# Multiplicative chaos of the Brownian loop soup

Antoine Jego

Agay September 2022

Based on joint work with E. Aïdékon, N. Berestycki and T. Lupu

# Brownian loop soup

Countable infinite collection of Brownian-like loops in a domain  $D \subset \mathbb{R}^2$ 





< □ > < @ >

#### Introduced by Lawler and Werner Related to many random conformal invariant objects

## Definition

Poisson point process  $\mathcal{L}_D^{\theta} \sim \mathsf{PPP}(\theta \mu_D^{\mathsf{loop}})$ 

- $\theta > 0$ : intensity parameter
- $\mu_D^{\text{loop}}$ : loop measure

$$\mu_D^{\text{loop}}(d\wp) = \int_D \int_0^{+\infty} \mathbb{P}_{D,t}^{z,z}(d\wp) p_D(t,z,z) \frac{\mathrm{d}t}{t} \mathrm{d}z.$$
  
Brownian bridge heat kernel

#### Fact

- Infinitely many small loops
- Conformally invariant
- Restriction property

3

∃ ► < ∃ ►</p>

- (日)

#### Loop-erased random walk:

```
(erase chronologically each loop)
```



#### Lawler-Schramm-Werner

Antoine Jego

< <p>Image: A transmission of the second sec

## Clusters

Cluster = chain of intersecting loops **Phase transition:** (Sheffield–Werner) •  $\theta > 1/2$ : one big cluster

•  $\theta \leq 1/2$ : infinitely many clusters Outer boundaries of outermost clusters =  $\mathsf{CLE}_{\kappa}$  where  $\kappa = \kappa(\theta) \in (8/3, 4]$ Conformal Loop Ensemble



# Le Jan's isomorphism

When  $\theta = 1/2$ ,

" the occupation field of the Brownian loop soup  $\stackrel{(d)}{=} \frac{1}{2} (Gaussian \text{ free field})^2 \quad "$ 

The unique random generalised function satisfying some domain Markov property (+ moment condition) (Berestycki–Powell–Ray, Aru–Powell)



The unique random generalised function satisfying some domain Markov property (+ moment condition) (Berestycki–Powell–Ray, Aru–Powell)



Universal random height function: Scaling limit of

- Height function in dimers
- Ginzburg-Landau  $\nabla \phi$  interface
- Characteristic polynomial of large random matrices.

 $h = \mathsf{GFF}$ Formally,  $h = (h_x)_{x \in D} \sim \mathcal{N}(0, \underline{G_D})$  where

$$G_D(x,y) = \int_0^\infty p_D(t,x,y) dt =$$
 Green function

3

▶ < ∃ >

Image: A matrix

$$h = \mathsf{GFF}$$
  
Formally,  $h = (h_x)_{x \in D} \sim \mathcal{N}(0, \mathbf{G}_D)$  where

$$G_D(x,y) = \int_0^\infty p_D(t,x,y) dt =$$
 Green function

In 2D, 
$$G_D(x, y) \sim -\log |x - y|$$
 as  $x - y \rightarrow 0$   
 $\rightsquigarrow \operatorname{var}(h_x) = +\infty$   
Rigorously, random generalised function

$$\operatorname{var}((h,f)) = \int_{D \times D} f(x) G_D(x,y) f(y) \, \mathrm{d}x \mathrm{d}y$$

э

## Exponential of the GFF

Informally: random measure

$$\frac{h}{\gamma}: \mathsf{GFF}$$
$$\gamma \in (-2,2)$$

$$\mu_{\gamma} = e^{\gamma h(x)} \mathrm{d}x$$

#### Instance of Gaussian multiplicative chaos measure

Rigorously,

$$\mu_{\gamma} = \lim_{\varepsilon \to 0} \varepsilon^{\gamma^2/2} e^{\gamma h_{\varepsilon}(x)} \mathrm{d}x$$



Simulation by Rhodes-Vargas

## Thick points

$$\mu_{\gamma} = e^{\gamma h} \mathrm{d}x$$

$$\begin{array}{l} x \text{ fixed deterministic point} \rightsquigarrow h_{\varepsilon}(x) = O(\sqrt{|\log \varepsilon|}) \\ x \text{ is } \mu^{\gamma} - \text{typical point} \rightsquigarrow \lim_{\varepsilon \to 0} \frac{h_{\varepsilon}(x)}{|\log \varepsilon|} = \gamma \end{array}$$

#### In fact,

Theorem (Discrete: Biskup–Louidor)  $\mathcal{T}_{\varepsilon}(\gamma) := \{x \in D : h_{\varepsilon}(x) \ge \gamma |\log \varepsilon|\} \text{ (}\gamma\text{-thick points)}$   $\sqrt{|\log \varepsilon|} \varepsilon^{-\gamma^2/2} \mathbf{1}_{\{x \in \mathcal{T}_{\varepsilon}(\gamma)\}} dx \xrightarrow[\varepsilon \to 0]{} \mu_{\gamma}$ 

" $\mu_{\gamma} =$  uniform measure on  $\gamma$ -thick points"

- 「「「」、「」、「」、「」、「」、

# This talk

Loop soup:  $\mathcal{L}_D^{\theta} \sim \mathsf{PPP}(\theta \mu_D^{\mathrm{loop}})$ GFF: *h* 

Couple 
$$(\mathcal{L}_D^{ heta}, h)$$
 such that  $(L_x)_{x \in D} = \frac{1}{2}h^2$   $heta = 1/2$   
Sample  $z \sim e^{\gamma h}$ .

#### Questions:

- What does the loop soup look like near z?
- How does the loop soup create a thick local time?
  - $\hookrightarrow \mathsf{A}$  few very thick loops?
  - $\hookrightarrow$  Many loops w/ typical local time?
- What about  $\theta \neq 1/2$ ? What is the associated chaos?

 $D_N = \frac{1}{N} \mathbb{Z}^2 \cap D$  discrete approximation of D

 $\mathcal{L}^{\theta}_{D_N}$  random walk loop soup

$$\ell_x = \text{local time at } x$$
$$= \sum_{\wp \in \mathcal{L}^{\theta}_{D_N}} \int_0^{\tau_{\wp}} \mathbf{1}_{\{\wp_t = x\}} \mathrm{d}t$$

typical point:  $\mathbb{E}[\ell_x] \sim \frac{\theta}{2\pi} \log N$ 



 $\theta > 0$  intensity  $a = \frac{\gamma^2}{2}$  thickness parameter typical point:  $\mathbb{E}[\ell_x] \sim \frac{\theta}{2\pi} \log N$ 

a-thick points: 
$$\mathcal{T}_N(a) := \left\{ x \in D_N : \ell_x \ge \frac{1}{2\pi} a (\log N)^2 \right\}$$
  
Uniform measure on  $\mathcal{T}_N(a) : \qquad \mathcal{M}_a^N := \frac{(\log N)^{1-\theta}}{N^{2-a}} \sum_{x \in \mathcal{T}_N(a)} \delta_x$ 

3

 $\begin{array}{ll} \theta > 0 \text{ intensity} \\ \text{typical point:} & \mathbb{E}[\ell_x] \sim \frac{\theta}{2\pi} \log N & \qquad \textbf{a} = \frac{\gamma^2}{2} \text{ thickness parameter} \end{array}$ 

a-thick points: 
$$\mathcal{T}_N(a) := \left\{ x \in D_N : \ell_x \ge \frac{1}{2\pi} a (\log N)^2 \right\}$$
  
Uniform measure on  $\mathcal{T}_N(a) : \qquad \mathcal{M}_a^N := \frac{(\log N)^{1-\theta}}{N^{2-a}} \sum_{x \in \mathcal{T}_N(a)} \delta_x$ 

Theorem (E. Aïdékon, N. Berestycki, A. J., T. Lupu 21)  $(\mathcal{M}_a^N, \mathcal{L}_{D_N}^\theta) \rightarrow (\mathcal{M}_a, \mathcal{L}_D^\theta) \text{ as } N \rightarrow \infty.$ 

 $\rightsquigarrow \mathcal{M}_{a} =$ multiplicative chaos associated to  $\mathcal{L}_{D}^{\theta}$ .

 $\begin{array}{ll} \theta > 0 \text{ intensity} \\ \text{typical point:} & \mathbb{E}[\ell_x] \sim \frac{\theta}{2\pi} \log N & \qquad \textbf{a} = \frac{\gamma^2}{2} \text{ thickness parameter} \end{array}$ 

a-thick points: 
$$\mathcal{T}_N(a) := \left\{ x \in D_N : \ell_x \ge \frac{1}{2\pi} a (\log N)^2 \right\}$$
  
Uniform measure on  $\mathcal{T}_N(a) : \qquad \mathcal{M}_a^N := \frac{(\log N)^{1-\theta}}{N^{2-a}} \sum_{x \in \mathcal{T}_N(a)} \delta_x$ 

Theorem (E. Aïdékon, N. Berestycki, A. J., T. Lupu 21)  $(\mathcal{M}_a^N, \mathcal{L}_{D_N}^\theta) \rightarrow (\mathcal{M}_a, \mathcal{L}_D^\theta) \text{ as } N \rightarrow \infty.$ 

 $\rightsquigarrow \mathcal{M}_a =$ multiplicative chaos associated to  $\mathcal{L}_D^{\theta}$ .

- $\theta = 1/2$ : discrete GFF, Biskup–Louidor
- $\theta \rightarrow 0$ : random walk thick points, Jego
- related result: random walk close to cover time, Abe, Biskup, Lee

13/24



- $\theta = 1/2 \rightsquigarrow \mathcal{M}_a \stackrel{\text{(d)}}{=} e^{\gamma \text{GFF}} + e^{-\gamma \text{GFF}}$
- $\theta \neq 1/2 \rightsquigarrow \mathcal{M}_a = \text{new object! not Gaussian!}$

$$heta > 0$$
 intensity  
 $a = rac{\gamma^2}{2}$  thickness

• 
$$\theta = 1/2 \rightsquigarrow \mathcal{M}_a \stackrel{(d)}{=} e^{\gamma \mathsf{GFF}} + e^{-\gamma \mathsf{GFF}}$$

•  $\theta \neq 1/2 \rightsquigarrow \mathcal{M}_a = \text{new object! not Gaussian!}$ 

Sample  $z \sim \mathcal{M}_a(\cdot)/\mathcal{M}_a(D)$ : typical *a*-thick point. How many loops go through *z*? What are the thicknesses associated to each individual loop?

$$heta > 0$$
 intensity  
 $a = rac{\gamma^2}{2}$  thickness

• 
$$\theta = 1/2 \rightsquigarrow \mathcal{M}_a \stackrel{\text{(d)}}{=} e^{\gamma \text{GFF}} + e^{-\gamma \text{GFF}}$$

•  $\theta \neq 1/2 \rightsquigarrow \mathcal{M}_a = \text{new object! not Gaussian!}$ 

Sample  $z \sim \mathcal{M}_a(\cdot)/\mathcal{M}_a(D)$ : typical *a*-thick point. How many loops go through *z*? What are the thicknesses associated to each individual loop?

#### Theorem (E.A., N.B., A.J., T.L. 21)

1) Infinitely many loops.

 $\theta > 0$  intensity  $a = \frac{\gamma^2}{2}$  thickness

- $\theta = 1/2 \rightsquigarrow \mathcal{M}_{a} \stackrel{\text{(d)}}{=} e^{\gamma \text{GFF}} + e^{-\gamma \text{GFF}}$
- $\theta \neq 1/2 \rightsquigarrow \mathcal{M}_a = \text{new object! not Gaussian!}$

Sample  $z \sim \mathcal{M}_a(\cdot)/\mathcal{M}_a(D)$ : typical *a*-thick point. How many loops go through *z*? What are the thicknesses associated to each individual loop?

#### Theorem (E.A., N.B., A.J., T.L. 21)

 Infinitely many loops.
 Denote a<sub>1</sub>, a<sub>2</sub>,... thicknesses of loops going through z. {a<sub>1</sub>, a<sub>2</sub>,...} ~ Poisson-Dirichlet(θ) on the interval [0, a].

< ロ > < 同 > < 回 > < 回 > < 回 > <

 $\theta > 0$  intensity  $a = \frac{\gamma^2}{2}$  thickness

- $\theta = 1/2 \rightsquigarrow \mathcal{M}_{a} \stackrel{\text{(d)}}{=} e^{\gamma \text{GFF}} + e^{-\gamma \text{GFF}}$
- $\theta \neq 1/2 \rightsquigarrow \mathcal{M}_a = \text{new object! not Gaussian!}$

Sample  $z \sim \mathcal{M}_a(\cdot)/\mathcal{M}_a(D)$ : typical *a*-thick point. How many loops go through *z*? What are the thicknesses associated to each individual loop?

#### Theorem (E.A., N.B., A.J., T.L. 21)

 Infinitely many loops.
 Denote a<sub>1</sub>, a<sub>2</sub>,... thicknesses of loops going through z. {a<sub>1</sub>, a<sub>2</sub>,...} ~ Poisson-Dirichlet(θ) on the interval [0, a].
 Cond. on {a<sub>1</sub>, a<sub>2</sub>,...}, the loops that go through z are indep. and distributed like the concatenation of the excursions in PPP(a<sub>i</sub>μ<sup>z</sup><sub>D</sub>).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Construction from the continuum

Brownian multiplicative chaos: multiplicative chaos associated to **finitely** many trajectories

 $e^{\gamma\sqrt{2L_x}}\mathrm{d}x$ 

Bass–Burdzy–Koshnevisan 94 Aïdékon–Hu–Shi 20 Jego 19, 20

3

# Construction from the continuum

Brownian multiplicative chaos: multiplicative chaos associated to **finitely** many trajectories  $e^{\gamma\sqrt{2L_x}}dx$ 

Bass–Burdzy–Koshnevisan 94 Aïdékon–Hu–Shi 20 Jego 19, 20

- Kill each loop independently of each other at rate K > 0 $\mathbb{P}(\wp \text{ killed}) = 1 - e^{-KT(\wp)}$
- $\mathcal{M}_a^{\mathcal{K}} :=$  multiplicative chaos associated to **killed** loops

Theorem (E.A., N.B., A.J., T.L. 21)  

$$(\log K)^{-\theta} \mathcal{M}_{a}^{K} \xrightarrow{\mathbb{P}} \mathcal{M}_{a}$$

 $\mathcal{M}_{a}^{K}$  = multiplicative chaos associated to K-killed loops (cutoff) Define  $C_K(z) = \int_0^\infty (1 - e^{-Kt}) p_D(t, z, z)$ 

Image: A matrix

3

 $\mathcal{M}_a^{\kappa}$  = multiplicative chaos associated to *K*-killed loops (cutoff) Define  $C_{\kappa}(z) = \int_0^\infty (1 - e^{-\kappa t}) p_D(t, z, z)$ 

Proposition (E.A., N.B., A.J., T.L.)

$$\mathbb{E}[\mathcal{M}_{a}^{K}(\mathrm{d}z)] = \frac{1}{a}\mathsf{F}(C_{K}(z)a)\mathrm{CR}(z,D)^{a}\mathrm{d}z$$

where

$$\mathsf{F}(u) = \theta \int_0^u e^{-t} {}_1 F_1(\theta, 1, t) \mathrm{d}t$$

with  $_1F_1 = Kummer's$  confluent hypergeometric function.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof in two steps:

• Step 1 (could treat any cutoff)

$$\mathbb{E}[\mathcal{M}_{a}^{K}(\mathrm{d}z)] = \frac{1}{a}\hat{\mathsf{F}}(C_{K}(z)a)\mathrm{CR}(z,D)^{a}\mathrm{d}z$$

where

$$\hat{\mathsf{F}}(u) := \sum_{n \ge 1} \frac{\theta^n}{n!} \int_{\boldsymbol{E}(1,n)} \mathrm{d}\mathbf{a} \prod_{i=1}^n \frac{1 - e^{-ua_i}}{a_i}$$

and

$$E(1, n) = \{a = (a_1, \dots, a_n) \in (0, 1)^n : a_1 + \dots + a_n = 1\}$$

▶ < ∃ >

э

Proof in two steps:

• Step 1 (could treat any cutoff)

$$\mathbb{E}[\mathcal{M}_{a}^{K}(\mathrm{d}z)] = \frac{1}{a}\hat{\mathsf{F}}(C_{K}(z)a)\mathrm{CR}(z,D)^{a}\mathrm{d}z$$

where

$$\hat{\mathsf{F}}(u) := \sum_{n \ge 1} \frac{\theta^n}{n!} \int_{\boldsymbol{E}(1,n)} \mathrm{d}\mathbf{a} \prod_{i=1}^n \frac{1 - e^{-ua_i}}{a_i}$$

and

$$E(1, n) = \{a = (a_1, \dots, a_n) \in (0, 1)^n : a_1 + \dots + a_n = 1\}$$

• Step 2 (very much cutoff-sensitive!):  $\hat{\mathsf{F}}$  is "nice"

$$(1-\theta)\hat{F}'(u) + \hat{F}''(u) + u(\hat{F}''(u) + \hat{F}'''(u)) = 0$$

э

### A martingale

Proposition (E.A., N.B., A.J., T.L. 21)

$$\frac{1}{a^{1-\theta}} \operatorname{CR}(z,D)^{a} e^{-aC_{\kappa}(z)} dz + \int_{0}^{a} \frac{\mathrm{d}\alpha}{(a-\alpha)^{1-\theta}} \operatorname{CR}(z,D)^{a-\alpha} e^{-(a-\alpha)C_{\kappa}(z)} \mathcal{M}_{\alpha}^{\kappa}(dz)$$

is a measure-valued martingale (as a function of K)

∃ ► < ∃ ►</p>

< □ > < 凸

3

A martingale: heuristics when  $\theta = 1/2$ 

 $\mathcal{L}_{K}^{\theta} = \{K \text{-killed loops}\}$ 

$$L_{x}(\mathcal{L}^{\theta}) \stackrel{\text{(d)}}{=} \frac{1}{2}h^{2} \quad \text{and} \quad L_{x}(\mathcal{L}^{\theta} \setminus \mathcal{L}^{\theta}_{K}) \stackrel{\text{(d)}}{=} \frac{1}{2}h_{K}^{2}$$

$$GFF \quad \text{massive GFF}$$

(massive Green function associated to  $-\Delta + K$ )

$$L_{\mathsf{x}}(\mathcal{L}_{\mathsf{K}}^{\theta}) \stackrel{\mathbb{L}}{+} \frac{1}{2}h_{\mathsf{K}}^{2} = \frac{1}{2}h^{2}$$

3

A martingale: heuristics when  $\theta = 1/2$ 

 $\mathcal{L}_{\mathcal{K}}^{\theta} = \{ \mathcal{K} \text{-killed loops} \}$ 

 $L_{x}(\mathcal{L}^{\theta}) \stackrel{\text{(d)}}{=} \frac{1}{2}h^{2} \quad \text{and} \quad L_{x}(\mathcal{L}^{\theta} \setminus \mathcal{L}^{\theta}_{K}) \stackrel{\text{(d)}}{=} \frac{1}{2}h_{K}^{2}$   $GFF \quad \text{massive GFF}$ 

(massive Green function associated to  $-\Delta + K$ )

$$L_{\mathsf{X}}(\mathcal{L}_{\mathsf{K}}^{\theta}) \stackrel{\mathbb{L}}{+} \frac{1}{2}h_{\mathsf{K}}^{2} = \frac{1}{2}h^{2}$$

$$f(0)e^{\gamma|h_{\mathcal{K}}|} + \int_{0}^{a} \mathrm{d}\alpha \ f(\alpha)e^{\sqrt{2(a-\alpha)}|h_{\mathcal{K}}|}\mathcal{M}_{\alpha}^{\mathcal{K}} = e^{\gamma|h|}$$

# Multiplicative chaos and Wick powers

$$\mathsf{Define}: e^{\gamma h(x)} \mathrm{d} x: = \mathsf{lim}_{\varepsilon \to 0} \, e^{\gamma h_\varepsilon(x)} / \mathbb{E} \left[ e^{\gamma h_\varepsilon(x)} \right] \mathrm{d} x$$

#### Theorem

When 
$$\gamma \in [0, \sqrt{2})$$
,  $: e^{\gamma h(x)} dx := \sum_{k=0}^{\infty} \frac{\gamma^k}{k!} : h(x)^k : dx$ 

 $(h(x))^k := k$ -th Wick power of h

э

# Multiplicative chaos and Wick powers

$$\mathsf{Define} : e^{\gamma h(x)} \mathrm{d} x : = \mathsf{lim}_{\varepsilon \to 0} e^{\gamma h_{\varepsilon}(x)} / \mathbb{E} \left[ e^{\gamma h_{\varepsilon}(x)} \right] \mathrm{d} x$$

#### Theorem

When 
$$\gamma \in [0, \sqrt{2})$$
,  $: e^{\gamma h(x)} dx := \sum_{k=0}^{\infty} \frac{\gamma^k}{k!} : h(x)^k : dx$ 

 $h(x)^k := k$ -th Wick power of h

Scaling limit of

 $h_N$  = discrete GFF

$$: h_N(x)^k := G_N(x,x)^{k/2} H_k\left(\frac{h_N(x)}{\sqrt{G_N(x,x)}}\right)$$

discrete Green function Hermite polynomial

$$(H_k)_{k\geq 0}$$
 orthogonal w.r.t.  $e^{-t^2/2} dt$ 

3

A B A A B A

Wick powers of local time (Le Jan)

 $\ell_{x}$  local time of discrete loop soup

$$: \ell_x^k := G_N(x,x)^k L_k^{(\theta-1)}\left(\frac{\ell_x}{G_N(x,x)}\right)$$

 $(L_k^{(\theta-1)})_{k\geq 0}$  generalised Laguerre polynomials, orthogonal for Gamma( $\theta$ ) distribution.

Non degenerate scaling limit: :  $L_x^k$  :

Wick powers of local time (Le Jan)

 $\ell_{x}$  local time of discrete loop soup

$$: \ell_x^k := G_N(x,x)^k L_k^{(\theta-1)}\left(\frac{\ell_x}{G_N(x,x)}\right)$$

 $(L_k^{(\theta-1)})_{k\geq 0}$  generalised Laguerre polynomials, orthogonal for Gamma( $\theta$ ) distribution.

Non degenerate scaling limit: :  $L_x^k$  :

Theorem (Le Jan)

When 
$$heta=1/2$$
,  $(:L^k_x:)_{k\geq 0}\stackrel{\mathrm{(d)}}{=}(2^{-k}:h^{2k}_x:)_{k\geq 0}$ 

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Expansion of the multiplicative chaos of the loop soup

Renormalise  $\mathcal{M}_{\gamma}$  so that  $\mathbb{E}\left[\mathcal{M}_{\gamma}(\mathrm{d}x)\right] = 2\mathrm{d}x$ . When  $\theta = 1/2$ ,  $\gamma \in (0, \sqrt{2})$ ,

$$\mathcal{M}_{\gamma}(\mathrm{d} x) = 2\sum_{k=0}^{\infty} \frac{2^{k} \gamma^{2k}}{(2k)!} (2\pi)^{k} : L_{x}^{k} : \mathrm{d} x$$

Theorem (J. - Lupu - Qian 22+) For all  $\theta > 0$ ,  $\gamma \in (0, \sqrt{2})$ ,  $\mathcal{M}_{\gamma}(\mathrm{d}x) = 2 \sum_{k=0}^{\infty} \frac{\gamma^{2k}}{2^{k}} \frac{\Gamma(\theta)}{k!\Gamma(\theta+k)} (2\pi)^{k} : L_{x}^{k} : \mathrm{d}x$ 

メタト イヨト イヨト ニヨ

# Key identity

Hermite polynomials:

$$\sum_{n\geq 0}\frac{\gamma^n t^{n/2}}{n!}H_n(u/\sqrt{t})=e^{\gamma u-\gamma^2 t/2}, \qquad t,u\in\mathbb{R}.$$

Laguerre polynomials: (J. – Lupu – Qian)

$$\sum_{n\geq 0} \left(\frac{\gamma^2 t}{2}\right)^n \frac{1}{n! \Gamma(\theta+n)} L_n^{(\theta-1)} \left(\frac{u^2}{2t}\right) = e^{-\gamma^2 t/2} \left(\frac{\gamma^2 u t}{4}\right)^{\frac{1-\theta}{2}} I_{\theta-1}(\gamma u)$$

$$\begin{split} & I_{\theta-1} = \text{modified Bessel function} \\ & I_{\theta-1}(\gamma u) \sim \frac{1}{\sqrt{2\pi\gamma u}} e^{\gamma u} \text{ as } u \to \infty. \end{split}$$

Thank you for your attention!

▶ < ∃ >

2