Imaginary chaos and Malliavin calculus

Janne Junnila

Probability and Conformal Field Theory
 Agay les roches rouges, September 2022

Based on joint works with J. Aru, A. Jego, E. Saksman and C. Webb.

Introduction to imaginary chaos

Log-correlated Gaussian fields

- A Gaussian random field X is called log-correlated if its covariance (kernel) is of the form

$$
C_{X}(x, y)=C(x, y)=\log |x-y|^{-1}+g(x, y)
$$

for some continuous function g.

Log-correlated Gaussian fields

- A Gaussian random field X is called log-correlated if its covariance (kernel) is of the form

$$
C_{X}(x, y)=C(x, y)=\log |x-y|^{-1}+g(x, y)
$$

for some continuous function g.

- Example I: The zero-boundary GFF on a simply connected domain $U \subset \mathbb{R}^{2}$, where $C_{X}=2 \pi G_{U}$ is the Green's function.

Log-correlated Gaussian fields

- A Gaussian random field X is called log-correlated if its covariance (kernel) is of the form

$$
C_{X}(x, y)=C(x, y)=\log |x-y|^{-1}+g(x, y)
$$

for some continuous function g.

- Example I:The zero-boundary GFF on a simply connected domain $U \subset \mathbb{R}^{2}$, where $C_{X}=2 \pi G_{U}$ is the Green's function.
- Example 2: The field $X(z)=\sqrt{2} \operatorname{Re}\left(\sum_{k=1}^{\infty} \frac{Z_{k}}{\sqrt{k}} z^{k}\right)$ on the unit circle $\{z \in \mathbb{C}:|z|=1\}$, where Z_{k} are i.i.d. standard complex Gaussians. In this case we have exactly $\mathbb{E}[X(z) X(w)]=\log |z-w|^{-1}$.

Log-correlated Gaussian fields

- A Gaussian random field X is called log-correlated if its covariance (kernel) is of the form

$$
C_{X}(x, y)=C(x, y)=\log |x-y|^{-1}+g(x, y)
$$

for some continuous function g.

- Example I:The zero-boundary GFF on a simply connected domain $U \subset \mathbb{R}^{2}$, where $C_{X}=2 \pi G_{U}$ is the Green's function.
- Example 2: The field $X(z)=\sqrt{2} \operatorname{Re}\left(\sum_{k=1}^{\infty} \frac{Z_{k}}{\sqrt{k}} z^{k}\right)$ on the unit circle $\{z \in \mathbb{C}:|z|=1\}$, where Z_{k} are i.i.d. standard complex Gaussians. In this case we have exactly $\mathbb{E}[X(z) X(w)]=\log |z-w|^{-1}$.
- Note: X is not pointwise defined since formally $\operatorname{Var}(X(z))=\infty$. The random variables $\langle X, f\rangle=\int X(x) f(x) d x$ can however be defined for any test function f, and X can be given sense as a random Schwartz distribution.

2D Gaussian Free Field

An approximation of the zero-boundary GFF on the unit square.

(Complex) Gaussian multiplicative chaos

What is GMC?

(Complex) Gaussian multiplicative chaos

What is GMC?

- A distribution of the form
$\mu^{\gamma}(x):=: \exp (\gamma X(x)):=e^{\gamma X(x)-\frac{\gamma^{2}}{2} \mathbb{E}\left[X(x)^{2}\right]}$ and $\gamma \in \mathbb{C}$ is a parameter.

(Complex) Gaussian multiplicative chaos

What is GMC?

- A distribution of the form $\mu^{\gamma}(x):=: \exp (\gamma X(x)):=e^{\gamma X(x)-\frac{\nu^{2}}{2} \mathbb{E}\left[X(x)^{2}\right]}$ and $\gamma \in \mathbb{C}$ is a parameter.
- As X is not a function, a rigorous definition requires a limiting procedure: $\mu^{\gamma}(x):=\lim _{\varepsilon \rightarrow 0} \mu_{\varepsilon}^{\gamma}(x):=\lim _{\varepsilon \rightarrow 0} e^{\gamma X_{\varepsilon}(x)-\frac{\gamma^{2}}{2} \mathbb{E}\left[X_{\varepsilon}(x)^{2}\right]}$, where X_{ε} is a smoothened version of X and the limit is taken in some suitable space of distributions on U (e.g. H^{-s} for large enough $s>0$).

(Complex) Gaussian multiplicative chaos

What is GMC?

- A distribution of the form

$$
\mu^{\gamma}(x):=: \exp (\gamma X(x)):=e^{\gamma X(x)-\frac{\gamma^{2}}{2} \mathbb{E}\left[X(x)^{2}\right]} \text { and } \gamma \in \mathbb{C} \text { is a }
$$ parameter.

- As X is not a function, a rigorous definition requires a limiting procedure: $\mu^{\gamma}(x):=\lim _{\varepsilon \rightarrow 0} \mu_{\varepsilon}^{\gamma}(x):=\lim _{\varepsilon \rightarrow 0} e^{\gamma X_{\varepsilon}(x)-\frac{\gamma^{2}}{2} \mathbb{E}\left[X_{\varepsilon}(x)^{2}\right]}$, where X_{ε} is a smoothened version of X and the limit is taken in some suitable space of distributions on U (e.g. H^{-s} for large enough $s>0$).
- Appears e.g. in Liouville quantum gravity and as a limit of characteristic polynomials of random matrices.

Existence in L^{2}-phase

For a given test function f we may compute

$$
\begin{aligned}
\mathbb{E}\left[\left|\mu_{\varepsilon}(f)\right|^{2}\right] & =\int \mathbb{E}\left[: e^{\gamma X_{\varepsilon}(x)}:: e^{\bar{\gamma} X_{\varepsilon}(y)}:\right] d x d y \\
& \lesssim \int e^{|\gamma|^{2} C(x, y)} d x d y \leqq \int|x-y|^{-|\gamma|^{2}} d x d y .
\end{aligned}
$$

Existence in L^{2}-phase

For a given test function f we may compute

$$
\begin{aligned}
\mathbb{E}\left[\left|\mu_{\varepsilon}(f)\right|^{2}\right] & =\int \mathbb{E}\left[: e^{\gamma X_{\varepsilon}(x)}:: e^{\bar{\gamma} X_{\varepsilon}(y)}:\right] d x d y \\
& \lesssim \int e^{|\gamma|^{2} C(x, y)} d x d y \lesssim \int|x-y|^{\left||\gamma|^{2}\right.} d x d y .
\end{aligned}
$$

- This is bounded uniformly in ε if $|\gamma|<\sqrt{d}$.

Existence in L^{2}-phase

For a given test function f we may compute

$$
\begin{aligned}
\mathbb{E}\left[\left|\mu_{\varepsilon}(f)\right|^{2}\right] & =\int \mathbb{E}\left[: e^{\gamma X_{\varepsilon}(x)}:: e^{\bar{\gamma} X_{\varepsilon}(y)}:\right] d x d y \\
& \lesssim \int e^{\mid \gamma \gamma^{2} C(x, y)} d x d y \leqq \int|x-y|^{\left||\gamma|^{2}\right.} d x d y .
\end{aligned}
$$

- This is bounded uniformly in ε if $|\gamma|<\sqrt{d}$.
- If $\mu_{\varepsilon}(f)$ is a martingale approximation we automatically obtain convergence in $L^{2}(\Omega)$.

The subcritical regime

With more careful analysis one can in fact show the existence of a non-trivial limit for $\mu_{\varepsilon}^{\gamma}$ when γ belongs to the interior of the eye-shaped region below. Moreover, the map $\gamma \mapsto \mu^{\gamma}$ is analytic. The disc corresponds to the L^{2}-phase.

The subcritical regime for γ in the complex plane.

Imaginary multiplicative chaos, $\gamma=i \beta(|\beta|<\sqrt{d})$

- Heuristically in this case the modulus of $\mu(x)$ is an infinite normalising constant $e^{\frac{\beta^{2}}{2}} \mathbb{E}\left[X(x)^{2}\right]$ while the angle is given by the field $\beta X(x)$.

Imaginary multiplicative chaos, $\gamma=i \beta(|\beta|<\sqrt{d})$

- Heuristically in this case the modulus of $\mu(x)$ is an infinite normalising constant $e^{\frac{\beta^{2}}{2} \mathbb{E}\left[X(x)^{2}\right]}$ while the angle is given by the field $\beta X(x)$.
- Compare this to the case when γ is real, where the angle is constant but the modulus is given by $e^{\gamma X(x)}$ times an infinitesimal constant $e^{-\frac{\gamma^{2}}{2} \mathbb{E}\left[X(x)^{2}\right]}$.

Imaginary multiplicative chaos, $\gamma=i \beta(|\beta|<\sqrt{d})$

- Heuristically in this case the modulus of $\mu(x)$ is an infinite normalising constant $e^{\frac{\beta^{2}}{2} \mathbb{E}\left[X(x)^{2}\right]}$ while the angle is given by the field $\beta X(x)$.
- Compare this to the case when γ is real, where the angle is constant but the modulus is given by $e^{\gamma X(x)}$ times an infinitesimal constant $e^{-\frac{\gamma^{2}}{2} \mathbb{E}\left[X(x)^{2}\right]}$.

Simulation of imaginary chaos with X the GFF and $\beta=1 / \sqrt{2}$.

Analytic properties of imaginary chaos

- Tails: $\mathbb{P}[|\mu(f)|>\lambda]$ decays roughly like $\exp \left(-\lambda^{\frac{2 d}{\beta^{2}}}\right)$.
- Faster than Gaussian decay - in fact when $\beta=\sqrt{d}$, after a further renormalization the chaos becomes white noise.
- Regularity: $\mu \in H_{l o c}^{s}$ if and only if $s<-\beta^{2} / 2$.'
- μ is not a complex measure $\left(\|\mu\|_{T V}=\infty\right.$ a.s.).
- The law of $\mu(f)$ has a smooth density w.r.t. the Lebesgue measure on \mathbb{C}.
- The density is in fact everywhere positive (not yet published), which in particular implies $\mathbb{E}\left[|\mu(f)|^{p}\right]<\infty$ if and only if $p>-2$.
- Monofractality: A.s. for all $x \in U$ we have $\lim \inf _{r \rightarrow 0} \frac{\log |\mu(B(x, r))|}{\log r}=2-\beta^{2} / 2 .{ }^{\prime}$

[^0]
Moments and Onsager's inequality

Many of the proofs rely on moment computations.

- Growth of moments: $\mathbb{E}\left[|\mu(f)|^{2 N}\right] \leq C^{N} N^{\frac{\beta^{2}}{d}} N$
- Slow enough to determine the distribution of the random variable $\mu(f)$.

Moments and Onsager's inequality

Many of the proofs rely on moment computations.

- Growth of moments: $\mathbb{E}\left[|\mu(f)|^{2 N}\right] \leq C^{N} N^{\frac{\beta^{2}}{d}} N$
- Slow enough to determine the distribution of the random variable $\mu(f)$.
A key tool in establishing sharp moment bounds is Onsager's inequality: For any $x_{1}, \ldots, x_{2 N} \in U$ and $q_{1}, \ldots, q_{2 N} \in\{ \pm 1\}$ we have

$$
-\sum_{1 \leq j<k \leq 2 N} q_{j} q_{k} C\left(x_{j}, x_{k}\right) \leq \frac{1}{2} \sum_{j=1}^{2 N} \log \frac{1}{r_{j}}+C N
$$

where $r_{j}=\frac{1}{2} \min _{k}\left|x_{j}-x_{k}\right|$ and $C \geq 0$ is a constant.

Moments and Onsager's inequality continued

Following [GP77], one can apply Onsager's inequality directly in the expansion

$$
\mathbb{E}\left[|\mu(f)|^{2 N}\right]=\int \prod_{j=1}^{N} f\left(x_{j}\right) \overline{f\left(x_{N+j}\right)} e^{-\beta^{2} \sum_{1 \leq j k k \leq N} q_{j} q_{k} C\left(x_{j}, x_{k}\right)},
$$

where $q_{j}=1$ if $1 \leq j \leq N$ and $q_{j}=-1$ if $N+1 \leq j \leq 2 N$ to get an upper bound of the form

$$
\mathbb{E}\left[|\mu(f)|^{2 N}\right] \lesssim C^{N} \sum_{\pi} \int \prod_{j=1}^{2 N}\left|x_{j}-x_{\pi(j)}\right|^{-\beta^{2} / 2}
$$

where the sum runs over functions $\pi:\{1, \ldots, 2 N\} \rightarrow\{1, \ldots, 2 N\}$ designating a nearest neighbour $x_{\pi(j)}$ to every x_{j}.

Moments and Onsager's inequality continued

Following [GP77], one can apply Onsager's inequality directly in the expansion

$$
\mathbb{E}\left[|\mu(f)|^{2 N}\right]=\int \prod_{j=1}^{N} f\left(x_{j}\right) \overline{f\left(x_{N+j}\right)} e^{-\beta^{2} \sum_{1 \leq j k k \leq N} q_{j} q_{k} C\left(x_{j}, x_{k}\right)}
$$

where $q_{j}=1$ if $1 \leq j \leq N$ and $q_{j}=-1$ if $N+1 \leq j \leq 2 N$ to get an upper bound of the form

$$
\mathbb{E}\left[|\mu(f)|^{2 N}\right] \lesssim C^{N} \sum_{\pi} \int \prod_{j=1}^{2 N}\left|x_{j}-x_{\pi(j)}\right|^{-\beta^{2} / 2}
$$

where the sum runs over functions $\pi:\{1, \ldots, 2 N\} \rightarrow\{1, \ldots, 2 N\}$ designating a nearest neighbour $x_{\pi(j)}$ to every x_{j}.

- Estimating the remaining integral can be done using a combinatorial argument.

Application: XOR-Ising model

- Two independent critical Ising models with spins (± 1) multiplied together.
- The spin field convergences to the real part of μ with $\beta=1 / \sqrt{2}$.
- Proof via method of moments: Correlation functions are known to converge pointwise [CHII5] to the right limit. To justify the convergence of the moments we prove a version of Onsager's inequality for the XOR-Ising model and use the dominated convergence theorem.

Interlude: Meaning of imaginary chaos? Or is there any meaning?

Studying the field using multiplicative chaos?

- Real values of γ yield random measures that are supported on the so called γ-thick points of the field, i.e. those points for which $\lim _{\varepsilon \rightarrow 0} \frac{X_{\varepsilon}(x)}{\mathbb{E}\left[X_{\varepsilon}(x)^{2}\right]}=\gamma$.

Studying the field using multiplicative chaos?

- Real values of γ yield random measures that are supported on the so called γ-thick points of the field, i.e. those points for which $\lim _{\varepsilon \rightarrow 0} \frac{X_{\varepsilon}(x)}{\mathbb{E}\left[X_{\varepsilon}(x)^{2}\right]}=\gamma$.
- Thus the real chaos lets us focus on the points where the field is exceptionally large - can we similarly say something interesting about the field by studying its imaginary chaos?

Studying the field using multiplicative chaos?

- Real values of γ yield random measures that are supported on the so called γ-thick points of the field, i.e. those points for which $\lim _{\varepsilon \rightarrow 0} \frac{X_{\varepsilon}(x)}{\mathbb{E}^{[}\left[X_{\varepsilon}(x)^{2}\right]}=\gamma$.
- Thus the real chaos lets us focus on the points where the field is exceptionally large - can we similarly say something interesting about the field by studying its imaginary chaos?
- Answer: Not yet completely understood, but see e.g. [SSV20] where imaginary chaos is used to study the Hausdorff dimension of two-valued sets of the GFF.

Studying the field using multiplicative chaos?

- Real values of γ yield random measures that are supported on the so called γ-thick points of the field, i.e. those points for which $\lim _{\varepsilon \rightarrow 0} \frac{X_{\varepsilon}(x)}{\mathbb{E}\left[X_{\varepsilon}(x)^{2}\right]}=\gamma$.
- Thus the real chaos lets us focus on the points where the field is exceptionally large - can we similarly say something interesting about the field by studying its imaginary chaos?
- Answer: Not yet completely understood, but see e.g. [SSV20] where imaginary chaos is used to study the Hausdorff dimension of two-valued sets of the GFF.
- A perhaps simpler fundamental question: Is it possible to recover the field X from μ ? Or are we just studying some fancy noise?

Going from the chaos to the field

- When γ is real, one can recover the field X from μ as a simple limit [BSSI4,Aru20]

$$
X(x)=\lim _{\varepsilon \rightarrow 0} \gamma^{-1}(\log \mu(B(x, \varepsilon))-\mathbb{E} \log \mu(B(x, \varepsilon)))
$$

Going from the chaos to the field

- When γ is real, one can recover the field X from μ as a simple limit [BSSI4,Aru20]

$$
X(x)=\lim _{\varepsilon \rightarrow 0} \gamma^{-1}(\log \mu(B(x, \varepsilon))-\mathbb{E} \log \mu(B(x, \varepsilon)))
$$

- For $\gamma=i \beta$ the positivity is however lost and another approach is needed.

Going from the chaos to the field

- When γ is real, one can recover the field X from μ as a simple limit [BSSI4,Aru20]

$$
X(x)=\lim _{\varepsilon \rightarrow 0} \gamma^{-1}(\log \mu(B(x, \varepsilon))-\mathbb{E} \log \mu(B(x, \varepsilon)))
$$

- For $\gamma=i \beta$ the positivity is however lost and another approach is needed.
- Heuristics: If $g: U \rightarrow \mathbb{R}$ is continuous then from $f(x)=\exp (i \beta g(x))$ one can recover g modulo $2 \pi / \beta$ by tracking how the angle changes locally. (In fact this is possible even for non-continuous g if we a priori know that there are no jumps larger than π / β.)

Going from the chaos to the field

- When γ is real, one can recover the field X from μ as a simple limit [BSSI4,Aru20]

$$
X(x)=\lim _{\varepsilon \rightarrow 0} \gamma^{-1}(\log \mu(B(x, \varepsilon))-\mathbb{E} \log \mu(B(x, \varepsilon)))
$$

- For $\gamma=i \beta$ the positivity is however lost and another approach is needed.
- Heuristics: If $g: U \rightarrow \mathbb{R}$ is continuous then from $f(x)=\exp (i \beta g(x))$ one can recover g modulo $2 \pi / \beta$ by tracking how the angle changes locally. (In fact this is possible even for non-continuous g if we a priori know that there are no jumps larger than π / β.)
- In the case g is differentiable a nice way of stating this tracking procedure is by saying that one can recover $\nabla g(x)$ from f via the explicit formula $\nabla g(x)=\frac{\nabla f(x)}{i \beta f(x)}$.

Recovering ∇X from μ

One can indeed show that when $d \geq 2, \nabla X$ can be recovered from μ when $\gamma=i \beta$. Idea for the proof:

Recovering ∇X from μ

One can indeed show that when $d \geq 2, \nabla X$ can be recovered from μ when $\gamma=i \beta$. Idea for the proof:

- Consider the carefully chosen μ-measurable observables

$$
H_{\eta}:=\int_{D \times D} f(x) \mu(x) \overline{\mu(u)} e^{-\beta^{2} C(x, u)} \partial_{1} \varphi_{\eta}(x-u) d x d u,
$$

where $\varphi_{\eta}(x)$ is a smooth approximation of the delta function.

Recovering ∇X from μ

One can indeed show that when $d \geq 2, \nabla X$ can be recovered from μ when $\gamma=i \beta$. Idea for the proof:

- Consider the carefully chosen μ-measurable observables

$$
H_{\eta}:=\int_{D \times D} f(x) \mu(x) \overline{\mu(u)} e^{-\beta^{2} C(x, u)} \partial_{1} \varphi_{\eta}(x-u) d x d u
$$

where $\varphi_{\eta}(x)$ is a smooth approximation of the delta function.

- Show that $H_{\eta} \rightarrow-i \beta\left\langle\partial_{1} X, f\right\rangle$. Formally integration by parts indeed gives

$$
\begin{aligned}
H_{\eta}= & \int_{D \times D} f(x) e^{i \beta X(x)-i \beta X(u)+\frac{\beta^{2}}{2} C(x, x)+\frac{\beta^{2}}{2} C(u, u)-\beta^{2} C(x, u)} \\
& \times\left(-i \beta \partial_{1} X(u)+\beta^{2} \partial_{1} C(u, u)-\beta^{2} \partial_{1} C(u, x)\right) \varphi_{\eta}(x-u) d x d u \\
\rightarrow & -i \beta \int_{D} f(x) \partial_{1} X(x) d x .
\end{aligned}
$$

Recovering ∇X from μ

One can indeed show that when $d \geq 2, \nabla X$ can be recovered from μ when $\gamma=i \beta$. Idea for the proof:

- Consider the carefully chosen μ-measurable observables

$$
H_{\eta}:=\int_{D \times D} f(x) \mu(x) \overline{\mu(u)} e^{-\beta^{2} C(x, u)} \partial_{1} \varphi_{\eta}(x-u) d x d u
$$

where $\varphi_{\eta}(x)$ is a smooth approximation of the delta function.

- Show that $H_{\eta} \rightarrow-i \beta\left\langle\partial_{1} X, f\right\rangle$. Formally integration by parts indeed gives

$$
\begin{aligned}
H_{\eta}= & \int_{D \times D} f(x) e^{i \beta X(x)-i \beta X(u)+\frac{\beta^{2}}{2} C(x, x)+\frac{\beta^{2}}{2} C(u, u)-\beta^{2} C(x, u)} \\
& \times\left(-i \beta \partial_{1} X(u)+\beta^{2} \partial_{1} C(u, u)-\beta^{2} \partial_{1} C(u, x)\right) \varphi_{\eta}(x-u) d x d u \\
\rightarrow & -i \beta \int_{D} f(x) \partial_{1} X(x) d x .
\end{aligned}
$$

- In reality a bit tricky because of renormalizations and infinities dimension 2 is harder than larger dimensions and we do not know what happends when $d=1$.

Existence of densities via Malliavin calculus

The law of $\mu(f)$

- Recall: $\mathbb{P}[|\mu(f)|>\lambda]$ decays roughly like $\exp \left(-\lambda^{\frac{2 d}{\beta^{2}}}\right)$.
- What about the regularity of the law of $\mu(f)$?

The law of $\mu(f)$

- Recall: $\mathbb{P}[|\mu(f)|>\lambda]$ decays roughly like $\exp \left(-\lambda^{\frac{2 d}{\beta^{2}}}\right)$.
- What about the regularity of the law of $\mu(f)$?

Theorem

For any nonzero $f \in C_{c}^{\infty}(U)$ the random variable $\mu(f)$ has a density w.r.t. the Lebesgue measure on \mathbb{C} and the density is a Schwartz function.

The law of $\mu(f)$

- Recall: $\mathbb{P}[|\mu(f)|>\lambda]$ decays roughly like $\exp \left(-\lambda^{\frac{2 d}{\beta^{2}}}\right)$.
- What about the regularity of the law of $\mu(f)$?

Theorem

For any nonzero $f \in C_{c}^{\infty}(U)$ the random variable $\mu(f)$ has a density w.r.t. the Lebesgue measure on \mathbb{C} and the density is a Schwartz function. Moreover, as $\beta \rightarrow \sqrt{d}$ the density tends to 0 pointwise and is uniformly bounded from above.

Application: Fyodorov-Bouchaud formula does not extend to imaginary chaos

Theorem (Remy, 2020)

Let X be the Gaussian field on S^{1} with the covariance $\mathbb{E}[X(x) X(y)]=-\log |x-y|$ for $|x|=|y|=1$. Let v be the corresponding (real) GMC measure with parameter $\gamma \in(0, \sqrt{2})$. Then $\mathbb{E}\left[v\left(S^{1}\right)^{p}\right]=\frac{\Gamma\left(1-p \gamma^{2} / 2\right)}{\Gamma\left(1-\gamma^{2} / 2\right)^{p}}$.

Application: Fyodorov-Bouchaud formula does not extend to imaginary chaos

Theorem (Remy, 2020)

Let X be the Gaussian field on S^{1} with the covariance $\mathbb{E}[X(x) X(y)]=-\log |x-y|$ for $|x|=|y|=1$. Let v be the corresponding (real) GMC measure with parameter $\gamma \in(0, \sqrt{2})$. Then $\mathbb{E}\left[v\left(S^{1}\right)^{p}\right]=\frac{\Gamma\left(1-p \gamma^{2} / 2\right)}{\Gamma\left(1-\gamma^{2} / 2\right)^{p}}$.

- Does this hold for $\gamma=i \beta$?

Application: Fyodorov-Bouchaud formula does not extend to imaginary chaos

Theorem (Remy, 2020)

Let X be the Gaussian field on S^{1} with the covariance $\mathbb{E}[X(x) X(y)]=-\log |x-y|$ for $|x|=|y|=1$. Let v be the corresponding (real) GMC measure with parameter $\gamma \in(0, \sqrt{2})$. Then $\mathbb{E}\left[v\left(S^{1}\right)^{p}\right]=\frac{\Gamma\left(1-p \gamma^{2} / 2\right)}{\Gamma\left(1-\gamma^{2} / 2\right)^{p}}$.

- Does this hold for $\gamma=i \beta$?
- Answer: Yes for $p \in \mathbb{N}$ but not in general.

Application: Fyodorov-Bouchaud formula does not extend to imaginary chaos

Theorem (Remy, 2020)

Let X be the Gaussian field on S^{1} with the covariance $\mathbb{E}[X(x) X(y)]=-\log |x-y|$ for $|x|=|y|=1$. Let v be the corresponding (real) GMC measure with parameter $\gamma \in(0, \sqrt{2})$. Then $\mathbb{E}\left[v\left(S^{1}\right)^{p}\right]=\frac{\Gamma\left(1-p \gamma^{2} / 2\right)}{\Gamma\left(1-\gamma^{2} / 2\right)^{p}}$.

- Does this hold for $\gamma=i \beta$?
- Answer: Yes for $p \in \mathbb{N}$ but not in general.
- Idea: Let ρ_{β} be the p.d.f. of $v\left(S^{1}\right)$. Then $\mathbb{E}\left[v\left(S^{1}\right)^{-1}\right] \leq \int|x|^{-1} \rho_{\beta}(x) d x \rightarrow 0$ as $\beta \rightarrow 1$, but F-B does not tend to 0 .

Preliminaries for proof: Isonormal Gaussian processes

Setup:

- Cameron-Martin space H : a (separable) Hilbert space.
- Isonormal Gaussian process $\left(\langle X, h\rangle_{H}\right)_{h \in H}$:
$\mathbb{E}\left[\langle X, h\rangle_{H}\langle X, k\rangle_{H}\right]=\langle h, k\rangle_{H}$
- Formally $X=\sum_{k=1}^{\infty} X_{k} h_{k}$ where $\left(h_{k}\right)_{k=1}^{\infty}$ is an orthonormal basis and $\left(X_{k}\right)_{k=1}^{\infty}$ are i.i.d. standard Gaussians.

Preliminaries for proof: Isonormal Gaussian processes

Setup:

- Cameron-Martin space H : a (separable) Hilbert space.
- Isonormal Gaussian process $\left(\langle X, h\rangle_{H}\right)_{h \in H}$:
$\mathbb{E}\left[\langle X, h\rangle_{H}\langle X, k\rangle_{H}\right]=\langle h, k\rangle_{H}$
- Formally $X=\sum_{k=1}^{\infty} X_{k} h_{k}$ where $\left(h_{k}\right)_{k=1}^{\infty}$ is an orthonormal basis and $\left(X_{k}\right)_{k=1}^{\infty}$ are i.i.d. standard Gaussians.
- If $\operatorname{dim}(H)=\infty, X$ is not a random element in H but often there is some natural larger space in which the series converges.

Preliminaries for proof: Isonormal Gaussian processes

Setup:

- Cameron-Martin space H : a (separable) Hilbert space.
- Isonormal Gaussian process $\left(\langle X, h\rangle_{H}\right)_{h \in H}$:
$\mathbb{E}\left[\langle X, h\rangle_{H}\langle X, k\rangle_{H}\right]=\langle h, k\rangle_{H}$
- Formally $X=\sum_{k=1}^{\infty} X_{k} h_{k}$ where $\left(h_{k}\right)_{k=1}^{\infty}$ is an orthonormal basis and $\left(X_{k}\right)_{k=1}^{\infty}$ are i.i.d. standard Gaussians.
- If $\operatorname{dim}(H)=\infty, X$ is not a random element in H but often there is some natural larger space in which the series converges.
In this talk: $H=H_{0}^{1}(U), X$ the GFF on U and $\sum_{k=1}^{\infty} X_{k} h_{k}$ converges in $H^{-\varepsilon}(U)$ for any $\varepsilon>0$.

Preliminaries for proof: Isonormal Gaussian processes

Setup:

- Cameron-Martin space H : a (separable) Hilbert space.
- Isonormal Gaussian process $\left(\langle X, h\rangle_{H}\right)_{h \in H}$:
$\mathbb{E}\left[\langle X, h\rangle_{H}\langle X, k\rangle_{H}\right]=\langle h, k\rangle_{H}$
- Formally $X=\sum_{k=1}^{\infty} X_{k} h_{k}$ where $\left(h_{k}\right)_{k=1}^{\infty}$ is an orthonormal basis and $\left(X_{k}\right)_{k=1}^{\infty}$ are i.i.d. standard Gaussians.
- If $\operatorname{dim}(H)=\infty, X$ is not a random element in H but often there is some natural larger space in which the series converges.
In this talk: $H=H_{0}^{1}(U), X$ the GFF on U and $\sum_{k=1}^{\infty} X_{k} h_{k}$ converges in $H^{-\varepsilon}(U)$ for any $\varepsilon>0$.
- $\langle f, g\rangle_{H}=\frac{1}{2 \pi} \int_{U} \nabla f(x) \cdot \nabla g(x) d x=\int_{U} f(x) L g(x) d x=\langle f, L g\rangle_{L^{2}}$
- $L=-(2 \pi)^{-1} \Delta$
- L^{-1} has the kernel $G(x, y) \sim \log \frac{1}{|x-y|}$.

Preliminaries for proof: Malliavin derivatives

- Suppose that $H=\mathbb{R}^{n}$ and that Y is an X-measurable random variable of the form $Y=F(X)$ with $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ differentiable.
- In this case the Malliavin derivative of Y would simply be the \mathbb{R}^{n}-valued random vector $\nabla F(X)$.

Preliminaries for proof: Malliavin derivatives

- Suppose that $H=\mathbb{R}^{n}$ and that Y is an X-measurable random variable of the form $Y=F(X)$ with $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ differentiable.
- In this case the Malliavin derivative of Y would simply be the \mathbb{R}^{n}-valued random vector $\nabla F(X)$.
- In general, if we have a random variable of the form $Y=F\left(\left\langle X, h_{1}\right\rangle_{H}, \ldots,\left\langle X, h_{n}\right\rangle_{H}\right)$ we define its Malliavin derivative as the H-valued random variable

$$
D Y=\sum_{k=1}^{n} \partial_{k} F\left(\left\langle X, h_{1}\right\rangle_{H}, \ldots,\left\langle X, h_{n}\right\rangle_{H}\right) h_{k}
$$

- For other suitable Y we may then define $D Y$ by taking limits of such smooth random variables.
- Completion under the natural norm $\|Y\|_{1, p}^{p}=\mathbb{E}\left[|Y|^{p}\right]+\mathbb{E}\left[\|D Y\|^{p}\right]$ leads to the space $\mathbb{D}^{1, p}$.

Motivation: regularity of probability laws

Heuristic idea: $\|D Y\|_{H}$ measures how easy it would have been to sample other values around Y.

Theorem

If $Y \in \mathbb{D}^{1,2}$ and $\|D Y\|_{H}>0$ a.s., then Y has a density w.r.t. the Lebesgue measure on \mathbb{R}.

Random vectors and smoothness of laws

To study the smoothness of laws we need higher order Malliavin derivatives which take values in $H^{\otimes k}$:

- For $Y=F\left(\left\langle X, h_{1}\right\rangle_{H}, \ldots,\left\langle X, h_{n}\right\rangle_{H}\right)$ we set

$$
D^{k} Y=\sum_{\ell_{1}, \ldots, \ell_{k}=1}^{n} \partial_{\ell_{1}, \ldots, \ell_{k}} F\left(\left\langle X, h_{1}\right\rangle_{H}, \ldots,\left\langle X, h_{n}\right\rangle_{H}\right) h_{\ell_{1}} \otimes \cdots \otimes h_{\ell_{n}} .
$$

- Define $\mathbb{D}^{k, p}$ in a natural way and let $\mathbb{D}^{\infty}=\bigcap_{p>1} \bigcap_{k>1} \mathbb{D}^{k, p}$.

Random vectors and smoothness of laws

To study the smoothness of laws we need higher order Malliavin derivatives which take values in $H^{\otimes k}$:

- For $Y=F\left(\left\langle X, h_{1}\right\rangle_{H}, \ldots,\left\langle X, h_{n}\right\rangle_{H}\right)$ we set

$$
D^{k} Y=\sum_{\ell_{1}, \ldots, \ell_{k}=1}^{n} \partial_{\ell_{1}, \ldots, \ell_{k}} F\left(\left\langle X, h_{1}\right\rangle_{H}, \ldots,\left\langle X, h_{n}\right\rangle_{H}\right) h_{\ell_{1}} \otimes \cdots \otimes h_{\ell_{n}} .
$$

- Define $\mathbb{D}^{k, p}$ in a natural way and let $\mathbb{D}^{\infty}=\bigcap_{p>1} \bigcap_{k>1} \mathbb{D}^{k, p}$.

Theorem

Let $\left(Y_{1}, \ldots, Y_{n}\right)$ be a random vector in \mathbb{R}^{n} such that $Y_{k} \in \mathbb{D}^{\infty}$ for all $k \in\{1, \ldots, n\}$ and define the matrix $\gamma_{Y}=\left(\left\langle D Y_{i}, D Y_{j}\right\rangle_{H}\right)_{i, j=1}^{n}$. Suppose that $\mathbb{E}\left[\left(\operatorname{det} \gamma_{Y}\right)^{-p}\right]<\infty$ for all $p>1$. Then $\left(Y_{1}, \ldots, Y_{n}\right)$ has a density ρ w.r.t. the Lebesgue measure on \mathbb{R}^{n} and ρ is a Schwartz function.

Complex valued random variables

All the definitions carry in a natural way to random variables taking values in \mathbb{C}.

- $D Y=D \operatorname{Re}(Y)+i D \operatorname{Im}(Y)$

Also, if $Y=(\operatorname{Re}(Y), \operatorname{Im}(Y))$, we may write $\operatorname{det} \gamma_{Y}$ using complex notation as

$$
\operatorname{det} \gamma_{Y}=\frac{1}{4}\left(\|D Y\|_{H}^{4}-\left|\langle D Y, \overline{D Y}\rangle_{H}\right|^{2}\right)
$$

Malliavin derivative of $\mu(f)$

Note that if X would have pointwise values,

$$
X(x)=\sum_{k=1}^{\infty} X_{k} h_{k}(x)=\sum_{k=1}^{\infty}\left\langle X, h_{k}\right\rangle_{H} h_{k}(x)
$$

then

$$
D(X(x))(y)=\sum_{k=1}^{\infty} h_{k}(x) h_{k}(y)=\mathbb{E}[X(x) X(y)]=G(x, y)
$$

Malliavin derivative of $\mu(f)$

Note that if X would have pointwise values,

$$
X(x)=\sum_{k=1}^{\infty} X_{k} h_{k}(x)=\sum_{k=1}^{\infty}\left\langle X, h_{k}\right\rangle_{H} h_{k}(x)
$$

then

$$
D(X(x))(y)=\sum_{k=1}^{\infty} h_{k}(x) h_{k}(y)=\mathbb{E}[X(x) X(y)]=G(x, y)
$$

Thus by chain rule the Malliavin derivative of

$$
M=\mu(f)=\int: e^{i \beta X(x)}: f(x) d x
$$

should be given by

$$
D M(y)=i \beta \int: e^{i \beta X(x)}: f(x) G(x, y) d x=i \beta L^{-1}(f \mu)
$$

and one can prove that this is indeed true and moreover $M \in \mathbb{D}^{\infty}$.

Malliavin determinant for $\mu(f)$

Writing $\mu(x)=: e^{i \beta X(x)}$: we have

$$
\begin{aligned}
\|D M\|_{H}^{2} & =\beta^{2}\left\langle L^{-1}(f \mu), L^{-1}(f \mu)\right\rangle_{H}=\beta^{2}\left\langle L^{-1}(f \mu), f \mu\right\rangle_{L^{2}} \\
& =\beta^{2} \int f(x) \overline{f(y)} \mu(x) \overline{\mu(y)} G(x, y) d x d y .
\end{aligned}
$$

Malliavin determinant for $\mu(f)$

Writing $\mu(x)=: e^{i \beta X(x)}$: we have

$$
\begin{aligned}
\|D M\|_{H}^{2} & =\beta^{2}\left\langle L^{-1}(f \mu), L^{-1}(f \mu)\right\rangle_{H}=\beta^{2}\left\langle L^{-1}(f \mu), f \mu\right\rangle_{L^{2}} \\
& =\beta^{2} \int f(x) \overline{f(y)} \mu(x) \overline{\mu(y)} G(x, y) d x d y .
\end{aligned}
$$

Similarly

$$
\langle D M, \overline{D M}\rangle_{H}=\beta^{2} \int f(x) f(y) \mu(x) \mu(y) G(x, y) d x d y
$$

Malliavin determinant for $\mu(f)$

Writing $\mu(x)=: e^{i \beta X(x)}$: we have

$$
\begin{aligned}
\|D M\|_{H}^{2} & =\beta^{2}\left\langle L^{-1}(f \mu), L^{-1}(f \mu)\right\rangle_{H}=\beta^{2}\left\langle L^{-1}(f \mu), f \mu\right\rangle_{L^{2}} \\
& =\beta^{2} \int f(x) \overline{f(y)} \mu(x) \overline{\mu(y)} G(x, y) d x d y .
\end{aligned}
$$

Similarly

$$
\langle D M, \overline{D M}\rangle_{H}=\beta^{2} \int f(x) f(y) \mu(x) \mu(y) G(x, y) d x d y
$$

Recall that we would like to show that

$$
\operatorname{det} \gamma_{M}=\frac{1}{4}\left(\|D M\|_{H}^{4}-\left|\langle D M, \overline{D M}\rangle_{H}\right|^{2}\right)
$$

has negative moments of all orders. In this talk we will instead focus on the easier but morally equivalent problem of showing $\mathbb{E}\left[\|D M\|_{H}^{-p}\right]<\infty$ for all $p>0$.

Projection bounds

Note that for any nonzero $h \in H$ we have

$$
\|D M\|_{H} \geq \frac{\left|\langle D M, h\rangle_{H}\right|}{\|h\|_{H}}=\frac{\beta\left|\left\langle L^{-1}(f \mu), h\right\rangle_{H}\right|}{\|h\|_{H}}=\frac{\beta|\mu(f \bar{h})|}{\|h\|_{H}} .
$$

Projection bounds

Note that for any nonzero $h \in H$ we have

$$
\|D M\|_{H} \geq \frac{\left|\langle D M, h\rangle_{H}\right|}{\|h\|_{H}}=\frac{\beta\left|\left\langle L^{-1}(f \mu), h\right\rangle_{H}\right|}{\|h\|_{H}}=\frac{\beta|\mu(f \bar{h})|}{\|h\|_{H}} .
$$

Consider taking $h(x)=f(x): e^{i \beta X_{\delta}(x)}$: for some $\delta>0$.

Projection bounds

Note that for any nonzero $h \in H$ we have

$$
\|D M\|_{H} \geq \frac{\left|\langle D M, h\rangle_{H}\right|}{\|h\|_{H}}=\frac{\beta\left|\left\langle L^{-1}(f \mu), h\right\rangle_{H}\right|}{\|h\|_{H}}=\frac{\beta|\mu(f \bar{h})|}{\|h\|_{H}} .
$$

Consider taking $h(x)=f(x): e^{i \beta X_{\delta}(x)}$: for some $\delta>0$.
In this case

$$
\|h\|_{H} \approx \delta^{-\frac{\beta^{2}}{2}} \int\left|\nabla X_{\delta}(x)\right|^{2} d x
$$

should be well concentrated around its mean at $\approx \delta^{-1-\frac{\beta^{2}}{2}}$.

Projection bounds

Note that for any nonzero $h \in H$ we have

$$
\|D M\|_{H} \geq \frac{\left|\langle D M, h\rangle_{H}\right|}{\|h\|_{H}}=\frac{\beta\left|\left\langle L^{-1}(f \mu), h\right\rangle_{H}\right|}{\|h\|_{H}}=\frac{\beta|\mu(f \bar{h})|}{\|h\|_{H}} .
$$

Consider taking $h(x)=f(x): e^{i \beta X_{\delta}(x)}:$ for some $\delta>0$.
In this case

$$
\|h\|_{H} \approx \delta^{-\frac{\beta^{2}}{2}} \int\left|\nabla X_{\delta}(x)\right|^{2} d x
$$

should be well concentrated around its mean at $\approx \delta^{-1-\frac{\beta^{2}}{2}}$.
On the other hand $\mu(f h)=\delta^{-\beta^{2}} \int|f(x)|^{2}: e^{i \beta \hat{X}_{\delta}(x)}: d x$ where $\hat{X}_{\delta}=X-X_{\delta}$. For small δ this is close to $\delta^{-\beta^{2}}$ with very high probability.

Projection bounds

Note that for any nonzero $h \in H$ we have

$$
\|D M\|_{H} \geq \frac{\left|\langle D M, h\rangle_{H}\right|}{\|h\|_{H}}=\frac{\beta\left|\left\langle L^{-1}(f \mu), h\right\rangle_{H}\right|}{\|h\|_{H}}=\frac{\beta|\mu(f \bar{h})|}{\|h\|_{H}} .
$$

Consider taking $h(x)=f(x): e^{i \beta X_{\delta}(x)}$: for some $\delta>0$.
In this case

$$
\|h\|_{H} \approx \delta^{-\frac{\beta^{2}}{2}} \int\left|\nabla X_{\delta}(x)\right|^{2} d x
$$

should be well concentrated around its mean at $\approx \delta^{-1-\frac{\beta^{2}}{2}}$.
On the other hand $\mu(f h)=\delta^{-\beta^{2}} \int|f(x)|^{2}: e^{i \beta \hat{X}_{\delta}(x)}: d x$ where $\hat{X}_{\delta}=X-X_{\delta}$. For small δ this is close to $\delta^{-\beta^{2}}$ with very high probability.
Thus $\|D M\|_{H} \gtrsim \delta^{1-\frac{\beta^{2}}{2}+\varepsilon}$ with very high probability.

Projection bounds (continued)

More precisely, for a fixed small enough $\varepsilon>0$ one can show that for all $\delta>0$ small enough we have

$$
\mathbb{P}\left[\|D M\|_{H} \geq \delta^{1-\frac{\beta^{2}}{2}+\varepsilon}\right] \geq 1-e^{-c \delta^{-d}}
$$

for some constants $c, d>0$. This suffices to show that
$\mathbb{E}\left[\|D M\|_{H}^{-p}\right]<\infty$ for all $p>0$.

- One can notice here a nice general strategy: Showing that something is not too small with large probability by finding a sequence of lower bounds which concentrate better and better, the point being that one can again work with positive moments instead of negative ones to show the concentration.

Some remarks

- This choice of h for the projection is not good enough to show that the density tends to 0 as $\beta \rightarrow \sqrt{d}$. Instead we use something like

$$
h(x)=e^{i \beta X_{\delta}(x)-\frac{\beta^{2}}{2} \mathbb{E}\left[X_{\delta}(x)^{2}\right]} \int f(y): e^{i \beta \hat{X}_{\delta}(x)}: \mathbb{E}\left[\hat{X}_{\delta}(x) \hat{X}_{\delta}(y)\right] d y
$$

(with some additional technical tricks).

Some remarks

- This choice of h for the projection is not good enough to show that the density tends to 0 as $\beta \rightarrow \sqrt{d}$. Instead we use something like

$$
h(x)=e^{i \beta X_{\delta}(x)-\frac{\beta^{2}}{2} \mathbb{E}\left[X_{\delta}(x)^{2}\right]} \int f(y): e^{i \beta \hat{X}_{\delta}(x)}: \mathbb{E}\left[\hat{X}_{\delta}(x) \hat{X}_{\delta}(y)\right] d y
$$

(with some additional technical tricks).

- There is also a direct projection bound for $\operatorname{det} \gamma_{M}$.

Some remarks

- This choice of h for the projection is not good enough to show that the density tends to 0 as $\beta \rightarrow \sqrt{d}$. Instead we use something like

$$
h(x)=e^{i \beta X_{\delta}(x)-\frac{\beta^{2}}{2} \mathbb{E}\left[X_{\delta}(x)^{2}\right]} \int f(y): e^{i \beta \hat{\beta}_{\delta}(x)}: \mathbb{E}\left[\hat{X}_{\delta}(x) \hat{X}_{\delta}(y)\right] d y
$$

(with some additional technical tricks).

- There is also a direct projection bound for $\operatorname{det} \gamma_{M}$.
- Getting pointwise bounds on the density requires bounding $\mathbb{E}\left[|\delta(A)|^{p}\right]$, where δ is the so-called divergence operator and

$$
A=\frac{\|D M\|_{H}^{2} D M-\langle D M, D \bar{M}\rangle_{H} D \bar{M}}{\|D M\|_{H}^{4}-\left|\langle D M, D \bar{M}\rangle_{H}\right|^{2}}
$$

- To this end we show that

$$
\delta(A) \leqslant \frac{\|D M\|_{H}^{2}\left(|\delta(D M)|+\left\|D^{2} M\right\|_{H \otimes H}\right)}{\|D M\|_{H}^{4}-\left|\langle D M, D \bar{M}\rangle_{H}\right|^{2}}
$$

General log-correlated fields and decompositions

The methods can in fact be generalized to a large class of log-correlated Gaussian fields.

- Some of the nicest log-correlated fields/approximations to work with are so-called star-scale invariant fields:
- Nice scaling properties.
- Nice independence structure both in space and in the level of approximation.
- We prove a general decomposition theorem which lets one express any non-degenerate log-correlated Gaussian field (satisfying some mild regularity conditions) as the sum of an almost star-scale invariant field and an independent regular field.

Thanks!

Papers

- J.Aru, A. Jego and J. Junnila: Density of imaginary multiplicative chaos via Malliavin calculus, Probability Theory and Related Fields, 2022.
- J.Aru and J. Junnila: Reconstructing the base field from imaginary multiplicative chaos, Bulletin of the London Mathematical Society, 2021.
- J. Junnila, E. Saksman and C.Webb: Imaginary multiplicative chaos: Moments, regularity and connections to the Ising model, Annals of Applied Probability, 2020.
- J. Junnila, E. Saksman and C.Webb: Decompositions of log-correlated fields with applications, Annals of Applied Probability, 2019.

[^0]: 'Case $s=-\beta^{2} / 2$ for Sobolev regularity as well as the monofractality result are part of some unpublished work by Aru, Baverez, Jego and J.

