
Petr Kravchuk, King’s College London 
Probability and Conformal Field Theory 
Agay les Roches Rouges September 20, 2022

Conformal Bootstrap
(or at least the thing that I know by this name)

based on work with D. Mazáč and S. Pal
[arXiv: 2111.12716]

and also J. Bonifacio
[WIP]

+ partially on work with J. Qiao & S. Rychkov
[arXiv: 2104.02090]



Outline
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…to be continued in the talk by Dalimil Mazáč
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• Conformal Symmetry


• Asymptotic OPE

𝒪1(x)𝒪2(0) ∼
x→0 ∑

i

ci(x)𝒪i(0)

[Mack, Luscher, …]

𝒪1(x)𝒪2(0) |0⟩ = ∑
i

ci(x)𝒪i(0) |0⟩

Convergent OPE in 
the vacuum state

Setup: correlation functions of local operators on  or 
, all related by analytic continuation

ℝd, Sd

ℝd−1,1, ℝ × Sd−1

Less established: boundaries, defects, other manifolds…



Bootstrap Axiomatics [Qiao, Rychkov, PK’21]

• A set of primary local operators  with  and 


• A collection of conformally-invariant correlation (Schwinger) functions


{𝒪i(x)} Δi ∈ ℝ ρi ∈ ̂SO(d)

⟨𝒪i1(x1)⋯𝒪in(xn)⟩, xi ∈ ℝd, xi ≠ xj

(g ⋅ 𝒪i)(x) = Ωg(x)Δρ(Rg(x))𝒪i(g−1x)

⟨𝒪i1(x1)⋯𝒪in(xn)⟩ = ⟨(g ⋅ 𝒪i1)(x1)⋯(g ⋅ 𝒪in)(xn)⟩

𝒪i(x), ∂μ𝒪i(x), ∂μ∂ν𝒪i(x), ⋯

g ∈ SO(1,d + 1)

g ∈ SO(1,d + 1)



Bootstrap Axiomatics
• Convergent OPE


• Reflection positivity

⟨𝒪i1(x1)𝒪i2(x2)⋯𝒪in(xn)⟩ = ∑
k

f k
i1i2ci1,i2,k(x1, x2, ∂x2

)⟨𝒪k(x2)⋯𝒪in(xn)⟩

⟨𝒪i1(x1)⋯𝒪in(xn)𝒪i1(x
R
1 )⋯𝒪in(x

R
n )⟩ ≥ 0 x1

x2
x3

xR
1

xR
2

xR
3

∫ dn×dxdn×dyf(x)f*(yR)⟨𝒪i1(x1)⋯𝒪in(xn)𝒪i1(y1)⋯𝒪in(yn)⟩ ≥ 0

is often imposed only on 2-point functions

∫ ddxddyf(x)f*(yR)⟨𝒪i(x)𝒪i(yR)⟩ ≥ 0



Theorem: if “CFT data”  leads to associative OPE 
then O-S and Wightman axioms are satisfied by -point functions 
with .

{(Δk, ρk), f k
ij}

n
n ≤ 4

Bootstrap Axiomatics
General idea: if “CFT data”  leads to associative OPE 
then it should define a QFT (i.e. O-S axioms should follow etc…)

{(Δk, ρk), f k
ij}

[Qiao, Rychkov, PK’21]

Higher-point functions are more subtle (e.g. precise form of the 
OPE convergence statement).



Bootstrap Axiomatics
• Reflection positivity can be used to construct the Hilbert space 


• The conformal group in  is 


• Due to  in the positivity condition,  is represented unitarily


• The OPE is the partial wave expansion for 

ℋ

ℝd SO(d + 1,1)
xR S̃O(d,2)

S̃O(d,2)

ℋ = ⨁
i

R[𝒪i] = Span{ }

⟨Φ |Ψ⟩ =|Ψ⟩ =

ℋ

⟨Φ | =

ℋ
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Crossing equations
⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ = ⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩

 symmetryS̃O(d,2)

∑
k

f 2
k GΔk,ρk

(z, z̄) = ∑
k

f 2
k GΔk,ρk

(1 − z,1 − z̄)

zz̄ =
x2

12x2
34

x2
13x2

24

(1 − z)(1 − z̄) =
x2

23x2
14

x2
13x2

24



Crossing equations
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2

1

3

4

k

2

1

3

4

k
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Example: d = 1

∑
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k

f 2
k GΔk
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2 Re z

Im z



Crossing equations
Example: d = 1

∑
k

f 2
k GΔk

(z) = ∑
k

f 2
k GΔk

(1 − z)

GΔ(z) = zΔ−2Δϕ2F1(Δ, Δ,2Δ, z)

0 11
2 Re z

Im z

∑
k

f 2
k

⃗F Δk
= 0

Taylor expansion at z = 1
2
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Numerical Bootstrap

∑
k

f 2
k

⃗F Δk
= 0 f 2

k ≥ 0
(Reflection positivity)

Δ = 0

Δ = 1

Δ = 2

Δ = 3

F1
Δ

F2
Δ

⃗α ⋅ ⃗F = 0

∃k : Δk ∈ [0.5,2.5]

[Rattazzi,Rychkov,Tonni,Vichi’08]



Numerical bootstrap
• In general try to find  such that  for all  in a 

trial spectrum — a linear program.


• Several correlation functions can be studied at the same time 
using semidefinite programming ( )


• We now have efficient and general algorithms for semidefinite 
programming (SDPB) and conformal blocks (blocks_3d, …)


• Mostly numerical, but some exact  are known

⃗α ⃗α ⋅ ⃗F Δ ≥ 0 Δ

⃗α ⋅ ⃗F Δ ⪰ 0

⃗α

f 2
k = f 2

ϕϕk fϕϕk fϵϵk, f 2
ϕϕk, f 2

ϵϵk, f 2
ϕϵk

(
f 2
ϕϕk fϕϕk fϵϵk

fϕϕk fϵϵk f 2
ϵϵk ) ⪰ 0

f 2
ϕϵk ≥ 0

⟨ϕϕϕϕ⟩ ⟨ϕϕϕϕ⟩ ⟨ϕϕϵϵ⟩ ⟨ϵϵϵϵ⟩

f 2
ϕϕk ≥ 0



Numerical bootstrap
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Numerical bootstrap

⟨σσσσ⟩

⟨σσϵϵ⟩

⟨ϵϵϵϵ⟩

3d Ising

Δσ

Δϵ [Kos,Poland,Simmons-Duffin,Vichi’16]

⟨σσσσ⟩

⟨σσϵϵ⟩

⟨ϵϵϵϵ⟩

⟨ψ ψ ψ ψ⟩

⟨ψ ψσσ⟩

⟨ψ ψϵϵ⟩

⟨ψ ψσϵ⟩

3d Gross-Neveu-Yukawa
(∂σ)2 + σ4 + ψa∂ψa + σψaψa

[Erramilli, Iliesiu, Liu, Poland, Simmons-Duffin, PK]
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Part 2: Euclidean positivity

Reflection positivity

S̃O(2,d) unitary action on ℋ

OPE from irreps

Useful results

SO(1,d + 1) unitary action on ℋE

OPE from irreps

Euclidean positivity

Useful results?

(probability )≥ 0
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Euclidean positivity
⟨𝒪⟩ = ∫Φ

dμ(ϕ)𝒪(ϕ) dμ(ϕ) ≈ Dϕe−S[ϕ] ≥ 0

If  makes sense then ⟨ |𝒪 |2 ⟩

⟨ |𝒪 |2 ⟩ ≥ 0

Direct analogue of O-S reconstruction:

 makes senseℋE = {𝒪 |⟨ |𝒪 |2 ⟩ } = L2(Φ, dμ)

 invariance of  => unitary action on SO(1,d + 1) dμ(ϕ) L2(Φ, dμ)
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Examples
Conformal Field Theories: distributions 


• GFF


• 2d Ising [Camia,Garban,Newman’12]


• 3d Ising?


• Statistical models without RP?

Φ = { }

Hyperbolic -manifolds: 


• 


• 


•

(d + 1) Φ = Γ\G
G = SO(1,d + 1)
Γ ≃ π1(M)

M = Γ\G/SO(d + 1) = Γ\ℍd+1



Hyperbolic manifolds

L2(Γ\G) ≃ ℂ ⊕ ∑
n

(Dn ⊕ D̄n) ⊕ ⨁
i

Pλi

Consider  and compact d + 1 = 2 M G = SL(2,ℝ)
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Hyperbolic manifolds

L2(Γ\G) ≃ ℂ ⊕ ∑
n

(Dn ⊕ D̄n) ⊕ ⨁
i

Pλi

Consider  and compact d + 1 = 2 M G = SL(2,ℝ)

Define  by𝕆i : C∞(S1) → (L2(Γ\G))∞

𝕆i( f ) = f ∈ P∞
λi

Principal series representations Pλ, λ ≥ 1
4

Pλ = L2(S1)

(gf )(θ) = Ωg(θ)1−Δ f(g−1θ) λ = Δ(1 − Δ)



Correlation functions
In fact,

𝕆i( f ) ∈ (L2(Γ\G))∞ = C∞(Γ\G)
[Borel, Wallach]

Therefore the correlators are well-defined as distributions

⟨𝕆i1( f1)𝕆i2( f2)𝕆i3( f3)𝕆i4( f4)⟩ ≡ ∫Γ\G
dμ(g)𝕆i1( f1)𝕆i2( f2)𝕆i3( f3)𝕆i4( f4)

Decomposing into irreps gives the OPE

τi,j;k : P∞
λi

× P∞
λj

→ P∞
λk

𝕆i1( f1)𝕆i2( f2) = ∑
k

𝕆k(τi1,i2;k( f1, f2)) + ⋯



Discrete series
Principal series story generalizes to  and to complementary 
series

d + 1 ≥ 2

In even  need to consider discrete series. For d + 1 d + 1 = 2

𝒪n(z) ∈ D∞
n �̄�n(w) ∈ D̄∞

n

|z | < 1 |w | > 1

The correlators are holomorphic functions (boundary values are distributions)

⟨𝒪n1
(z1)𝒪n2

(z2)�̄�n3
(z3)�̄�n4

(z4)⟩



Crossing equation
⟨𝒪n(z1)𝒪n(z2)�̄�n(z3)�̄�n(z4)⟩ = ⟨𝒪n(z1)𝒪n(z2)�̄�n(z3)�̄�n(z4)⟩

∑
p

| fp |2 Gp(z) = ∑
i

c2
i HΔi

(z)

 symmetrySO(1,2)

z =
z12z34

z13z24



Crossing equation
⟨𝕆k(hm1

)𝕆k(hm2
)𝕆k(hm3

)𝕆k(hm4
)⟩ = ⟨𝕆k(hm1

)𝕆k(hm2
)𝕆k(hm3

)𝕆k(hm4
)⟩

hm(θ) = eimθ

∑
k

p2
k Gm1m2m3m4

(Δk) = 0

 symmetrySO(1,2)



Numerical bootstrap

∑
p

| fp |2 Gp(z) = ∑
i

c2
i HΔi

(z)

∑
k

p2
k Gm1m2m3m4

(Δk) = 0

p2
k , c2

k , | fk |2 ≥ 0

Same numerics*
Dalimil’s talk

+ extensions to mixed correlators *in fact can be truncated 
to exact polynomials in  
=> fully rigorous numerics

Δ



Application to CFTs?
• We checked the sum rules for the fundamental fields in GFF 

and 2d Ising


• Reflection-positive CFTs necessarily have continuous 
spectrum in .


• It seems reasonable to conjecture that sum rules also apply 
to 3d Ising and other CFTs


• Are there CFTs which are not RP for which these sum rules 
hold?


• Are there CFTs with discrete spectra in ?

L2(Φ, μ)
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Merci!
Fin


