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Introduction to imaginary chaos



Log-correlated Gaussian fields

• A Gaussian random field 𝑋 is called log-correlated if its

covariance (kernel) is of the form

𝐶𝑋(𝑥, 𝑦) = 𝐶(𝑥, 𝑦) = log |𝑥 − 𝑦|−1 + 𝑔(𝑥, 𝑦)

for some continuous function 𝑔.

• Example 1: The zero-boundary GFF on a simply connected

domain 𝑈 ⊂ ℝ2 , where 𝐶𝑋 = 2𝜋𝐺𝑈 is the Green’s function.

• Example 2: The field 𝑋(𝑧) = √2Re (∑∞𝑘=1
𝑍𝑘
√𝑘
𝑧𝑘) on the unit

circle {𝑧 ∈ ℂ ∶ |𝑧| = 1}, where 𝑍𝑘 are i.i.d. standard complex

Gaussians. In this case we have exactly

𝔼[𝑋(𝑧)𝑋(𝑤)] = log |𝑧 − 𝑤|−1 .
• Note: 𝑋 is not pointwise defined since formally

Var(𝑋(𝑧)) = ∞. The random variables ⟨𝑋, 𝑓⟩ = ∫𝑋(𝑥)𝑓(𝑥) 𝑑𝑥
can however be defined for any test function 𝑓, and 𝑋 can be

given sense as a random Schwartz distribution.
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2D Gaussian Free Field

An approximation of the zero-boundary GFF on the unit square.



(Complex) Gaussian multiplicative chaos

What is GMC?

• A distribution of the form

𝜇𝛾(𝑥) ≔∶ exp(𝛾𝑋(𝑥)) ∶= 𝑒𝛾𝑋(𝑥)−
𝛾2
2 𝔼[𝑋(𝑥)

2] and 𝛾 ∈ ℂ is a

parameter.

• As 𝑋 is not a function, a rigorous definition requires a limiting

procedure: 𝜇𝛾(𝑥) ≔ lim𝜀→0 𝜇𝛾𝜀 (𝑥) ≔ lim𝜀→0 𝑒𝛾𝑋𝜀(𝑥)−
𝛾2
2 𝔼[𝑋𝜀(𝑥)

2] ,

where 𝑋𝜀 is a smoothened version of 𝑋 and the limit is taken in

some suitable space of distributions on 𝑈 (e.g. 𝐻−𝑠 for large
enough 𝑠 > 0).

• Appears e.g. in Liouville quantum gravity and as a limit of

characteristic polynomials of random matrices.
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Existence in 𝐿2-phase

For a given test function 𝑓 we may compute

𝔼[|𝜇𝜀(𝑓)|2] = ∫𝔼[∶ 𝑒𝛾𝑋𝜀(𝑥) ∶∶ 𝑒𝛾𝑋𝜀(𝑦) ∶] 𝑑𝑥 𝑑𝑦

≲ ∫ 𝑒|𝛾|
2𝐶(𝑥,𝑦) 𝑑𝑥𝑑𝑦 ≲ ∫ |𝑥 − 𝑦|−|𝛾|

2
𝑑𝑥𝑑𝑦.

• This is bounded uniformly in 𝜀 if |𝛾| < √𝑑.
• If 𝜇𝜀(𝑓) is a martingale approximation we automatically obtain

convergence in 𝐿2(Ω).
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The subcritical regime

With more careful analysis one can in fact show the existence of a

non-trivial limit for 𝜇𝛾𝜀 when 𝛾 belongs to the interior of the

eye-shaped region below. Moreover, the map 𝛾 ↦ 𝜇𝛾 is analytic. The
disc corresponds to the 𝐿2-phase.

Re(𝛾)

Im(𝛾)
√𝑑

−√𝑑

−√2𝑑 √2𝑑

The subcritical regime for 𝛾 in the complex plane.



Imaginary multiplicative chaos, 𝛾 = 𝑖𝛽 (|𝛽| < √𝑑)
• Heuristically in this case the modulus of 𝜇(𝑥) is an infinite

normalising constant 𝑒
𝛽2
2 𝔼[𝑋(𝑥)

2] while the angle is given by the

field 𝛽𝑋(𝑥).

• Compare this to the case when 𝛾 is real, where the angle is

constant but the modulus is given by 𝑒𝛾𝑋(𝑥) times an infinitesimal

constant 𝑒−
𝛾2
2 𝔼[𝑋(𝑥)

2] .

0

2

4

6

Simulation of imaginary chaos with 𝑋 the GFF and 𝛽 = 1/√2.
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Analytic properties of imaginary chaos

• Tails: ℙ[|𝜇(𝑓)| > 𝜆] decays roughly like exp ( − 𝜆
2𝑑
𝛽2 ).

• Faster than Gaussian decay – in fact when 𝛽 = √𝑑, after a further
renormalization the chaos becomes white noise.

• Regularity: 𝜇 ∈ 𝐻𝑠𝑙𝑜𝑐 if and only if 𝑠 < −𝛽2/2.1

• 𝜇 is not a complex measure (‖𝜇‖𝑇𝑉 = ∞ a.s.).

• The law of 𝜇(𝑓) has a smooth density w.r.t. the Lebesgue
measure on ℂ.

• The density is in fact everywhere positive (not yet published),

which in particular implies 𝔼[|𝜇(𝑓)|𝑝] < ∞ if and only if 𝑝 > −2.

• Monofractality: A.s. for all 𝑥 ∈ 𝑈 we have

lim inf𝑟→0
log |𝜇(𝐵(𝑥,𝑟))|

log 𝑟 = 2 − 𝛽
2/2.1

1Case 𝑠 = −𝛽2/2 for Sobolev regularity as well as the monofractality result are

part of some unpublished work by Aru, Baverez, Jego and J.



Moments and Onsager’s inequality

Many of the proofs rely on moment computations.

• Growth of moments: 𝔼[|𝜇(𝑓)|2𝑁] ≤ 𝐶𝑁𝑁
𝛽2
𝑑 𝑁

• Slow enough to determine the distribution of the random

variable 𝜇(𝑓).

A key tool in establishing sharp moment bounds is Onsager’s

inequality: For any 𝑥1 ,… , 𝑥2𝑁 ∈ 𝑈 and 𝑞1 ,… , 𝑞2𝑁 ∈ {±1} we have

− ∑
1≤𝑗<𝑘≤2𝑁

𝑞𝑗𝑞𝑘𝐶(𝑥𝑗 , 𝑥𝑘) ≤
1
2

2𝑁

∑
𝑗=1

log 1
𝑟𝑗
+ 𝐶𝑁

where 𝑟𝑗 =
1
2 min𝑘 |𝑥𝑗 − 𝑥𝑘| and 𝐶 ≥ 0 is a constant.
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Moments and Onsager’s inequality continued

Following [GP77], one can apply Onsager’s inequality directly in the

expansion

𝔼[|𝜇(𝑓)|2𝑁] = ∫
𝑁

∏
𝑗=1
𝑓(𝑥𝑗)𝑓(𝑥𝑁+𝑗)𝑒

−𝛽2 ∑1≤𝑗<𝑘≤2𝑁 𝑞𝑗𝑞𝑘𝐶(𝑥𝑗 ,𝑥𝑘) ,

where 𝑞𝑗 = 1 if 1 ≤ 𝑗 ≤ 𝑁 and 𝑞𝑗 = −1 if 𝑁 + 1 ≤ 𝑗 ≤ 2𝑁 to get an

upper bound of the form

𝔼[|𝜇(𝑓)|2𝑁] ≲ 𝐶𝑁∑
𝜋
∫
2𝑁

∏
𝑗=1
|𝑥𝑗 − 𝑥𝜋(𝑗)|−𝛽

2/2

where the sum runs over functions 𝜋∶ {1,… , 2𝑁} → {1,… , 2𝑁}
designating a nearest neighbour 𝑥𝜋(𝑗) to every 𝑥𝑗 .

• Estimating the remaining integral can be done using a

combinatorial argument.
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Application: XOR-Ising model

• Two independent critical Ising models with spins (±1) multiplied

together.

• The spin field convergences to the real part of 𝜇 with 𝛽 = 1/√2.
• Proof via method of moments: Correlation functions are known

to converge pointwise [CHI15] to the right limit. To justify the

convergence of the moments we prove a version of Onsager’s

inequality for the XOR-Ising model and use the dominated

convergence theorem.

× =



Interlude: Meaning of imaginary chaos?

Or is there any meaning?



Studying the field using multiplicative chaos?

• Real values of 𝛾 yield random measures that are supported on

the so called 𝛾-thick points of the field, i.e. those points for

which lim𝜀→0
𝑋𝜀(𝑥)
𝔼[𝑋𝜀(𝑥)2]

= 𝛾.

• Thus the real chaos lets us focus on the points where the field is

exceptionally large – can we similarly say something interesting

about the field by studying its imaginary chaos?

• Answer: Not yet completely understood, but see e.g. [SSV20]

where imaginary chaos is used to study the Hausdorff dimension

of two-valued sets of the GFF.

• A perhaps simpler fundamental question: Is it possible to

recover the field 𝑋 from 𝜇? Or are we just studying some fancy

noise?
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• A perhaps simpler fundamental question: Is it possible to

recover the field 𝑋 from 𝜇? Or are we just studying some fancy

noise?
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Going from the chaos to the field

• When 𝛾 is real, one can recover the field 𝑋 from 𝜇 as a simple

limit [BSS14,Aru20]

𝑋(𝑥) = lim
𝜀→0
𝛾−1(log𝜇(𝐵(𝑥, 𝜀)) − 𝔼 log𝜇(𝐵(𝑥, 𝜀))).

• For 𝛾 = 𝑖𝛽 the positivity is however lost and another approach is

needed.

• Heuristics: If 𝑔∶ 𝑈 → ℝ is continuous then from

𝑓(𝑥) = exp(𝑖𝛽𝑔(𝑥)) one can recover 𝑔 modulo 2𝜋/𝛽 by tracking

how the angle changes locally. (In fact this is possible even for

non-continuous 𝑔 if we a priori know that there are no jumps

larger than 𝜋/𝛽.)
• In the case 𝑔 is differentiable a nice way of stating this tracking

procedure is by saying that one can recover ∇𝑔(𝑥) from 𝑓 via
the explicit formula ∇𝑔(𝑥) = ∇𝑓(𝑥)𝑖𝛽𝑓(𝑥) .
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Recovering ∇𝑋 from 𝜇
One can indeed show that when 𝑑 ≥ 2,∇𝑋 can be recovered from 𝜇
when 𝛾 = 𝑖𝛽. Idea for the proof:

• Consider the carefully chosen 𝜇-measurable observables

𝐻𝜂 ≔ ∫
𝐷×𝐷
𝑓(𝑥)𝜇(𝑥)𝜇(𝑢)𝑒−𝛽

2𝐶(𝑥,𝑢)𝜕1𝜑𝜂(𝑥 − 𝑢) 𝑑𝑥 𝑑𝑢,

where 𝜑𝜂(𝑥) is a smooth approximation of the delta function.

• Show that 𝐻𝜂 → −𝑖𝛽⟨𝜕1𝑋,𝑓⟩. Formally integration by parts

indeed gives

𝐻𝜂 = ∫
𝐷×𝐷
𝑓(𝑥)𝑒𝑖𝛽𝑋(𝑥)−𝑖𝛽𝑋(𝑢)+

𝛽2
2 𝐶(𝑥,𝑥)+

𝛽2
2 𝐶(𝑢,𝑢)−𝛽

2𝐶(𝑥,𝑢)

× (−𝑖𝛽𝜕1𝑋(𝑢) + 𝛽2𝜕1𝐶(𝑢, 𝑢) − 𝛽2𝜕1𝐶(𝑢, 𝑥))𝜑𝜂(𝑥 − 𝑢) 𝑑𝑥 𝑑𝑢

→ −𝑖𝛽∫
𝐷
𝑓(𝑥)𝜕1𝑋(𝑥) 𝑑𝑥.

• In reality a bit tricky because of renormalizations and infinities –

dimension 2 is harder than larger dimensions and we do not

know what happends when 𝑑 = 1.
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Existence of densities via Malliavin calculus



The law of 𝜇(𝑓)

• Recall: ℙ[|𝜇(𝑓)| > 𝜆] decays roughly like exp(−𝜆
2𝑑
𝛽2 ).

• What about the regularity of the law of 𝜇(𝑓)?

Theorem

For any nonzero 𝑓 ∈ 𝐶∞𝑐 (𝑈) the random variable 𝜇(𝑓) has a density

w.r.t. the Lebesgue measure on ℂ and the density is a Schwartz function.

Moreover, as 𝛽 → √𝑑 the density tends to 0 pointwise and is uniformly

bounded from above.



The law of 𝜇(𝑓)

• Recall: ℙ[|𝜇(𝑓)| > 𝜆] decays roughly like exp(−𝜆
2𝑑
𝛽2 ).

• What about the regularity of the law of 𝜇(𝑓)?

Theorem

For any nonzero 𝑓 ∈ 𝐶∞𝑐 (𝑈) the random variable 𝜇(𝑓) has a density

w.r.t. the Lebesgue measure on ℂ and the density is a Schwartz function.

Moreover, as 𝛽 → √𝑑 the density tends to 0 pointwise and is uniformly

bounded from above.



The law of 𝜇(𝑓)

• Recall: ℙ[|𝜇(𝑓)| > 𝜆] decays roughly like exp(−𝜆
2𝑑
𝛽2 ).

• What about the regularity of the law of 𝜇(𝑓)?

Theorem

For any nonzero 𝑓 ∈ 𝐶∞𝑐 (𝑈) the random variable 𝜇(𝑓) has a density

w.r.t. the Lebesgue measure on ℂ and the density is a Schwartz function.

Moreover, as 𝛽 → √𝑑 the density tends to 0 pointwise and is uniformly

bounded from above.



Application: Fyodorov–Bouchaud formula does not extend

to imaginary chaos

Theorem (Remy, 2020)

Let 𝑋 be the Gaussian field on 𝑆1 with the covariance

𝔼[𝑋(𝑥)𝑋(𝑦)] = − log |𝑥 − 𝑦| for |𝑥| = |𝑦| = 1. Let 𝜈 be the

corresponding (real) GMC measure with parameter 𝛾 ∈ (0, √2). Then
𝔼[𝜈(𝑆1)𝑝] = Γ(1−𝑝𝛾

2/2)
Γ(1−𝛾2/2)𝑝 .

• Does this hold for 𝛾 = 𝑖𝛽?
• Answer:Yes for 𝑝 ∈ ℕ but not in general.

• Idea: Let 𝜌𝛽 be the p.d.f. of 𝜈(𝑆1). Then
𝔼[𝜈(𝑆1)−1] ≤ ∫ |𝑥|−1𝜌𝛽(𝑥) 𝑑𝑥 → 0 as 𝛽 → 1, but F–B does not

tend to 0.
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Preliminaries for proof: Isonormal Gaussian processes

Setup:

• Cameron–Martin space 𝐻: a (separable) Hilbert space.

• Isonormal Gaussian process (⟨𝑋, ℎ⟩𝐻)ℎ∈𝐻 :
𝔼[⟨𝑋, ℎ⟩𝐻⟨𝑋, 𝑘⟩𝐻] = ⟨ℎ, 𝑘⟩𝐻

• Formally 𝑋 = ∑∞𝑘=1 𝑋𝑘ℎ𝑘 where (ℎ𝑘)∞𝑘=1 is an orthonormal basis

and (𝑋𝑘)∞𝑘=1 are i.i.d. standard Gaussians.

• If dim(𝐻) = ∞,𝑋 is not a random element in 𝐻 but often there

is some natural larger space in which the series converges.

In this talk: 𝐻 = 𝐻10 (𝑈),𝑋 the GFF on 𝑈 and ∑∞𝑘=1 𝑋𝑘ℎ𝑘 converges in
𝐻−𝜀(𝑈) for any 𝜀 > 0.

• ⟨𝑓, 𝑔⟩𝐻 =
1
2𝜋 ∫𝑈 ∇𝑓(𝑥) ⋅∇𝑔(𝑥) 𝑑𝑥 = ∫𝑈 𝑓(𝑥)𝐿𝑔(𝑥) 𝑑𝑥 = ⟨𝑓, 𝐿𝑔⟩𝐿2

• 𝐿 = −(2𝜋)−1Δ
• 𝐿−1 has the kernel 𝐺(𝑥, 𝑦) ∼ log 1|𝑥−𝑦| .
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is some natural larger space in which the series converges.

In this talk: 𝐻 = 𝐻10 (𝑈),𝑋 the GFF on 𝑈 and ∑∞𝑘=1 𝑋𝑘ℎ𝑘 converges in
𝐻−𝜀(𝑈) for any 𝜀 > 0.

• ⟨𝑓, 𝑔⟩𝐻 =
1
2𝜋 ∫𝑈 ∇𝑓(𝑥) ⋅∇𝑔(𝑥) 𝑑𝑥 = ∫𝑈 𝑓(𝑥)𝐿𝑔(𝑥) 𝑑𝑥 = ⟨𝑓, 𝐿𝑔⟩𝐿2

• 𝐿 = −(2𝜋)−1Δ
• 𝐿−1 has the kernel 𝐺(𝑥, 𝑦) ∼ log 1|𝑥−𝑦| .
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Preliminaries for proof: Malliavin derivatives

• Suppose that 𝐻 = ℝ𝑛 and that 𝑌 is an 𝑋-measurable random

variable of the form 𝑌 = 𝐹(𝑋) with 𝐹∶ ℝ𝑛 → ℝ differentiable.

• In this case the Malliavin derivative of 𝑌 would simply be the

ℝ𝑛-valued random vector ∇𝐹(𝑋).

• In general, if we have a random variable of the form

𝑌 = 𝐹(⟨𝑋, ℎ1⟩𝐻 ,… , ⟨𝑋, ℎ𝑛⟩𝐻) we define its Malliavin derivative

as the 𝐻-valued random variable

𝐷𝑌 =
𝑛

∑
𝑘=1
𝜕𝑘𝐹(⟨𝑋, ℎ1⟩𝐻 ,… , ⟨𝑋, ℎ𝑛⟩𝐻)ℎ𝑘 .

• For other suitable 𝑌 we may then define 𝐷𝑌 by taking limits of

such smooth random variables.

• Completion under the natural norm

‖𝑌‖𝑝1,𝑝 = 𝔼[|𝑌|𝑝] + 𝔼[‖𝐷𝑌‖𝑝] leads to the space 𝔻1,𝑝 .
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Motivation: regularity of probability laws

Heuristic idea: ‖𝐷𝑌‖𝐻 measures how easy it would have been to

sample other values around 𝑌.

Theorem

If 𝑌 ∈ 𝔻1,2 and ‖𝐷𝑌‖𝐻 > 0 a.s., then 𝑌 has a density w.r.t. the Lebesgue

measure on ℝ.



Random vectors and smoothness of laws

To study the smoothness of laws we need higher order Malliavin

derivatives which take values in 𝐻⊗𝑘 :
• For 𝑌 = 𝐹(⟨𝑋, ℎ1⟩𝐻 ,… , ⟨𝑋, ℎ𝑛⟩𝐻) we set

𝐷𝑘𝑌 =
𝑛

∑
ℓ1 ,…,ℓ𝑘=1
𝜕ℓ1 ,…,ℓ𝑘𝐹(⟨𝑋, ℎ1⟩𝐻 ,… , ⟨𝑋, ℎ𝑛⟩𝐻)ℎℓ1 ⊗⋯ ⊗ ℎℓ𝑛 .

• Define 𝔻𝑘,𝑝 in a natural way and let 𝔻∞ = ⋂𝑝>1⋂𝑘>1𝔻
𝑘,𝑝 .

Theorem

Let (𝑌1 ,… , 𝑌𝑛) be a random vector in ℝ𝑛 such that 𝑌𝑘 ∈ 𝔻∞ for all

𝑘 ∈ {1,… , 𝑛} and define the matrix 𝛾𝑌 = (⟨𝐷𝑌𝑖 , 𝐷𝑌𝑗⟩𝐻)𝑛𝑖,𝑗=1 . Suppose
that 𝔼[(det 𝛾𝑌)−𝑝] < ∞ for all 𝑝 > 1. Then (𝑌1 ,… , 𝑌𝑛) has a density 𝜌
w.r.t. the Lebesgue measure on ℝ𝑛 and 𝜌 is a Schwartz function.
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Complex valued random variables

All the definitions carry in a natural way to random variables taking

values in ℂ.
• 𝐷𝑌 = 𝐷Re(𝑌) + 𝑖𝐷 Im(𝑌)

Also, if 𝑌 = (Re(𝑌), Im(𝑌)), we may write det 𝛾𝑌 using complex

notation as

det 𝛾𝑌 =
1
4
(‖𝐷𝑌‖4𝐻 − |⟨𝐷𝑌,𝐷𝑌⟩𝐻|2).



Malliavin derivative of 𝜇(𝑓)
Note that if 𝑋 would have pointwise values,

𝑋(𝑥) =
∞

∑
𝑘=1
𝑋𝑘ℎ𝑘(𝑥) =

∞

∑
𝑘=1
⟨𝑋, ℎ𝑘⟩𝐻ℎ𝑘(𝑥),

then

𝐷(𝑋(𝑥))(𝑦) =
∞

∑
𝑘=1
ℎ𝑘(𝑥)ℎ𝑘(𝑦) = 𝔼[𝑋(𝑥)𝑋(𝑦)] = 𝐺(𝑥, 𝑦).

Thus by chain rule the Malliavin derivative of

𝑀 = 𝜇(𝑓) = ∫ ∶ 𝑒𝑖𝛽𝑋(𝑥) ∶ 𝑓(𝑥) 𝑑𝑥

should be given by

𝐷𝑀(𝑦) = 𝑖𝛽∫ ∶ 𝑒𝑖𝛽𝑋(𝑥) ∶ 𝑓(𝑥)𝐺(𝑥, 𝑦) 𝑑𝑥 = 𝑖𝛽𝐿−1(𝑓𝜇)

and one can prove that this is indeed true and moreover𝑀 ∈ 𝔻∞ .
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Malliavin determinant for 𝜇(𝑓)
Writing 𝜇(𝑥) =∶ 𝑒𝑖𝛽𝑋(𝑥) ∶ we have

‖𝐷𝑀‖2𝐻 = 𝛽2⟨𝐿−1(𝑓𝜇), 𝐿−1(𝑓𝜇)⟩𝐻 = 𝛽2⟨𝐿−1(𝑓𝜇), 𝑓𝜇⟩𝐿2

= 𝛽2 ∫𝑓(𝑥)𝑓(𝑦)𝜇(𝑥)𝜇(𝑦)𝐺(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.

Similarly

⟨𝐷𝑀,𝐷𝑀⟩𝐻 = 𝛽2 ∫𝑓(𝑥)𝑓(𝑦)𝜇(𝑥)𝜇(𝑦)𝐺(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.

Recall that we would like to show that

det 𝛾𝑀 =
1
4
(‖𝐷𝑀‖4𝐻 − |⟨𝐷𝑀,𝐷𝑀⟩𝐻|2)

has negative moments of all orders. In this talk we will instead focus

on the easier but morally equivalent problem of showing

𝔼[‖𝐷𝑀‖−𝑝𝐻 ] < ∞ for all 𝑝 > 0.
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Projection bounds

Note that for any nonzero ℎ ∈ 𝐻 we have

‖𝐷𝑀‖𝐻 ≥
|⟨𝐷𝑀, ℎ⟩𝐻|
‖ℎ‖𝐻

= 𝛽|⟨𝐿
−1(𝑓𝜇), ℎ⟩𝐻|
‖ℎ‖𝐻

= 𝛽|𝜇(𝑓ℎ)|
‖ℎ‖𝐻
.

Consider taking ℎ(𝑥) = 𝑓(𝑥) ∶ 𝑒𝑖𝛽𝑋𝛿(𝑥) ∶ for some 𝛿 > 0.
In this case

‖ℎ‖𝐻 ≈ 𝛿−
𝛽2
2 ∫ |∇𝑋𝛿(𝑥)|2 𝑑𝑥

should be well concentrated around its mean at ≈ 𝛿−1−
𝛽2
2 .

On the other hand 𝜇(𝑓ℎ) = 𝛿−𝛽
2
∫ |𝑓(𝑥)|2 ∶ 𝑒𝑖𝛽�̂�𝛿(𝑥) ∶ 𝑑𝑥 where

�̂�𝛿 = 𝑋 − 𝑋𝛿 . For small 𝛿 this is close to 𝛿−𝛽
2
with very high

probability.

Thus ‖𝐷𝑀‖𝐻 ≳ 𝛿1−
𝛽2
2 +𝜀 with very high probability.
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Consider taking ℎ(𝑥) = 𝑓(𝑥) ∶ 𝑒𝑖𝛽𝑋𝛿(𝑥) ∶ for some 𝛿 > 0.
In this case

‖ℎ‖𝐻 ≈ 𝛿−
𝛽2
2 ∫ |∇𝑋𝛿(𝑥)|2 𝑑𝑥

should be well concentrated around its mean at ≈ 𝛿−1−
𝛽2
2 .

On the other hand 𝜇(𝑓ℎ) = 𝛿−𝛽
2
∫ |𝑓(𝑥)|2 ∶ 𝑒𝑖𝛽�̂�𝛿(𝑥) ∶ 𝑑𝑥 where

�̂�𝛿 = 𝑋 − 𝑋𝛿 . For small 𝛿 this is close to 𝛿−𝛽
2
with very high

probability.

Thus ‖𝐷𝑀‖𝐻 ≳ 𝛿1−
𝛽2
2 +𝜀 with very high probability.



Projection bounds (continued)

More precisely, for a fixed small enough 𝜀 > 0 one can show that for

all 𝛿 > 0 small enough we have

ℙ[‖𝐷𝑀‖𝐻 ≥ 𝛿1−
𝛽2
2 +𝜀] ≥ 1 − 𝑒−𝑐𝛿

−𝑑

for some constants 𝑐, 𝑑 > 0. This suffices to show that

𝔼[‖𝐷𝑀‖−𝑝𝐻 ] < ∞ for all 𝑝 > 0.
• One can notice here a nice general strategy: Showing that

something is not too small with large probability by finding a

sequence of lower bounds which concentrate better and better,

the point being that one can again work with positive moments

instead of negative ones to show the concentration.



Some remarks

• This choice of ℎ for the projection is not good enough to show

that the density tends to 0 as 𝛽 → √𝑑. Instead we use

something like

ℎ(𝑥) = 𝑒𝑖𝛽𝑋𝛿(𝑥)−
𝛽2
2 𝔼[𝑋𝛿(𝑥)

2] ∫𝑓(𝑦) ∶ 𝑒𝑖𝛽�̂�𝛿(𝑥) ∶ 𝔼[�̂�𝛿(𝑥)�̂�𝛿(𝑦)] 𝑑𝑦

(with some additional technical tricks).

• There is also a direct projection bound for det 𝛾𝑀 .
• Getting pointwise bounds on the density requires bounding

𝔼[|𝛿(𝐴)|𝑝], where 𝛿 is the so-called divergence operator and

𝐴 = ‖𝐷𝑀‖
2
𝐻𝐷𝑀 − ⟨𝐷𝑀,𝐷𝑀⟩𝐻𝐷𝑀
‖𝐷𝑀‖4𝐻 − |⟨𝐷𝑀,𝐷𝑀⟩𝐻|2

.

• To this end we show that

𝛿(𝐴) ≲ ‖𝐷𝑀‖
2
𝐻(|𝛿(𝐷𝑀)| + ‖𝐷2𝑀‖𝐻⊗𝐻)
‖𝐷𝑀‖4𝐻 − |⟨𝐷𝑀,𝐷𝑀⟩𝐻|2

.
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General log-correlated fields and decompositions

The methods can in fact be generalized to a large class of

log-correlated Gaussian fields.

• Some of the nicest log-correlated fields/approximations to work
with are so-called star-scale invariant fields:

• Nice scaling properties.

• Nice independence structure both in space and in the level of

approximation.

• We prove a general decomposition theorem which lets one

express any non-degenerate log-correlated Gaussian field

(satisfying some mild regularity conditions) as the sum of an

almost star-scale invariant field and an independent regular field.



Thanks!
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