Introduction

Semantics
Abstract machines

Game semantics
AJM and HO style
Pointixion

Gol
IAM
Execution formula
Equationnal theory
Lambda-calculus
Execution paths

A Geometry of Interaction and Game Semantics Tutorial

Laurent Regnier

Institut de Mathématiques de Luminy

Geometry of Computation 2006
1. Introduction
 - Abstract operationnal semantics
 - Abstract machines

2. Game semantics
 - AJM and HO style
 - Pointifixion

3. Geometry of interaction
 - Interaction abstract machine
 - Execution formula
 - Equationnal theory
 - Lambda-calculus
 - Execution paths
The logical viewpoint

Three logical levels:

- Formula: truth
- Proof: provability
- Cut elimination: coherence (subformula property)
Three logical levels:

- **Formula**: truth
- **Proof**: provability
- **Cut elimination**: coherence (subformula property)
The logical viewpoint

Three logical levels:

- **Formula**: truth
- **Proof**: provability
- **Cut elimination**: coherence (subformula property)
The logical viewpoint

Three logical levels:

- **Formula**: truth
- **Proof**: provability
- **Cut elimination**: coherence (subformula property)
Curry-Howard

Model for sequential programming language, e.g., (typed) lambda calculus: *use modularity (compositionality)*

- **Type**: space
- **Program**: morphisms
- **Execution**: introducing time in the model
Model for sequential programming language, e.g., (typed) lambda calculus: *use modularity (compositionality)*

- **Type**: space
- **Program**: morphisms
- **Execution**: introducing time in the model
Model for sequential programming language, e.g., (typed) lambda calculus: *use modularity (compositionality)*

- **Type**: space
- **Program**: morphisms
- **Execution**: introducing time in the model
Embedding syntax into more general structure

- Scott continuity: finiteness of computation
- Stability: (inverse) determinism
- Sequentiality: determinism
Semantics

Embedding syntax into more general structure

- Scott continuity: finitess of computation
- Stability: (inverse) determinism
- Sequentiality: determinism

What about execution?
Syntaxes for execution

- Logic: cut elimination, \textit{i.e.}, beta-reduction
- Programming language: abstract machines
Head linear reduction

A machine for (weak) head linear reduction:

\[(\lambda \vec{x} x_i) \bar{u} \triangleright u_i\]
\[(\lambda \vec{x} v w) \bar{u} \triangleright (\lambda \vec{x} v) \bar{u}((\lambda \vec{x} w) \bar{u})\]

- KAM: closures and stack
- PAM: pointed sequences (hyper lazy KAM)
- Execution = sequence of occurrences of occurrences of variables
A machine for (weak) head linear reduction:

\[(\lambda \vec{x}_i) \vec{u} \succ u_i\]
\[(\lambda \vec{x}vw) \vec{u} \succ (\lambda \vec{x}v) \vec{u}(\lambda \vec{x}w) \vec{u}\]

- **KAM**: closures and stack
- **PAM**: pointed sequences (hyper lazy KAM)
- **Execution** = sequence of occurrences of variables
A machine for (weak) *head linear reduction*:

\[
(\lambda \vec{x} i) \vec{u} \succ u_i \\
(\lambda \vec{x} v w) \vec{u} \succ (\lambda \vec{x} v) \vec{u} ((\lambda \vec{x} w) \vec{u})
\]

- **KAM**: closures and stack
- **PAM**: pointed sequences (hyper lazy KAM)
- Execution = sequence of occurrences of occurrences of variables
Head linear reduction

A machine for (weak) head linear reduction:

\[(\lambda \vec{x} x_i) \vec{u} \succ u_i \]
\[(\lambda \vec{x} v w) \vec{u} \succ (\lambda \vec{x} v) \vec{u} ((\lambda \vec{x} w) \vec{u})\]

- KAM: closures and stack
- PAM: pointed sequences (hyper lazy KAM)
- Execution = sequence of occurrences of variables
1 Introduction
 - Abstract operationnal semantics
 - Abstract machines

2 Game semantics
 - AJM and HO style
 - Pointifixion

3 Geometry of interaction
 - Interaction abstract machine
 - Execution formula
 - Equationnal theory
 - Lambda-calculus
 - Execution paths
Game in mathematics

- Game theory (economics)
- Gentzen (coherence of arithmetics: sequent calculus proof = winning strategy)
- Descriptive set theory (determination axioms)
- Program verification
- Game semantics
Game semantics

- Two players: Environment \((O)\) and Program \((P)\)
- Execution = alternating sequence of moves (play)
- Program = strategy
- Type = set of plays
AJM games

- Move = finite sequence of numbers (plus multiplicative information)
- Strategy = function on moves (memory freeness)
- Equivalence between strategies: renumbering

Theorem

AJM strategy of $M = GoI$ of M
HO games

- Play = pointed sequence (à la PAM)
- Strategy = function on views (innocence)

Theorem

Strategy = tree of views = Böhm tree

Proof.

HO play = PAM run
Pointifixion

- AJM play \leadsto HO play: \vec{i}, i points on \vec{i}
- AJM strategy (memory free) \leadsto HO strategy (innocent)
1 Introduction
 • Abstract operationnal semantics
 • Abstract machines

2 Game semantics
 • AJM and HO style
 • Pointifixion

3 Geometry of interaction
 • Interaction abstract machine
 • Execution formula
 • Equationnal theory
 • Lambda-calculus
 • Execution paths
Geometry of interaction

- A reversible abstract machine (IAM)
- An interpretation of programs/proofs by operators
- An algebraic characterization of *execution paths*
- A localization of beta-reduction (sharing graphs)
- A generalization of multiplicative *experiments*
- An interpretation into a traced monoidal category
Geometry of interaction

- A reversible abstract machine (IAM)
- An interpretation of programs/proofs by operators
- An algebraic characterization of execution paths
- A localization of beta-reduction (sharing graphs)
- A generalization of multiplicative experiments
- An interpretation into a traced monoidal category
A reversible abstract machine (IAM)
An interpretation of programs/proofs by operators
An algebraic characterization of execution paths
A localization of beta-reduction (sharing graphs)
A generalization of multiplicative experiments
An interpretation into a traced monoidal category
Geometry of interaction

- A reversible abstract machine (IAM)
- An interpretation of programs/proofs by operators
- An algebraic characterization of execution paths
- A localization of beta-reduction (sharing graphs)
- A generalization of multiplicative experiments
- An interpretation into a traced monoidal category
Geometry of interaction

- A reversible abstract machine (IAM)
- An interpretation of programs/proofs by operators
- An algebraic characterization of *execution paths*
- A localization of beta-reduction (sharing graphs)
- A generalization of multiplicative *experiments*
- An interpretation into a traced monoidal category
Geometry of interaction

- A reversible abstract machine (IAM)
- An interpretation of programs/proofs by operators
- An algebraic characterization of *execution paths*
- A localization of beta-reduction (sharing graphs)
- A generalization of multiplicative experiments
- An interpretation into a traced monoidal category
The Interaction Abstract Machine

- Program = bideterministic (reversible) automaton
- State = \((B, S) + \) location in the graph
 - \(B = \) box stack of exponential signatures
 - \(S = \) balanced stack of exponential signatures + multiplicative constants \(P\) and \(Q\)
 - exponential signature = binary tree with leaves in \(\{\square, R, S\}\)
- Transitions = partial transformations on \((B, S)\)

Theorem

\(KAM \subset IAM\)
Execution formula

\[M : A \text{ and } x : A \vdash N : B \text{ yields:} \]

\[\pi = \begin{pmatrix} \pi_{AA} & 0 & 0 \\ 0 & \pi_{A \perp A \perp} & \pi_{A \perp B} \\ 0 & \pi_{BA \perp} & \pi_{BB} \end{pmatrix}, \quad \sigma = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]

\[(1 - \sigma^2) \pi \sum_{k \geq 0} (\sigma \pi)^k (1 - \sigma^2) \]
Execution formula

- $M : A$ and $x : A \vdash N : B$ yields:

\[
\pi = \begin{pmatrix}
\pi_{AA} & 0 & 0 \\
0 & \pi_{A \perp A \perp} & \pi_{A \perp B} \\
0 & \pi_{BA \perp} & \pi_{BB}
\end{pmatrix}
\]

\[
\sigma = \begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

\[
(1 - \sigma^2)\pi \sum_{k \geq 0} (\sigma \pi)^k (1 - \sigma^2)
\]
The GoI equational theory

- Monoid with 0 generated by p, q, d, r, s, t
- Involution: $0^* = 0, 1^* = 1, (uv)^* = v^* u^*$
- Morphism: $!(0) = 0, !(1) = 1, !(u)! (v) = !(uv), !(u)^* = !(u^*)$
- Annihilation equations: $x^* y = \delta_{xy}$ (x, y generators)
- Commutation equations:
 - $!(u)d = du$
 - $!(u)x = x!(u)$ for $x = r, s$
 - $!(u)t = t!(!(u))$
The theorem AB^*

- Orientate equations \rightsquigarrow rewriting system
- Normal forms $= 0$ or AB^*
- Inverse semigroup structure
Models of the equationnal theory

- Partial isometries on the Hilbert space
- Small models: partial injections on \(\mathbb{N} \)
- Partial transformations on an algebra of first order terms (clauses model, consistent semantics)
The GoI interpretation of lambda-calculus

Given M and n define the oriented graph $G_n(M)$:
- Nodes: lambda and app, box nodes
- Edges: labelled with weight
- One exiting edge per free variable plus one entering edge for M.

GoI of $M = G_0(M)$
Variable case: $G_n(x)$
Abstraction case: $G_n(\lambda x M)$
Application case: $G_n(MN)$
Execution paths

Definition

Execution paths = invariant of beta-reduction = virtual redexes

Theorem

Execution paths = Regular paths = Legal paths

Corollary

Balanced execution paths = redex families