Multiplicative chaos of the Brownian loop soup

Antoine Jego

Agay September 2022

Based on joint work with E. Aïdékon, N. Berestycki and T. Lupu

Brownian loop soup

Countable infinite collection of Brownian-like loops in a domain $D \subset \mathbb{R}^{2}$

Introduced by Lawler and Werner
Related to many random conformal invariant objects

Definition

Poisson point process $\mathcal{L}_{D}^{\theta} \sim \operatorname{PPP}\left(\theta \mu_{D}^{\text {loop }}\right)$

- $\theta>0$: intensity parameter
- $\mu_{D}^{\text {loop }}$: loop measure

$$
\begin{aligned}
\mu_{D}^{\text {loop }}\left(d_{\wp}\right)= & \int_{D} \int_{0}^{+\infty} \mathbb{P}_{D, t}^{z, z}\left(d_{\wp}\right) p_{D}(t, z, z) \frac{\mathrm{d} t}{t} \mathrm{~d} z \\
& \text { Brownian bridge } \quad \text { heat kernel }
\end{aligned}
$$

Fact

- Infinitely many small loops
- Conformally invariant
- Restriction property

Loop-erased random walk:
(erase chronologically each loop)

Lawler-Schramm-Werner

Clusters

Cluster $=$ chain of intersecting loops
Phase transition: (Sheffield-Werner)

- $\theta>1 / 2$: one big cluster
- $\theta \leq 1 / 2$: infinitely many clusters

Outer boundaries of outermost clusters
$=\mathrm{CLE}_{\kappa}$ where $\kappa=\kappa(\theta) \in(8 / 3,4]$
Conformal Loop Ensemble

Le Jan's isomorphism

When $\theta=1 / 2$,
" the occupation field of the Brownian loop soup
$\stackrel{(d)}{=} \frac{1}{2}(\text { Gaussian free field })^{2}$

The Gaussian free field
The unique random generalised function satisfying some domain Markov property (+ moment condition)
(Berestycki-Powell-Ray, Aru-Powell)

The Gaussian free field

The unique random generalised function satisfying some domain Markov property (+ moment condition) (Berestycki-Powell-Ray, Aru-Powell)

Universal random height function: Scaling limit of

- Height function in dimers
- Ginzburg-Landau $\nabla \phi$ interface
- Characteristic polynomial of large random matrices

The Gaussian free field

$h=$ GFF
Formally, $h=\left(h_{x}\right)_{x \in D} \sim \mathcal{N}\left(0, G_{D}\right)$ where

$$
G_{D}(x, y)=\int_{0}^{\infty} p_{D}(t, x, y) \mathrm{d} t=\text { Green function }
$$

The Gaussian free field

$h=$ GFF
Formally, $h=\left(h_{x}\right)_{x \in D} \sim \mathcal{N}\left(0, G_{D}\right)$ where

$$
G_{D}(x, y)=\int_{0}^{\infty} p_{D}(t, x, y) \mathrm{d} t=\text { Green function }
$$

In 2D, $G_{D}(x, y) \sim-\log |x-y|$ as $x-y \rightarrow 0$
$\rightsquigarrow \operatorname{var}\left(h_{x}\right)=+\infty$
Rigorously, random generalised function

$$
\operatorname{var}((h, f))=\int_{D \times D} f(x) G_{D}(x, y) f(y) \mathrm{d} x \mathrm{~d} y
$$

Exponential of the GFF

Informally: random measure
h : GFF
$\gamma \in(-2,2)$

$$
\mu_{\gamma}=e^{\gamma h(x)} \mathrm{d} x
$$

Instance of Gaussian multiplicative chaos measure
Rigorously,

$$
\mu_{\gamma}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{\gamma^{2} / 2} e^{\gamma h_{\varepsilon}(x)} \mathrm{d} x
$$

(a) $\gamma=0.2$

(b) $\gamma=1$

Simulation by Rhodes-Vargas

Thick points

$$
\mu_{\gamma}=e^{\gamma h} \mathrm{~d} x
$$

x fixed deterministic point $\rightsquigarrow h_{\varepsilon}(x)=O(\sqrt{|\log \varepsilon|})$
x is $\mu^{\gamma}-$ typical point $\rightsquigarrow \lim _{\varepsilon \rightarrow 0} \frac{h_{\varepsilon}(x)}{|\log \varepsilon|}=\gamma$
In fact,
Theorem (Discrete: Biskup-Louidor)
$\mathcal{T}_{\varepsilon}(\gamma):=\left\{x \in D: h_{\varepsilon}(x) \geq \gamma|\log \varepsilon|\right\}$ (γ-thick points)
$\sqrt{|\log \varepsilon| \varepsilon^{-\gamma^{2} / 2}} \mathbf{1}_{\left\{x \in \mathcal{T}_{\varepsilon}(\gamma)\right\}} \mathrm{d} x \underset{\varepsilon \rightarrow 0}{\longrightarrow} \mu_{\gamma}$
" $\mu_{\gamma}=$ uniform measure on γ-thick points"

This talk

Loop soup: $\mathcal{L}_{D}^{\theta} \sim \operatorname{PPP}\left(\theta \mu_{D}^{\text {loop }}\right)$
GFF: h
Couple $\left(\mathcal{L}_{D}^{\theta}, h\right)$ such that $\left(L_{x}\right)_{x \in D}=\frac{1}{2} h^{2}$
Sample $z \sim e^{\gamma h}$.

Questions:

- What does the loop soup look like near z ?
- How does the loop soup create a thick local time?
\hookrightarrow A few very thick loops?
\hookrightarrow Many loops w/ typical local time?
- What about $\theta \neq 1 / 2$? What is the associated chaos?

Multiplicative chaos construction

$D_{N}=\frac{1}{N} \mathbb{Z}^{2} \cap D$ discrete approximation of D
$\mathcal{L}_{D_{N}}^{\theta}$ random walk loop soup

$$
\begin{aligned}
\ell_{x} & =\text { local time at } x \\
& =\sum_{\wp \in \mathcal{L}_{D_{N}}^{\theta}} \int_{0}^{\tau_{\wp}} \mathbf{1}_{\left\{\wp_{t}=x\right\}} \mathrm{d} t
\end{aligned}
$$

typical point: $\quad \mathbb{E}\left[\ell_{X}\right] \sim \frac{\theta}{2 \pi} \log N$

Multiplicative chaos construction

typical point:

$$
\mathbb{E}\left[\ell_{x}\right] \sim \frac{\theta}{2 \pi} \log N
$$

$$
a=\frac{\gamma^{2}}{2} \text { thickness parameter }
$$

a-thick points:

$$
\mathcal{T}_{N}(a):=\left\{x \in D_{N}: \ell_{x} \geq \frac{1}{2 \pi} a(\log N)^{2}\right\}
$$

Uniform measure on $\mathcal{T}_{N}(a)$:

$$
\mathcal{M}_{a}^{N}:=\frac{(\log N)^{1-\theta}}{N^{2-a}} \sum_{x \in \mathcal{T}_{N}(a)} \delta_{x}
$$

Multiplicative chaos construction

$$
\theta>0 \text { intensity }
$$

typical point: $\quad \mathbb{E}\left[\ell_{x}\right] \sim \frac{\theta}{2 \pi} \log N$ $a=\frac{\gamma^{2}}{2}$ thickness parameter
a-thick points: $\quad \mathcal{T}_{N}(a):=\left\{x \in D_{N}: \ell_{x} \geq \frac{1}{2 \pi} a(\log N)^{2}\right\}$
Uniform measure on $\mathcal{T}_{N}(a)$:

$$
\mathcal{M}_{a}^{N}:=\frac{(\log N)^{1-\theta}}{N^{2-a}} \sum_{x \in \mathcal{T}_{N}(a)} \delta_{x}
$$

Theorem (E. Aïdékon, N. Berestycki, A. J., T. Lupu 21)
$\left(\mathcal{M}_{a}^{N}, \mathcal{L}_{D_{N}}^{\theta}\right) \rightarrow\left(\mathcal{M}_{a}, \mathcal{L}_{D}^{\theta}\right)$ as $N \rightarrow \infty$.
$\rightsquigarrow \mathcal{M}_{a}=$ multiplicative chaos associated to \mathcal{L}_{D}^{θ}.

Multiplicative chaos construction

$$
\theta>0 \text { intensity }
$$

typical point: $\quad \mathbb{E}\left[\ell_{x}\right] \sim \frac{\theta}{2 \pi} \log N$ $a=\frac{\gamma^{2}}{2}$ thickness parameter
a-thick points: $\quad \mathcal{T}_{N}(a):=\left\{x \in D_{N}: \ell_{x} \geq \frac{1}{2 \pi} a(\log N)^{2}\right\}$
Uniform measure on $\mathcal{T}_{N}(a)$:

$$
\mathcal{M}_{a}^{N}:=\frac{(\log N)^{1-\theta}}{N^{2-a}} \sum_{x \in \mathcal{T}_{N}(a)} \delta_{x}
$$

Theorem (E. Aïdékon, N. Berestycki, A. J., T. Lupu 21)
$\left(\mathcal{M}_{a}^{N}, \mathcal{L}_{D_{N}}^{\theta}\right) \rightarrow\left(\mathcal{M}_{a}, \mathcal{L}_{D}^{\theta}\right)$ as $N \rightarrow \infty$.
$\rightsquigarrow \mathcal{M}_{a}=$ multiplicative chaos associated to \mathcal{L}_{D}^{θ}.

- $\theta=1 / 2$: discrete GFF, Biskup-Louidor
- $\theta \rightarrow 0$: random walk thick points, Jego
- related result: random walk close to cover time, Abe, Biskup, Lee

Multiplicative chaos and loop soup

$$
\begin{array}{r}
\theta>0 \text { intensity } \\
a=\frac{\gamma^{2}}{2} \text { thickness }
\end{array}
$$

- $\theta=1 / 2 \rightsquigarrow \mathcal{M}_{a} \stackrel{\text { (d) }}{=} e^{\gamma \text { GFF }}+e^{-\gamma \text { GFF }}$
- $\theta \neq 1 / 2 \rightsquigarrow \mathcal{M}_{a}=$ new object! not Gaussian!

Multiplicative chaos and loop soup

$$
\begin{array}{r}
\theta>0 \text { intensity } \\
a=\frac{\gamma^{2}}{2} \text { thickness }
\end{array}
$$

- $\theta=1 / 2 \rightsquigarrow \mathcal{M}_{a} \stackrel{(\mathrm{~d})}{=} e^{\gamma \mathrm{GFF}}+e^{-\gamma \text { GFF }}$
- $\theta \neq 1 / 2 \rightsquigarrow \mathcal{M}_{a}=$ new object! not Gaussian!

Sample $z \sim \mathcal{M}_{a}(\cdot) / \mathcal{M}_{a}(D)$: typical a-thick point. How many loops go through z ? What are the thicknesses associated to each individual loop?

Multiplicative chaos and loop soup

$$
\begin{array}{r}
\theta>0 \text { intensity } \\
a=\frac{\gamma^{2}}{2} \text { thickness }
\end{array}
$$

- $\theta=1 / 2 \rightsquigarrow \mathcal{M}_{a} \stackrel{\text { (d) }}{=} e^{\gamma \text { GFF }}+e^{-\gamma \text { GFF }}$
- $\theta \neq 1 / 2 \rightsquigarrow \mathcal{M}_{a}=$ new object! not Gaussian!

Sample $z \sim \mathcal{M}_{a}(\cdot) / \mathcal{M}_{a}(D)$: typical a-thick point. How many loops go through z ? What are the thicknesses associated to each individual loop?

Theorem (E.A., N.B., A.J., T.L. 21)

1) Infinitely many loops.

Multiplicative chaos and loop soup

$$
\begin{array}{r}
\theta>0 \text { intensity } \\
a=\frac{\gamma^{2}}{2} \text { thickness }
\end{array}
$$

- $\theta=1 / 2 \rightsquigarrow \mathcal{M}_{a} \stackrel{(\mathrm{~d})}{=} e^{\gamma \mathrm{GFF}}+e^{-\gamma \text { GFF }}$
- $\theta \neq 1 / 2 \rightsquigarrow \mathcal{M}_{a}=$ new object! not Gaussian!

Sample $z \sim \mathcal{M}_{a}(\cdot) / \mathcal{M}_{a}(D)$: typical a-thick point. How many loops go through z ? What are the thicknesses associated to each individual loop?

Theorem (E.A., N.B., A.J., T.L. 21)

1) Infinitely many loops.
2) Denote a_{1}, a_{2}, \ldots thicknesses of loops going through z. $\left\{a_{1}, a_{2}, \ldots\right\} \sim$ Poisson-Dirichlet (θ) on the interval $[0, a]$.

Multiplicative chaos and loop soup

$$
\begin{array}{r}
\theta>0 \text { intensity } \\
a=\frac{\gamma^{2}}{2} \text { thickness }
\end{array}
$$

- $\theta=1 / 2 \rightsquigarrow \mathcal{M}_{a} \stackrel{\text { (d) }}{=} e^{\gamma \text { GFF }}+e^{-\gamma \text { GFF }}$
- $\theta \neq 1 / 2 \rightsquigarrow \mathcal{M}_{a}=$ new object! not Gaussian!

Sample $z \sim \mathcal{M}_{a}(\cdot) / \mathcal{M}_{a}(D)$: typical a-thick point.
How many loops go through z ? What are the thicknesses associated to each individual loop?

Theorem (E.A., N.B., A.J., T.L. 21)

1) Infinitely many loops.
2) Denote a_{1}, a_{2}, \ldots thicknesses of loops going through z. $\left\{a_{1}, a_{2}, \ldots\right\} \sim$ Poisson-Dirichlet (θ) on the interval $[0, a]$. 3) Cond. on $\left\{a_{1}, a_{2}, \ldots\right\}$, the loops that go through z are indep. and distributed like the concatenation of the excursions in $\operatorname{PPP}\left(a_{i} \mu_{D}^{z}\right)$.

Construction from the continuum

Brownian multiplicative chaos: multiplicative chaos associated to finitely many trajectories

$$
e^{\gamma \sqrt{2 L_{x}}} d x
$$

Bass-Burdzy-Koshnevisan 94
Aïdékon-Hu-Shi 20
Jego 19, 20

Construction from the continuum

Brownian multiplicative chaos: multiplicative chaos associated to finitely many trajectories

$$
e^{\gamma \sqrt{2 L_{x}}} d x
$$

Bass-Burdzy-Koshnevisan 94
Aïdékon-Hu-Shi 20
Jego 19, 20

- Kill each loop independently of each other at rate $K>0$
$\mathbb{P}(\wp$ killed $)=1-e^{-K T(\wp)}$
- $\mathcal{M}_{a}^{K}:=$ multiplicative chaos associated to killed loops

Theorem (E.A., N.B., A.J., T.L. 21)
$(\log K)^{-\theta} \mathcal{M}_{a}^{K} \xrightarrow[K \rightarrow \infty]{\mathbb{P}} \mathcal{M}_{a}$

Exact solvability

$\mathcal{M}_{a}^{K}=$ multiplicative chaos associated to K-killed loops (cutoff) Define $C_{K}(z)=\int_{0}^{\infty}\left(1-e^{-K t}\right) p_{D}(t, z, z)$

Exact solvability

$\mathcal{M}_{a}^{K}=$ multiplicative chaos associated to K-killed loops (cutoff) Define $C_{K}(z)=\int_{0}^{\infty}\left(1-e^{-K t}\right) p_{D}(t, z, z)$

Proposition (E.A., N.B., A.J., T.L.)

$$
\mathbb{E}\left[\mathcal{M}_{a}^{K}(\mathrm{~d} z)\right]=\frac{1}{a} \mathrm{~F}\left(C_{K}(z) a\right) \mathrm{CR}(z, D)^{a} \mathrm{~d} z
$$

where

$$
\mathrm{F}(u)=\theta \int_{0}^{u} e^{-t}{ }_{1} F_{1}(\theta, 1, t) \mathrm{d} t
$$

with ${ }_{1} F_{1}=$ Kummer's confluent hypergeometric function.

Exact solvability

Proof in two steps:

- Step 1 (could treat any cutoff)

$$
\mathbb{E}\left[\mathcal{M}_{a}^{K}(\mathrm{~d} z)\right]=\frac{1}{a} \hat{\mathrm{~F}}\left(C_{K}(z) a\right) \mathrm{CR}(z, D)^{a} \mathrm{~d} z
$$

where

$$
\hat{F}(u):=\sum_{n \geq 1} \frac{\theta^{n}}{n!} \int_{E(1, n)} \mathrm{d} \mathbf{a} \prod_{i=1}^{n} \frac{1-e^{-u a_{i}}}{a_{i}}
$$

and

$$
E(1, n)=\left\{\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in(0,1)^{n}: a_{1}+\cdots+a_{n}=1\right\}
$$

Exact solvability

Proof in two steps:

- Step 1 (could treat any cutoff)

$$
\mathbb{E}\left[\mathcal{M}_{a}^{K}(\mathrm{~d} z)\right]=\frac{1}{a} \hat{F}\left(C_{K}(z) a\right) \mathrm{CR}(z, D)^{a} \mathrm{~d} z
$$

where

$$
\hat{F}(u):=\sum_{n \geq 1} \frac{\theta^{n}}{n!} \int_{E(1, n)} \mathrm{d} \mathbf{a} \prod_{i=1}^{n} \frac{1-e^{-u a_{i}}}{a_{i}}
$$

and

$$
E(1, n)=\left\{\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in(0,1)^{n}: a_{1}+\cdots+a_{n}=1\right\}
$$

- Step 2 (very much cutoff-sensitive!): \hat{F} is "nice"

$$
(1-\theta) \hat{F}^{\prime}(u)+\hat{F}^{\prime \prime}(u)+u\left(\hat{F}^{\prime \prime}(u)+\hat{F}^{\prime \prime \prime}(u)\right)=0
$$

A martingale

Proposition (E.A., N.B., A.J., T.L. 21)

$$
\begin{aligned}
& \frac{1}{a^{1-\theta}} \operatorname{CR}(z, D)^{a} e^{-a C_{K}(z)} d z \\
& \quad+\int_{0}^{a} \frac{\mathrm{~d} \alpha}{(a-\alpha)^{1-\theta}} \operatorname{CR}(z, D)^{a-\alpha} e^{-(a-\alpha) C_{K}(z)} \mathcal{M}_{\alpha}^{K}(d z)
\end{aligned}
$$

is a measure-valued martingale (as a function of K)

A martingale: heuristics when $\theta=1 / 2$
$\mathcal{L}_{K}^{\theta}=\{K$-killed loops $\}$

$$
\begin{array}{rlr}
L_{x}\left(\mathcal{L}^{\theta}\right) \stackrel{(\mathrm{dd})}{\frac{1}{2}} h^{2} & \text { and } & L_{x}\left(\mathcal{L}^{\theta} \backslash \mathcal{L}_{K}^{\theta}\right) \stackrel{(\text { dd })}{=} \frac{1}{2} h_{K}{ }^{2} \\
\text { GFF } & \text { massive GFF }
\end{array}
$$

(massive Green function associated to $-\Delta+K$)

$$
L_{x}\left(\mathcal{L}_{K}^{\theta}\right) \stackrel{\Perp}{2} h_{K}^{2}=\frac{1}{2} h^{2}
$$

A martingale: heuristics when $\theta=1 / 2$
$\mathcal{L}_{K}^{\theta}=\{K$-killed loops $\}$

$$
\begin{aligned}
& L_{x}\left(\mathcal{L}^{\theta}\right) \stackrel{(\mathrm{d})}{=} \frac{1}{2} h^{2} \quad \text { and } \quad L_{x}\left(\mathcal{L}^{\theta} \backslash \mathcal{L}_{K}^{\theta}\right) \stackrel{(\mathrm{d})}{=} \frac{1}{2} h_{K}{ }^{2} \\
& \text { GFF massive GFF }
\end{aligned}
$$

(massive Green function associated to $-\Delta+K$)

$$
\begin{gathered}
L_{x}\left(\mathcal{L}_{K}^{\theta}\right)+\frac{1}{2} h_{K}^{2}=\frac{1}{2} h^{2} \\
f(0) e^{\gamma\left|h_{K}\right|}+\int_{0}^{a} \mathrm{~d} \alpha f(\alpha) e^{\sqrt{2(a-\alpha)}\left|h_{K}\right|} \mathcal{M}_{\alpha}^{K}=e^{\gamma|h|}
\end{gathered}
$$

Multiplicative chaos and Wick powers

Define : $e^{\gamma h(x)} \mathrm{d} x:=\lim _{\varepsilon \rightarrow 0} e^{\gamma h_{\varepsilon}(x)} / \mathbb{E}\left[e^{\gamma h_{\varepsilon}(x)}\right] \mathrm{d} x$
Theorem
When $\gamma \in[0, \sqrt{2}),: e^{\gamma h(x)} \mathrm{d} x:=\sum_{k=0}^{\infty} \frac{\gamma^{k}}{k!}: h(x)^{k}: d x$
$: h(x)^{k}:=k$-th Wick power of h

Multiplicative chaos and Wick powers

Define : $e^{\gamma h(x)} \mathrm{d} x:=\lim _{\varepsilon \rightarrow 0} e^{\gamma h_{\varepsilon}(x)} / \mathbb{E}\left[e^{\gamma h_{\varepsilon}(x)}\right] \mathrm{d} x$
Theorem
When $\gamma \in[0, \sqrt{2}),: e^{\gamma h(x)} \mathrm{d} x:=\sum_{k=0}^{\infty} \frac{\gamma^{k}}{k!}: h(x)^{k}: d x$
$: h(x)^{k}:=k$-th Wick power of h
Scaling limit of
$h_{N}=$ discrete GFF
$: h_{N}(x)^{k}:=G_{N}(x, x)^{k / 2} H_{k}\left(\frac{h_{N}(x)}{\sqrt{G_{N}(x, x)}}\right)$
discrete Green function Hermite polynomial
$\left(H_{k}\right)_{k \geq 0}$ orthogonal w.r.t. $e^{-t^{2} / 2} \mathrm{~d} t$

Wick powers of local time (Le Jan)

ℓ_{x} local time of discrete loop soup

$$
: \ell_{x}^{k}:=G_{N}(x, x)^{k} L_{k}^{(\theta-1)}\left(\frac{\ell_{x}}{G_{N}(x, x)}\right)
$$

$\left(L_{k}^{(\theta-1)}\right)_{k \geq 0}$ generalised Laguerre polynomials, orthogonal for $\operatorname{Gamma}(\theta)$ distribution.
Non degenerate scaling limit: : L_{x}^{k} :

Wick powers of local time (Le Jan)

ℓ_{x} local time of discrete loop soup

$$
: \ell_{x}^{k}:=G_{N}(x, x)^{k} L_{k}^{(\theta-1)}\left(\frac{\ell_{x}}{G_{N}(x, x)}\right)
$$

$\left(L_{k}^{(\theta-1)}\right)_{k \geq 0}$ generalised Laguerre polynomials, orthogonal for $\operatorname{Gamma}(\theta)$ distribution.
Non degenerate scaling limit: : L_{x}^{k} :
Theorem (Le Jan)
When $\theta=1 / 2,\left(: L_{x}^{k}:\right)_{k \geq 0} \stackrel{(\mathrm{~d})}{=}\left(2^{-k}: h_{x}^{2 k}:\right)_{k \geq 0}$

Expansion of the multiplicative chaos of the loop soup

Renormalise \mathcal{M}_{γ} so that $\mathbb{E}\left[\mathcal{M}_{\gamma}(\mathrm{d} x)\right]=2 \mathrm{~d} x$.
When $\theta=1 / 2, \gamma \in(0, \sqrt{2})$,

$$
\mathcal{M}_{\gamma}(\mathrm{d} x)=2 \sum_{k=0}^{\infty} \frac{2^{k} \gamma^{2 k}}{(2 k)!}(2 \pi)^{k}: L_{x}^{k}: \mathrm{d} x
$$

Theorem (J. - Lupu - Qian 22+)
For all $\theta>0, \gamma \in(0, \sqrt{2})$,

$$
\mathcal{M}_{\gamma}(\mathrm{d} x)=2 \sum_{k=0}^{\infty} \frac{\gamma^{2 k}}{2^{k}} \frac{\Gamma(\theta)}{k!\Gamma(\theta+k)}(2 \pi)^{k}: L_{x}^{k}: \mathrm{d} x
$$

Key identity

Hermite polynomials:

$$
\sum_{n \geq 0} \frac{\gamma^{n} t^{n / 2}}{n!} H_{n}(u / \sqrt{t})=e^{\gamma u-\gamma^{2} t / 2}, \quad t, u \in \mathbb{R}
$$

Laguerre polynomials: (J. - Lupu - Qian)

$$
\sum_{n \geq 0}\left(\frac{\gamma^{2} t}{2}\right)^{n} \frac{1}{n!\Gamma(\theta+n)} L_{n}^{(\theta-1)}\left(\frac{u^{2}}{2 t}\right)=e^{-\gamma^{2} t / 2}\left(\frac{\gamma^{2} u t}{4}\right)^{\frac{1-\theta}{2}} I_{\theta-1}(\gamma u)
$$

$I_{\theta-1}=$ modified Bessel function
$I_{\theta-1}(\gamma u) \sim \frac{1}{\sqrt{2 \pi \gamma u}} e^{\gamma u}$ as $u \rightarrow \infty$.

Thank you for your attention!

