundary

Let $w_T \in H^1_0(\Omega)$, $-\Delta w_T = \rho_T$, One has $w_T \in H^2_{loc}(\Omega)$ since, for $\varphi \in C^{\infty}_c(\Omega)$, one has $\Delta(w_T \varphi) \in L^2(\Omega)$ and

$$\begin{split} \sum_{i,j=1}^d \int_\Omega \partial_i \partial_j (w_T \varphi) \, \partial_i \partial_j (w_T \varphi) &= \sum_{i,j=1}^d \int_\Omega \partial_i \partial_i (w_T \varphi) \, \partial_j \partial_j (w_T \varphi) \\ &= \int_\Omega (\Delta(w_T \varphi))^2 < \infty \end{split}$$

Then, taking $v_T = \nabla w_T$

- ► $v_T \in (H^1_{loc}(\Omega))^d$,
- $\operatorname{div}(v_{\mathcal{T}}) = \rho_{\mathcal{T}}$ a.e. in Ω ,
- $\operatorname{curl}(v_{\mathcal{T}}) = 0$ a.e. in Ω ,
- $H^1_{loc}(\Omega)$ -estimate on v_T with respect to $\|\rho_T\|_{L^2(\Omega)}$.

Then, up to a subsequence, as $h \to 0$, $v_T \to v$ in $L^2_{loc}(\Omega)$ and weakly in $H^1_{loc}(\Omega)$, $\operatorname{curl}(v) = 0$, $\operatorname{div}(v) = \rho$.

Proof of $\int_{\Omega} (p_T - \operatorname{div}(u_T)) \rho_T \varphi \to \int_{\Omega} (p - \operatorname{div}(u)) \rho \varphi$

Let $\varphi \in C^{\infty}_{c}(\Omega)$ (so that $v_{\mathcal{T}}\varphi \in H^{1}_{0}(\Omega)^{d}$)). Taking $\bar{v} = v_{\mathcal{T}}\varphi$:

$$\begin{split} \int_{\Omega} \operatorname{div}(u_{\mathcal{T}}) \operatorname{div}(v_{\mathcal{T}}\varphi) &+ \int_{\Omega} \operatorname{curl}(u_{\mathcal{T}}) \cdot \operatorname{curl}(v_{\mathcal{T}}\varphi) - \int_{\Omega} p_{\mathcal{T}} \operatorname{div}(v_{\mathcal{T}}\varphi) \\ &= \int_{\Omega} f_{\mathcal{T}} \cdot (v_{\mathcal{T}}\varphi). \end{split}$$

Using a proof smilar to that given if $\varphi = 1$ (with additionnal terms involving φ), we obtain :

$$\lim_{h\to 0}\int_{\Omega}(p_{\mathcal{T}}-\operatorname{div}(u_{\mathcal{T}}))\rho_{\mathcal{T}}\varphi=\int_{\Omega}(p-\operatorname{div}(u))\rho\varphi,$$

Proving $\int_{\Omega} (p_T - \operatorname{div}(u_T)) \rho_T \varphi \to \int_{\Omega} (p - \operatorname{div}(u)) \rho \varphi$ Let $\varphi \in C_c^{\infty}(\Omega)$ (so that $v_T \varphi \in H_0^1(\Omega)^d$)). Taking $\bar{v} = v_T \varphi$: $\int_{\Omega} \operatorname{div}(u_T) \operatorname{div}(v_T \varphi) + \int_{\Omega} \operatorname{curl}(u_T) \cdot \operatorname{curl}(v_T \varphi) - \int_{\Omega} p_T \operatorname{div}(v_T \varphi)$ $= \int_{\Omega} f_T \cdot (v_T \varphi).$

But, $\operatorname{div}(v_T\varphi) = \rho_T\varphi + v_T \cdot \nabla\varphi$ and $\operatorname{curl}(v_T\varphi) = L(\varphi)v_T$, where $L(\varphi)$ is a matrix involving the first order derivatives of φ . Then:

$$\int_{\Omega} (\operatorname{div}(u_{\mathcal{T}}) - p_{\mathcal{T}}) \rho_{\mathcal{T}} \varphi = \int_{\Omega} f_{\mathcal{T}} \cdot (v_{\mathcal{T}} \varphi) - \int_{\Omega} \operatorname{div}(u_{\mathcal{T}}) v_{\mathcal{T}} \cdot \nabla \varphi - \int \operatorname{curl}(u_{\mathcal{T}}) \cdot \mathcal{L}(\varphi) v_{\mathcal{T}} + \int_{\Omega} p_{\mathcal{T}} v_{\mathcal{T}} \cdot \nabla \varphi.$$

Weak convergence of u_T in $H_0^1(\Omega)^d$, weak convergence of p_T in $L^2(\Omega)$ and convergence of v_T and f_T in $L^2_{loc}(\Omega)^d$ and $L^2(\Omega)^d$:

$$\begin{split} \lim_{h\to 0} \int_{\Omega} (\operatorname{div}(u_{\mathcal{T}}) - p_{\mathcal{T}}) \rho_{\mathcal{T}} \varphi &= \int_{\Omega} f \cdot (v\varphi) \\ - \int_{\Omega} \operatorname{div}(u) v \cdot \nabla \varphi - \int \operatorname{curl}(u) \cdot L(\varphi) v + \int_{\Omega} p v \cdot \nabla \varphi. \end{split}$$

Proof of $\int_{\Omega} (p_T - \operatorname{div}(u_T)) \rho_T \varphi \to \int_{\Omega} (p - \operatorname{div}(u)) \rho \varphi$

But, since $-\Delta u + \nabla p = f$:

 $\int_{\Omega} \operatorname{div}(u) \operatorname{div}(v\varphi) + \int_{\Omega} \operatorname{curl}(u) \cdot \operatorname{curl}(v\varphi) - \int_{\Omega} p \operatorname{div}(v\varphi) \\ = \int_{\Omega} f \cdot (v\varphi).$

which gives (using $\operatorname{div}(v) = \rho$ and $\operatorname{curl}(v) = 0$):

$$\int_{\Omega} (\operatorname{div}(u) - p) \rho \varphi = \int_{\Omega} f \cdot (v\varphi) - \int_{\Omega} \operatorname{div}(u) v \cdot \nabla \varphi - \int \operatorname{curl}(u) \cdot L(\varphi) v + \int_{\Omega} p v \cdot \nabla \varphi.$$

Then:

$$\lim_{h\to 0}\int_{\Omega}(p_{\mathcal{T}}-\operatorname{div}(u_{\mathcal{T}}))\rho_{\mathcal{T}}\varphi=\int_{\Omega}(p-\operatorname{div}(u))\rho\varphi.$$

Second difficulty: Discrete momentum equation

Miracle for the MAC scheme: for all \bar{u}, \bar{v} in H_T ,

$$\int_{\Omega} \nabla_{\mathcal{T}} \bar{u} : \nabla_{\mathcal{T}} \bar{v} = \int_{\Omega} \operatorname{div}_{\mathcal{T}}(\bar{u}) \operatorname{div}_{\mathcal{T}}(\bar{v}) + \int_{\Omega} \operatorname{curl}_{\mathcal{T}}(\bar{u}) \cdot \operatorname{curl}_{\mathcal{T}}(\bar{v}).$$

Then, for all \bar{v} in H_T

$$\int_{\Omega} \operatorname{div}_{\mathcal{T}}(u_{\mathcal{T}}) \operatorname{div}_{\mathcal{T}}(\bar{v}) + \int_{\Omega} \operatorname{curl}_{\mathcal{T}}(u_{\mathcal{T}}) \cdot \operatorname{curl}_{\mathcal{T}}(\bar{v}) - \int_{\Omega} p_{\mathcal{T}} \operatorname{div}(\bar{v}) = \int_{\Omega} f_{\mathcal{T}} \cdot \bar{v}.$$

Choice of \bar{v} ? $\bar{v} = \bar{v}_T$ with $\operatorname{curl}_T(\bar{v}_T) = 0$, $\operatorname{div}(\bar{v}_T) = \rho_T$ and $\bar{v}_T \in H_T$ and bounded for the natural norm of $H_T \dots$ impossible... (as in the continuous setting)

Choice of the test function in the momentum equation

Let $\{w_K, K \in \mathcal{T}\}$ be the FV solution of the $-\Delta w_T = \rho_T$, with the homogeneous Dirichlet boundary condition, that is, for all $K \in \mathcal{T}$,

$$\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \frac{|\sigma|}{d_{\sigma}} (w_{\mathcal{K}} - w_{L}) = |\mathcal{K}| \rho_{\mathcal{K}}$$

In the preceding equality, $\sigma = K | L$, with the usual modification at the boundary

For $\sigma \in \mathcal{E}$, $\sigma = K | L$, $n_{K,\sigma} = n_{\sigma} \ge 0$, one defines $v_{\sigma} = u_L - u_K$ A proof similar to the proof for the continous case, gives some discrete- $H^2_{loc}(\Omega)$ estimate on w_T and then some discrete- $H^1_{loc}(\Omega)$ estimate on v_T in term of L^2 norm of ρ_T

Furthermore, at least "far" from the boundary, $\operatorname{div}_{\mathcal{T}}(v_{\mathcal{T}}) = \rho_{\mathcal{T}}$ and $\operatorname{curl}_{\mathcal{T}}(v_{\mathcal{T}}) = 0$

Then, up to a subsequence, as $h \to 0$, $v_T \to v$ in $L^2_{loc}(\Omega)$ and $v \in H^1_{loc}(\Omega)^d$, $\operatorname{curl}(v) = 0$, $\operatorname{div}(v) = \rho$.

Proof of $\int_{\Omega} (p_T - \operatorname{div}(u_T)) \rho_T \varphi \to \int_{\Omega} (p - \operatorname{div}(u)) \rho \varphi$

Let $\varphi \in C_c^{\infty}(\Omega)$ (so that $v_T \varphi_T \in H_T$). Taking $\bar{v} = v_T \varphi_T$:

$$\int_{\Omega} \operatorname{div}_{\mathcal{T}}(u_{\mathcal{T}}) \operatorname{div}_{\mathcal{T}}(v_{\mathcal{T}}\varphi) + \int_{\Omega} \operatorname{curl}_{\mathcal{T}}(u_{\mathcal{T}}) \cdot \operatorname{curl}_{\mathcal{T}}(v_{\mathcal{T}}\varphi_{\mathcal{T}}) - \int_{\Omega} p_{\mathcal{T}} \operatorname{div}_{\mathcal{T}}(v_{\mathcal{T}}\varphi_{\mathcal{T}}) = \int_{\Omega} f_{\mathcal{T}} \cdot (v_{\mathcal{T}}\varphi_{\mathcal{T}}).$$

Using a proof smilar to that given in the continuous case we obtain:

$$\lim_{h\to 0}\int_{\Omega}(p_{\mathcal{T}}-\operatorname{div}(u_{\mathcal{T}}))\rho_{\mathcal{T}}\varphi=\int_{\Omega}(p-\operatorname{div}(u))\rho\varphi,$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Proof of $\int_{\Omega} (p_{\mathcal{T}} - \operatorname{div}(u_{\mathcal{T}})) \rho_{\mathcal{T}} \rightarrow \int_{\Omega} (p - \operatorname{div}(u)) \rho$

Lemma : $F_{\mathcal{T}} \to F$ in $D'(\Omega)$, $(F_{\mathcal{T}})_{n \in \mathbb{N}}$ bounded in L^q for some q > 1. Then $F_{\mathcal{T}} \to F$ weakly in L^1 .

With $F_T = (p_T - \operatorname{div}(u_T))\rho_T$, $F = (p - \operatorname{div}(u))\rho$ and since $\gamma > 1$, the lemma gives

$$\int_{\Omega} (p_{\mathcal{T}} - \operatorname{div}(u_{\mathcal{T}}))
ho_{\mathcal{T}}
ightarrow \int_{\Omega} (p - \operatorname{div}(u))
ho_{\mathcal{T}}$$

Proving $\int_{\Omega} p_T \rho_T \to \int_{\Omega} p \rho$

$$\int_\Omega (p_\mathcal{T} - \operatorname{div}(u_\mathcal{T}))
ho_\mathcal{T} o \int_\Omega (p - \operatorname{div}(u))
ho.$$

But thanks to the mass equations, the preliminary lemma gives:

$$\int_{\Omega} \operatorname{div}(u_{\mathcal{T}})
ho_{\mathcal{T}} \leq Ch^{lpha}, \ \int_{\Omega} \operatorname{div}(u)
ho = 0;$$

Then:

$$\lim_{h\to 0}\int_{\Omega}p_{\mathcal{T}}\rho_{\mathcal{T}}\leq \int_{\Omega}p\rho.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

a.e. convergence of ρ_T and p_T

Let $G_T = (\rho_T^{\gamma} - \rho^{\gamma})(\rho_T - \rho) \in L^1(\Omega)$ and $G_T \ge 0$ a.e. in Ω . Futhermore $G_T = (p_T - \rho^{\gamma})(\rho_T - \rho) = p_T \rho_T - p_T \rho - \rho^{\gamma} \rho_T + \rho^{\gamma} \rho$ and:

$$\int_{\Omega} G_{\mathcal{T}} = \int_{\Omega} p_{\mathcal{T}} \rho_{\mathcal{T}} - \int_{\Omega} p_{\mathcal{T}} \rho - \int_{\Omega} \rho^{\gamma} \rho_{\mathcal{T}} + \int_{\Omega} \rho^{\gamma} \rho_{\mathcal{T}}$$

Using the weak convergence in $L^2(\Omega)$ of p_T and ρ_T and $\lim_{h\to 0} \int_{\Omega} p_T \rho_T \leq \int_{\Omega} p\rho$:

$$\lim_{h\to 0}\int_{\Omega}G_{\mathcal{T}}\leq 0,$$

Then (up to a subsequence), $G_T \to 0$ a.e. and then $\rho_T \to \rho$ a.e. (since $y \mapsto y^{\gamma}$ is an increasing function on \mathbb{R}_+). Finally: $\rho_T \to \rho$ in $L^q(\Omega)$ for all $1 \le q < 2\gamma$, $p_T = \rho_T^{\gamma} \to \rho^{\gamma}$ in $L^q(\Omega)$ for all $1 \le q < 2$, and $p = \rho^{\gamma}$.

(\rightsquigarrow EOS and EOT ?)

Additional difficulty for stat. comp. NS equations

 Ω is a bounded open set of \mathbb{R}^d , d = 2 or 3, with a Lipschitz continuous boundary, $\gamma > 1$, $f \in L^2(\Omega)^d$ and M > 0

$$\begin{aligned} -\Delta u + \operatorname{div}(\rho u \otimes u) + \nabla p &= f \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega, \\ \operatorname{div}(\rho u) &= 0 \quad \text{in } \Omega, \ \rho \geq 0 \quad \text{in } \Omega, \ \int_{\Omega} \rho(x) = M, \\ p &= \rho^{\gamma} \text{ in } \Omega \end{aligned}$$

d = 2: no aditional difficulty d = 3: no additional difficulty if $\gamma \ge 3$. But for $\gamma < 3$, no estimate on p in $L^2(\Omega)$. Estimates in the case of NS equations, $\frac{3}{2} < \gamma < 3$

Estimate on u: Taking u as test function in the momentum leads to an estimate on u in $(H_0^1(\Omega)^d$ since

$$\int_{\Omega} \rho u \otimes u : \nabla u = 0.$$

Then, we have also an estimate on u in $L^6(\Omega)^d$ (using Sobolev embedding).

Estimate on p in $L^q(\Omega)$, with some 1 < q < 2 and q = 1 when $\gamma = \frac{3}{2}$ (using Nečas Lemma in some L^r instead of L^2).

Estimate on ρ in $L^q(\Omega)$, with some $\frac{3}{2} < q < 6$ and $q = \frac{3}{2}$ when $\gamma = \frac{3}{2}$ (since $p = \rho^{\gamma}$).

Remark : $\rho u \otimes u \in L^1(\Omega)$, since $u \in L^6(\Omega)^d$ and $\rho \in L^{\frac{3}{2}}(\Omega)$ (and $\frac{1}{6} + \frac{1}{6} + \frac{2}{3} = 1$).

NS equations, γ < 3, how to pass to the limit in the EOS

We prove

$$\lim_{h\to 0}\int_{\Omega}p_{T}\rho_{T}^{\theta}=\int_{\Omega}p\rho^{\theta},$$

with some convenient choice of $\theta > 0$ instead of $\theta = 1$.

This gives, as for $\theta = 1$, the a.e. convergence (up to a subsequence) of p_T and ρ_T .