Geometrical web models

Jesper L. Jacobsen 1,2,3

¹'Ecole Normale Supérieure, Paris (Laboratoire de Physique)

²Sorbonne Université, Paris (Faculté des Sciences et Ingénierie)

³Commisariat à l'Energie Atomique, Saclay (Institut de Physique Théorique)

Les Roches Rouges, Agay

Probability and Conformal Field Theory

21 September 2022

Collaborators: Augustin Lafay, Azat Gainutdinov

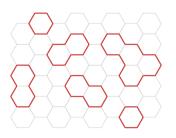
From loops to webs

Loop models: what, why, how?

- Self-avoiding (open or closed) simple curves in two dimensions
- Polymers, level lines, domain walls, electron gases
- Lattice: Integrability, knot theory, cellular algebras, category theory
- Continuum limit: CFT, CLE, SLE

Definition and features

- Fix lattice of nodes and links
- Place bonds on some links so as to form set of loops
- Weight x per bond (+ maybe further local weights) and N per loop
- For $|N| \le 2$, dense and dilute critical points x_c^{\pm}
- Continuum limit of compactified free bosonic field (Coulomb gas)
 [Nienhuis, Di Francesco-Saleur-Zuber, Duplantier, Cardy . . .]



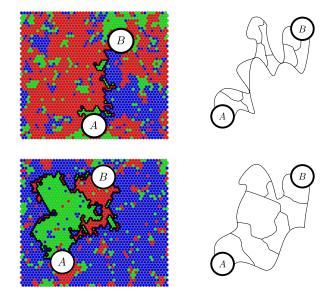
Generalisation to webs

- Allow for branchings and bifurcations (with weights)
- Topological rules give weight to each connected web component
- Properties and possible critical behaviour?

Motivations for webs

- Domain walls in spin systems [Dubail-JJ-Saleur, Picco-Santachiara]
- Network models for topological phases [Kitaev, Levin-Wen, Fendley]
- Spiders in invariance theory [Kuperberg, Kim, Cautis-Kamnitzer-Morrison]

Thin and thick domain walls (Q = 3 Potts model)



Questions (physics)

- How to define a "good" model of webs on the lattice?
- Fractal dimension of such domain walls (bulk / boundary)?
- Fractal dimension of an entire web component?
- Topological weight of web versus chromatic polynomial in Q = 3?
- Web model away from this special point?

Questions (mathematics)

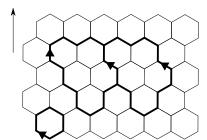
- Algebraic construction accounting for bifurcations?
- Loop model has $U_{-q}(\mathfrak{sl}_2)$ symmetry, can we get $U_{-q}(\mathfrak{sl}_n)$?

Web model from Kuperberg A_2 spider $(U_{-q}(\mathfrak{sl}_3)$ case)

Lattice considerations

- \bullet Hexagonal (honeycomb) lattice $\mathbb H$ with nodes and links
- Configuration *c* by drawing bonds on some links, with constraints:
 - Nodes have valence 0, 2 or 3: closed web with 3-valent vertices
 - Each bond is oriented. Orientations conserved at 2-valent nodes
 - Vertices are sources or sinks (all bonds point in or out)

Each configuration can be seen as an abstract graph (vertices/edges). It is closed, planar, trivalent, bipartite. Fix an orientation (= 'up').



Rules for 'reducing' a configuration [Kuperberg]

$$\bigcirc = [3]_q \tag{1}$$

$$= [2]_q$$
 (2)

$$= + +$$
 (3)

- Rotated and arrow-reversed diagrams not shown.
- A web component always has \geq 1 polygon of degree 0, 2 or 4.
- The three rules thus evaluate any web to a number (its weight)

Define *q*-deformed numbers: $[k]_q = \frac{q^k - q^{-k}}{q - q^{-1}}$

Defining the web model

- Sum over configurations $c \in K$ on \mathbb{H}
- Local weights: x₁ (up bond), x₂ (down bond), y (sink), z (source)
- Partition function:

$$Z_{K} = \sum_{c \in K} x_{1}^{N_{1}} x_{2}^{N_{2}} (yz)^{N_{V}} w_{K}(c)$$

with N_1 up-bonds, N_2 down-bonds, and N_V vertex pairs

\mathbb{Z}_3 spin model

Definition

- Spins $\sigma_i \in \mathbb{Z}_3 := \{0, 1, 2\}$ defined on triangular lattice $\mathbb{T} = \mathbb{H}^*$.
- Weight of link $(ij) \in \mathbb{T}$ defined as $x_{\sigma_i \sigma_j}$, with j to the right of i.
- Normalise $x_0 = 1$. Weight x_1 or x_2 for a piece of domain wall.

Note: vertex is a sink (source) if spins follow cyclically $0 \to 1 \to 2 \to 0$ upon turning anticlockwise (clockwise).

Partition function

$$Z_{\text{spin}} = 3 \sum_{c \in K} x_1^{N_1} x_2^{N_2}$$

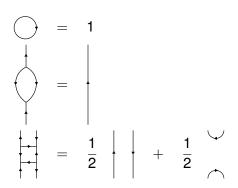
• Equivalent to web model if $w'_K(c) := (yz)^{N_V} w_K(c) = 1$ for any c.

Equivalence at a special point:

$$q = e^{i\frac{\pi}{4}},$$

 $yz = 2^{-\frac{1}{2}}.$

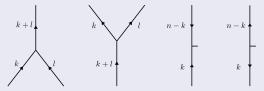
Proof: Absorb *y* and *z* into the vertices. Use $[3]_q = 1$ and $[2]_q = \sqrt{2}$. Then the rules become probabilistic:



Generalisation to $U_{-q}(\mathfrak{sl}_n)$ symmetry

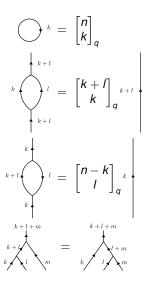
Based on spider defined by [Cautis-Kamnitzer-Morrison]

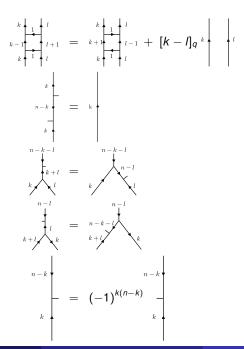
- Webs are still closed, oriented, planar, trivalent graphs.
 But not always bipartite as before.
- Edges carry an integer flow $i \in [1, n-1]$.
- Generators conserve flow, or change by n due to 'tags':



• Flow labels fundamental representations of $U_{-q}(\mathfrak{sl}_n)$. Orientation distinguishes between dual or not.

Rules (mirrored and the arrow-reversed versions omitted):





Short summary of results

- Case n = 3 gives back the Kuperberg web model.
- Case n = 2 gives the well-known Nienhuis loop model.
- Special point $q = e^{i\frac{\pi}{n+1}}$ equivalent to \mathbb{Z}_n spin model.

Outlook this far

- \mathbb{Z}_n spin models known to be critical (with appropriate weights) [Fateev-Zamolodchikov]
- Therefore expect the special point to be critical for any n.
- Web models likely have larger critical manifold (vary q and x, y, z).

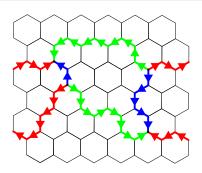
To investigate criticality we wish a local formulation

- Analogous to vertex models for Potts and O(N) models.
- The locality enables us to define a transfer matrix.
 - Good for numerical study and makes contact with integrability.
 - Non-local TM also possible for loops, but seems difficult for webs.
- Vertex model defines equivalent (n-1) component) height model.
 - Starting point for Coulomb gas construction and CFT identification.

Local reformulation for $U_{-q}(\mathfrak{sl}_3)$ web model

Basic idea

- Decorate bonds by extra degrees of freedom (n = 3 colours).
- They allow to redistribute the web weight locally.
- Summing over colours gives back the undecorated model.
- Each link can now be in 7 different states.



Reminder for n = 2 loop case

- Write $N = q + q^{-1} = [2]_q$.
- Orient each loop in two ways (clockwise, anticlockwise).
- Give $q^{-\frac{\theta}{2\pi}}$ to a left-turn through angle θ .

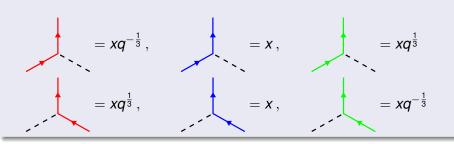
$$= xq^{-\frac{1}{6}}, \qquad = xq^{\frac{1}{6}}, \qquad = 1$$

Remark

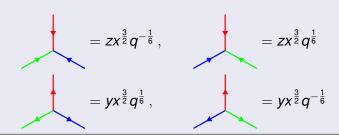
Better to think of these two 'orientations' as colourings. The analogue for n=3 is the three colours. The orientations distinguish (for $n\geq 3$) fundamental and dual fundamental, but for n=2 the two coincide!

Basic idea for n=3

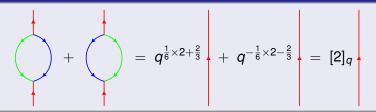
- Three colours RBG.
- Weight $q^2 + 1 + q^{-2} = [3]_q$ for sum over (say) clockwise loop. Opposite phases for an anticlockwise loop (same sum). Set $x_1 = x_2$ for convenience.



The 'tricky' part involving vertices



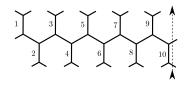
Proof for the 'digon' rule (2)



Proof for the 'square' rule (3)

Other colours / arrangements of external legs work similarly.

Defining the transfer matrix



Built of pieces $t_{(1)}: \mathcal{H} \otimes \mathcal{H} \to \mathcal{H}$ and $t_{(2)}: \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$, so that

$$T = \left(\prod_{k=0}^{L-1} t_{2k+1}\right) \left(\prod_{k=1}^{L-1} t_{2k}\right)$$

with $t = t_{(2)}t_{(1)}$. Write t_i , with i specifying the position.

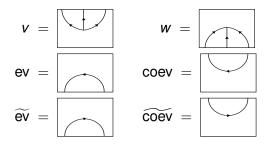
Technically T is an intertwiner of the quantum group action.

- Let $\{v_1, v_2, v_3\}$ be a basis of the first fundamental V_1 of $U_{-q}(\mathfrak{sl}_3)$.
- Let $\{w_1, w_2, w_3\}$ be a basis of the dual V_1^* , so that $w_i(v_j) = \delta_{ij}$.
- Relate {v₁, v₂, v₃, w₁, w₂, w₃, 1} to the basis {|↑⟩, |↑⟩, |↑⟩, |↓⟩, |↓⟩, |↓⟩, |↓⟩, |⟩} of coloured arrows.
 Amounts to drawing each link vertically and providing the corresponding powers of q.
- Draw the diagrams of all transitions in $t_{(1)}$ and $t_{(2)}$. For instance:

$$t_{(1)} = zx_1x_2^{\frac{1}{2}} + yx_1^{\frac{1}{2}}x_2 + x_1 + x_1 + x_2 + x_1^{\frac{1}{2}}x_2^{\frac{1}{2}} + x_1^$$

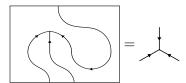
• Let us have a look at just the first term!

• Express each diagram in terms of the elementary blocks (maps)



Their expressions follow from quantum group considerations.

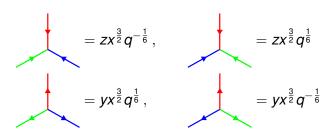
• The first term is the composition of coev and w:



• In the bases $\{|\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle\}$ of $V_1 \otimes V_1$ and $\{|\downarrow\rangle, |\downarrow\rangle, |\downarrow\rangle\}$ of V_1^* , we finally get

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & q^{\frac{1}{6}} & 0 & q^{-\frac{1}{6}} & 0 \\ 0 & 0 & q^{\frac{1}{6}} & 0 & 0 & 0 & q^{\frac{1}{6}} & 0 & 0 \\ 0 & q^{\frac{1}{6}} & 0 & q^{-\frac{1}{6}} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- Looks familiar?
- Hint:

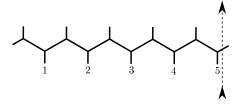


Summary of this technical part

- The diagrams are intertwiners of $U_{-q}(\mathfrak{sl}_3)$.
- We can compute all elements of T in this way.
- We are now ready to diagonalise T numerically.

Phase diagram of the web model

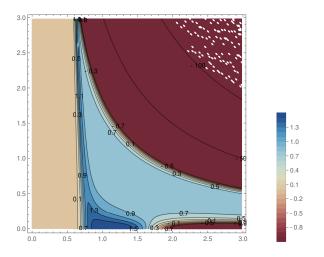
More efficient to use the geometry



Connection to the (effective) central charge of CFT:

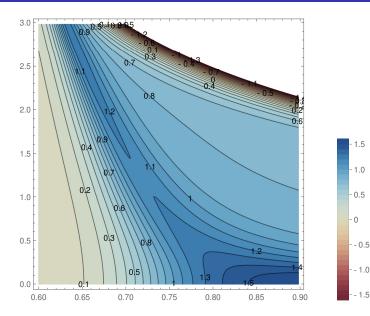
$$\begin{split} f_L &= -\frac{2}{\sqrt{3}L} \, \text{log}(\Lambda_{\text{max}}) \,, \\ f_L &= f_{\infty} - \frac{\pi \textit{c}_{\text{eff}}}{6\textit{L}^2} + \textit{o}\left(\frac{1}{\textit{L}^2}\right) \,. \end{split}$$

$c_{\rm eff}$ for $q=e^{i\pi/5}$ in the (\sqrt{x},y) plane



- Based on sizes L = 5 and L = 6.
- Coulomb gas prediction: dilute $c = \frac{4}{5}$ and dense $c = \frac{6}{5}$ phases.

Zoom of the interesting region



Coulomb gas predictions

Set $q = e^{i\gamma}$ with $\gamma \in [0, \pi]$.

CG of two bosons compactified on the root lattice of sl₃

Coupling constant $g = 1 \pm \frac{\gamma}{\pi}$ in dilute (+) or dense (-) phase.

Central charge $c = 2 - 24 \frac{(g-1)^2}{g}$.

Example I: $\gamma = \frac{\pi}{5}$ as in numerical figures

Coupling constant $g = \frac{6}{5}$ (dilute) or $g = \frac{4}{5}$ (dense).

Central charge $c = \frac{6}{5}$ (dilute) or $c = \frac{4}{5}$ (dense).

Example II: $\gamma = \frac{\pi}{4}$ as at special point

Coupling constant $g = \frac{5}{4}$ (dilute) or $g = \frac{3}{4}$ (dense).

Central charge $c = \frac{4}{5}$ (dilute) or c = 0 (dense).

Corresponds to Q = 3 Potts model at $T = T_c$ or $T = \infty$.

What about integrability?

- The n = 2 model (Nienhuis loops) is integrable in both the dilute and dense phases [Baxter 1986-87]
- What about n = 3?
 - In the fully-packed case (a bond on every link = all fundamental reps) it is integrable [Reshethikhin]
 - We need now 7-dimensional reps (fundamental + dual + trivial)
- There are other rank-2 spiders (G₂ and B₂) related to 3-state Potts interfaces
 - Exact mappings (to appear)
 - In the G_2 case, we can relate to an integrable model coming from $U_q(D_4^{(3)})$ (in progress)

Summary

- Web models generalise the $U_{-q}(\mathfrak{sl}_2)$ loop model to $U_{-q}(\mathfrak{sl}_n)$.
- Geometrical content with applications to \mathbb{Z}_n spin interfaces.
- Dense and dilute critical points for $q = e^{i\gamma}$ and $\gamma \in [0, \pi]$.

In the pipeline

- Coulomb gas description and fractal dimension of defects
- Statistical models for other spiders
- Detailed representation theoretical study
- More relations to and input from integrable models

Further possibilities

• SLE-like description of branching curves?