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Plan of the Talk

Starting from a Definition (Statistical analysis of observations)
Some ingredients of the phenomenology of (mainly due to) Kolmogorov
First naive representation as Fractional Gaussian Fields
High order statistics (non Gaussianity/Intermittency/Multifractal)

Early Introduction of GMC to model intermittency (i.e. multifractality)
Modern formulation of things

Building a realistic stochastic picture of three-dimensional fluid turbulence
which includes a matrix form of the GMC

Defining these random fields as an invariant measure of some (simple) stochastic
PDE



Wind tunnel at Modane

See Gagne et al., Bourgoin et al.
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Two-point statistical structure of turbulence

Define the energy spectrum (Fourier transform of the correlation) as
B(k) = / e~ 2 LV -+ £)) de
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Two-point statistical structure of turbulence

In an equivalent way, define the velocity increment as
dpu(x) = u(x + £) — u(x),
and remark that ((§,u)?) = 202 — 2(u(z)u(z + £)).
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The Navier-Stokes equations

In three-dimensional space, consider the velocity field w(x, t), where u = (u1,u2, us),
x € R3 and say t > 0. Given a (large-scale, divergence-free forcing) £, it is solution of

ou

— 4+ (u-V)u =

ot

1
——Vp+vAu+ fand V-u =0,
Jo

where p is the pressure field, and v the kinematic viscosity.

‘Kolmogorov 1903-1987

"l became interested in turbulent liquid and
gas flows at the end of the thirties. From
the very beginning it was clear that the
theory of random functions of many
variables (random fields), whose
development only started at that time,
must be the underlying mathematical
technique. Moreover, | soon understood
that there was little hope of developing a
pure, closed theory, and because of the
absence of such a theory the investigation
must be based on hypotheses obtained by
processing experimental data."



Fractional Gaussian Fields

Can we give a probabilistic representation of these observed velocity fluctuations?

ug () = Pr(z — y)W(dy)
yeR

W (dy) a (distributional) Gaussian white measure

Py the fractional operator (Fourier multiplier) of Hurst H €]0, 1]
Pp (2) = /e2mkx|k|1_/lz_1/2dk.

It is a perfect representation of these former observations using the particular value
H =1/3:

It is a zero-average and finite-variance statistically homogeneous field.

Moreover,

E [(5guH)2] e_f;éJr co?H

with co > 0, up to variance, independent of the cut-off at large scale L.

easy generalization to a dissipative range (with proper phenomenology for ) and
to three-dimensional divergence-free fields.



Third-order statistics

Assuming former phenomenology, it can be shown from Navier-Stokes that

. A% 4
lim E || dpu(x) - — ~ ——cl.
v—0 |£| e]—0 5

where € = lim, 0 E [v|Vu|?], which is finite and > 0, is the mean energy
dissipation (per unit of mass)
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with Ss the corresponding moment divided by —e/, see Gagne et al. PoF (2004).



Intermittency in Eulerian fluctuations

Eulerian longitudinal velocity increments: §yu(x) = u(x + £) — u(x)

§pu)t)
Flatness F = t0e4) )
((8pu)?)?
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Actually, we observe that (Refined Similarity Hypothesis)
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Discrete Multiplicative Cascade Models

Consider the local dissipation field ¢(x,t) = v|Vu(z, t)|?
Then, following Yaglom (1962) and more recent modern formulations

(from Frisch (95)) (from Arneodo et al., JMP (98))
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in Eq. (6).
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From there, Mandelbrot (72) introduced the limit lognormal model, which has been called
GMC by Kahane (85).




3D Fluid Tarbulence: Full velocity gradients

1 _ Intense Rotation and Dissipation in
R Turbulent Flows

Hot wires inclined 2.5 pm
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(picture by Toschi)
See also Luthi et al., Xu-Bodenshatz et al., etc.



Vorticity and Deformation matrix: Definitions

Consider the (smooth) velocity field v(xg, tp) at the point (Xg, to).

V(Xo + h, to) = V(Xo, to) + (VV)(Xo,to)h + O(hQ) , Vh € R3
N——
A

The 3x3 matrix Vv = (9;v;) has a symmetric part D and an antisymmetric part (2

A=Vv=D1+)

D is called the deformation or rate-of-strain matrix
It has three (real) eigenvalues \; > X2 > )3

By the incompressibility condition tr(A) = div(v) = 0

— A1+ A2+ A3 =0
— A1 ZO&I’]d)\;gSO
) is called the rate-of-rotation matrix

The vorticity w = curl v = V A v satifies

1



The RQ plane - Local Topology

See Chong, Perry and Cantwell (90) and Cantwell (93)
n P(R,Q)
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Vorticity Alignments

DNS R, = 150 (2563)

1

Plcos(w,A.)]

cos(oo,)\i)

Preferential Alignment with the intermediate eigendirection
(Ashurst et al. 87, Tsinober et al. 92)



The vorticity stretching mechanism

From the Navier-Stokes equations for divergence-free vector fields

Dv OV

= v.V)v=-V AV
Dt~ or TV ptv
one gets,
D
el Sw+rvAw
Dt

that relates the stretching of vorticity by the local Deformation matrix.



The vorticity stretching mechanism

From the Navier-Stokes equations for divergence-free vector fields

% = % + (V.V)v=—-Vp+ rvAv
one gets,
Dw
with,
3 (X—y)®[(x—Yy)Aw(y)] T
S (%) = S—WRV./{ =75 +( o) |ay

See Constantin (1994) and Majda-Bertozzi (2002).



Euler = Advection and Stretching of Vorticity

Euler equation w(X(a,t),t) = VaX(a, t)wo(a)
ou »
— + (U.V)u=-Vp
ot ( ) wo(x)
\ \x__,"‘:c:X(oz,t)
advection .
A vorticity at ¢
1 X— Xa,t) -~ % D
ux,t) = —— A VaX d
D= ] kX pp oL woleda

\

— ” stretching
Biot-Savart



During a small time scale 7(x) =
Jirs?)

Recent Fluid Deformation Approximation

1

Stretching by the local deformation:
Ww(T) &~ e™S0wg

Neglect of short-time Advection, i.e.
Xa,t) % a
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M= ] xoap (a) 0.5 oL
-~ '~
dW(ax): White noise - '~
B = 16—3 to ensure Kolmogorov 0.4F ~ ~
scalings )
0 0.5
cos(0)

Skewed longitudinal gradients (but not velocity increments!)
Weakly non Gaussian (no intermittency)

Wrong vorticity alignments (along e1)

with R. Robert and V. Vargas, EPJ (2010), also R. Pereira, C. Garban (2016)



Gaussian multiplicative chaos

Mandelbrot (72), Kahane (85), Robert-Vargas(09).
X € R mo(x,0) = / X )= FB(X2) gy
B(x,2)

X, Gaussian scalar field E(X.) = 0, E(Xc(X) X(Y)) ~ A2Int L
e<|z—y|<L 2=yl

A: intermittency coefficient

typically, Xe(y) = A fiy_, <1, WdW(z)

A2 < 2d,

m(X, £) = lim m¢(X, ¢) non trivial
e—0

* B(md o [~ N ith P 2l
0 <" Bt 0 () WG = (@4 S0 0



A stochastic representation of the local structure of turbulence

Multifractal (long-range correlated) ‘strain™:

\/7 / (x — —o) ANdW(o)]+[(X— o) ANdW(o)] ® (X — o)
X — o|7/2

o

)

1 X — o

S(ox)
A dW
47 ) |X — «|P ‘ (@)

fux) =—

A\? = 0.025: intermittency parameter
(|8pu|9) ~ €S with

Co=(3+3N)a- X%
Karman-Howarth-Kolmogorov:
((Geu)?) ~ £

Correct vorticity alignments!!

P[cos(0)]

0 0'5 — Realistic incompressible, intermittent
(i.e. multifractal) and skewed (i.e.
cos(0) dissipative) turbulent velocity field.



Gaussian Multiplicative Matrix Chaos

Consider
1 e
M(A) = C—/AeX @)dx, AcCRY,
where
¢ 2 2. L e ¢ o, L . .
E[Xzz(x) ]=7"In o E[Xzz(x)ij(x)] = —cy“In o i 7]

and for |y — x| > e:

ElX; ()X ;(y)] =K(z —y),
EBIX;i(2)X5;(y)] =—cK(z—vy), i #J

for some constant L > 0 and some kernel of positive type K (z) = 2 In %'

Off diagonal terms independent of diagonal terms and mutually independent of variance

2
5_2 _ ¢ (14c¢)
€ 2

and covariance for |y — x| > e:

1+c¢
2

BIX; (@) X:;(y)] = K(z—y), i <J.



Gaussian Multiplicative Matrix Chaos

theorem: with Rhodes and Vargas (13)
Let 42 < d. Then there exists a random matrix M such that for all A C R¢:

E[tr(M€(A) — M(A))?] — 0.

e—0

We also have the following asymptotic structure:

2 2

F(N/2)67 In L £2d—7
E[trM (B(0,0)?] ~ NZ?V, (1)

M BO,O) o~ NN G D72 (1 2) (2 In D)V -1)/2
with Viv = [/ jui<1 %. Furthermore, we get the following equivalent for k& > 2:
In E[trM (B(0, £))k
M BO.OM o ”
In /¢ 2—0

where ¢ (k) = dk —~22EZL



Dynamical Fractional Gaussian Fields (1)

with G. Apolinario and J.-C. Mourrat (J. Stat. Phys. 2022)

Can we define these fractional fields as a statistically stationary solution of a PDE
randomly stirred by a smooth forcing term? (thus, realizing a cascading of energy from a
large scale towards smaller ones)

— a proposition (i.e. a model): Give a meaning to a transport in Fourier

~

Ovti(t, k) + cOpti(t, k) = F(t, k)

corresponding to d:u(t, x) = Lu(t,x) + f(t, x)

with £ = 2imex

L is an homogeneous operator of degree 0 that lies in the class pinpointed by
Colin de Verdiere and Saint-Raymond

Take for instance E [f(t1,x1) f*(t2,x2)] = §(t1 — tQ)Cf (r1 — x2) with Cra
smooth, even, bounded, rapidly decreasing function at large arguments.



Dynamical Fractional Gaussian Fields (2)

—Generation of a white noise

~

Beti(t, k) + cOpti(t, k) = F(t, k)

corresponding to d:u(t, x) = Lu(t,x) + f(t, x)

with £ = 2imex

The solution u(t, x) is statistically homogeneous
Cu(t,z1,22) = Efu(t,x1)u”(t,x22)] = Cy(t,x1 — x2).

Moreover, when tested against an even smooth function, we have:

lim Cy(t,2) = ¢ (0)

t— o0 2‘(}‘

o(x).



Dynamical Fractional Gaussian Fields (2bis)

Consider the initial condition «(0, z) = 0, take ¢>0, so the solution is

t
u(t, ) :/ e2imer(t=s) £(s z)ds,
0

such that
62i7rcact -1
Cu t, — C
(¢, ) f(x) 21mex
Integration over a test function g gives
62i7rca:t -1
/g(x)Cu(t,x)dx: /g(:r;)Cf(x) . dx
21mex
1 [——  .sign(k) —sign(k — ct
— _/gcf(k) ign(k) 2|g ( C)dk by Parseval
C
— 1/Ct gCr(k)dk = 1/00 gC(k)dk
Cc k;:ogf t—oo ¢ k::ogf '

Taking g and C real and even concludes the proof.



Dynamical Fractional Gaussian Fields (2bisbis)

Consider the initial condition «(0, z) = 0, take ¢>0, so the solution is

t
u(t, ) :/ e2imer(t=s) £(s z)ds,
0

such that

eQwrcact -1

Cu(t,z) =Cy(x)

21T ex

More general arguments for whatever test function g developed by G. Beck, I. Gallagher
and R. Grande give another (complex) bounded contribution, which is in particular # 0
when g is odd, and is of the form

lim Cy(t,z) = Cs (0)5(1-) +ivp Cs2)

t— 00 2‘6‘ T




Dynamical Fractional Gaussian Fields (3)

—Generation of a fractional field

Orup (t, ) = (PuLPg Jup (t, @) + f(t, )
with £ = 2ircx and Py (z) = [ 62”r’“c|k|1 H=1/2 5.

Again, the solution u g (¢, x) is statistically homogeneous, but of finite variance in
the limit £ — oco. More generally, the spectral density is given by

k
2H—1 2H+15
Jim G (k) = <R [ a3 )

In particular, we have:

lim E[|§ ~ ?H
ti>m U EUH| ] /—0t+ CH

and we can do funky simulations.



On the underlying cascading processes (2)

The former budget exhibits anomalous (i.e. distributional) quantities. It is thus tempting
to study the kinetic energy budget of a coarse-grained version of velocity, such as

¢(x, 1) /Ggil?— )dy,

where Gy is an appropriate mollifier of typical spatial extension ¢ (an approximation of
the Dirac 6 function at scale ¢).

This being said, the respective kinetic is determined by the correlation structure (once
averaged) of velocity:

lug(x, t)] / Go(x —y)Gp(x — z) (y,t) - u(z,t)/dSdeZ,

-~

two-points

It is thus tempting to consider the budget of u(x,t) - u(x + £,t) instead of |u(z,t)|? for a
given scale /.



N | —

On the underlying cascading processes (2)

Start from the Navier-Stokes equations, and consider the following velocity two-points

budget
du(z) - u(z + £) & (8ui) <8ui> 1
+Ve TS = —v +—lu(x) - flx+20)+ulx+4) - f(x
ot ZZI 50 ) \aa ). Fale) et 4@t fa)

+iv£ - [Sou(z)|Spu(z)]?]

where the current (vector) J (x, £) looks very much like Z (ask me later), and where
enters the velocity increment (vector)

dpu(z) = u(x + £) — u(x).



N | —

On the underlying cascading processes (2)

Start from the Navier-Stokes equations, and consider the following velocity two-points

budget
du(z) - u(z + £) & (8ui) <8ui> 1
+Ve TS = —v +—lu(x) - flx+20)+ulx+4) - f(x
ot ZZI 50 ) \aa ). Fale) et 4@t fa)

+iv£ - [Sou(z)|Spu(z)]?]

Similarly, for statistically homogeneity and stationary reasons, the left-hand side
vanishes.

BUT, the viscous contribution vanishes at a given (fixed) scale |¢| and v — 0.

For statistically homogeneity and stationary reasons, the contribution of the
forcing term reduces to € > 0 in the double limit v — 0 AND ¢ — 0.

We are thus left with the following energy transfer through scales

lim lim V- E [Spu(z)|6eu(z)]?] = —4e.

|| —0v—0



A Multifractal Ansatz

Consider the random field vy - (¢, ), defined as

b (t2) = [ Pir(a = ) Poro) 0ot )y,

where ug(t, x) goes towards complex white noise as ¢t — oc.

In the limit t — oo, this is multifractal process

compared to the construction of a fractional gaussian field, notice the introduction
of a random multiplier e¥(Pouw0)(t:¥) | called a complex multiplicative chaos, that
makes vy - (t, ) non gaussian, and multifractal as ¢ — oo.

notice furthermore the intrinsic correlated structure of this field.

in particular, this field is skewed as required by the phenomenology of turbulence



Induced nonlinear dynamics

Start with
Otug = Lug,

so that
O (e’yﬁouou()) = 67150%375“0 + ’yﬁgatu() (e’yﬁouou())
=L (e”ﬁououo) + ’ypgﬁuo (e”ﬁouou()) .

From a formal point of view, note WV a functional of some complex function h : R — C,
implicitly defined as W[h|(z)eYoWIr(2) = p(z), if it exists, such that,

Otvp,~ = PO (e’yﬁououo) = PHﬁPﬁlvH,7
+ v Py [(ﬁQEW |:P[—_[1'UH,’Y:|) (P[;LUH,’)/)] :

Adopt a closure approach: WIh|(x) ~ h(x). Doing so, we get a closed evolution that
reads

8751)15[77 ~ f)[j[ﬁf)ﬁlvﬂ,7 + vPpg [(po,CPI;l’UH,,y) (PﬁlvHﬁ)] .



Simulations of the nonlinear dynamics

Consider the numerical problem

duH,%,, = [PHﬁpgluH,%,, + vPg [(poﬁpgluH,%y) (P_l
+ ftl’unC V At)

(a) (b)

0.5

log(]égu\Q)

10

H uH,%V)] + VaguHmV] At



Simulations of the nonlinear dynamics

Consider the numerical problem

dup ~,v = [PHﬁpgluH,%,, + vPg [(poﬁpﬁluH,%y) (PgluH,%y)] + Vaguﬂ,%y] At

+ ftrunc \ At)
@/\’ R
| W/\ |
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On the underlying cascading processes (1)

Start from the Navier-Stokes equations, and consider the following kinetic energy
budget

1 O|ul? & (8u2>
- +V-I=— S -
> o Y oz, ) T

1,0=1

where the current (vector) Z is given by

1 1
= —|ul|“u u—vV | —|u )
SluPuct pu— o9 (31u?)



On the underlying cascading processes (1)

Start from the Navier-Stokes equations, and consider the following kinetic energy
budget

1 O|ul? & (8%)2
b V.T=—  f.
2 ot > oz, ) T

i,j=1

As observed, the flow reaches a statistically stationary state of finite variance,
and is statistically homogeneous

2
E{a’“’ ] —0andE[V-Z] =0
ot

we are thus left with

e=FE [V 23: @ZJ)Q] —Efu-f].

i,7=1
Moreover (dissipative anomaly), it turns out that (i.e. as observed)

lim € > 0.

vr—0
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