Conformal Bootstrap

(or at least the thing that I know by this name)
based on work with D. Mazáč and S. Pal
[arXiv: 2111.12716] and also J. Bonifacio
[WIP]

+ partially on work with J. Qiao \& S. Rychkov [arXiv: 2104.02090]

Petr Kravchuk, King's College London
Probability and Conformal Field Theory
Agay les Roches Rouges September 20, 2022

Outline

1. Bootstrap point of view on CFTs
2. Numerical Bootstrap
3. New Crossing Equations
4. Solutions from CFTs and Hyperbolic Manifolds

Conformal Bootstrap

Part 1

Conformal Field Theory

A solution to a rich set of self-consistency conditions

Numerics, exact functionals, etc...

Useful results

Conformal Bootstrap

Part 1

Part 2

Conformal Field Theory

A solution to a rich set of self-consistency conditions

Numerics, exact functionals, etc...

Useful results

Hyperbolic Manifolds
Conformal Field Theory

A solution to a rich set of self-consistency conditions

Numerics, exact functionals, etc...

Useful results

Conformal Bootstrap

Part 1

Part 2

Bootstrap from Axiomatics

Setup: correlation functions of local operators on \mathbb{R}^{d}, S^{d} or $\mathbb{R}^{d-1,1}, \mathbb{R} \times S^{d-1}$, all related by analytic continuation

Less established: boundaries, defects, other manifolds...

Bootstrap from Axiomatics

Setup: correlation functions of local operators on \mathbb{R}^{d}, S^{d} or $\mathbb{R}^{d-1,1}, \mathbb{R} \times S^{d-1}$, all related by analytic continuation

Less established: boundaries, defects, other manifolds...

- Wightman/OS Axioms
- Conformal Symmetry
- Asymptotic OPE
$\mathcal{O}_{1}(x) \mathcal{O}_{2}(0) \underset{x \rightarrow 0}{\sim} \sum_{i} c_{i}(x) \mathcal{O}_{i}(0)$

Bootstrap from Axiomatics

Setup: correlation functions of local operators on \mathbb{R}^{d}, S^{d} or $\mathbb{R}^{d-1,1}, \mathbb{R} \times S^{d-1}$, all related by analytic continuation

Less established: boundaries, defects, other manifolds...

- Wightman/OS Axioms
- Conformal Symmetry
- Asymptotic OPE

Convergent OPE in the vacuum state

$$
\mathcal{O}_{1}(x) \mathcal{O}_{2}(0) \underset{x \rightarrow 0}{\sim} \sum_{i} c_{i}(x) \mathscr{O}_{i}(0)
$$

$$
\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)|0\rangle=\sum_{i} c_{i}(x) \mathcal{O}_{i}(0)|0\rangle
$$

Bootstrap Axiomatics [Qiao, Rychkov, PḰ21]

- A set of primary local operators $\left\{\mathcal{O}_{i}(x)\right\}$ with $\Delta_{i} \in \mathbb{R}$ and $\rho_{i} \in \widehat{\mathrm{SO}(d)}$

$$
\begin{aligned}
\left(g \cdot \mathcal{O}_{i}\right)(x)= & \Omega_{g}(x)^{\Delta} \rho\left(R_{g}(x)\right) \mathcal{O}_{i}\left(g^{-1} x\right) \quad g \in \mathrm{SO}(1, d+1) \\
& \mathcal{O}_{i}(x), \partial_{\mu} \widehat{O}_{i}(x), \partial_{\mu} \partial_{\nu} \widehat{O}_{i}(x), \cdots
\end{aligned}
$$

- A collection of conformally-invariant correlation (Schwinger) functions

$$
\begin{gathered}
\left\langle\mathcal{O}_{i_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{i_{n}}\left(x_{n}\right)\right\rangle, \quad x_{i} \in \mathbb{R}^{d}, \quad x_{i} \neq x_{j} \\
\left\langle\mathcal{O}_{i_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{i_{n}}\left(x_{n}\right)\right\rangle=\left\langle\left(g \cdot \mathcal{O}_{i_{1}}\right)\left(x_{1}\right) \cdots\left(g \cdot \mathcal{O}_{i_{n}}\right)\left(x_{n}\right)\right\rangle \\
\quad g \in \mathrm{SO}(1, d+1)
\end{gathered}
$$

Bootstrap Axiomatics

- Convergent OPE

$$
\left\langle\mathcal{O}_{i_{1}}\left(x_{1}\right) \mathcal{O}_{i_{2}}\left(x_{2}\right) \cdots \mathcal{O}_{i_{n}}\left(x_{n}\right)\right\rangle=\sum_{k} f_{i_{1} i_{2}}^{k} c_{i_{1}, i_{2}, k}\left(x_{1}, x_{2}, \partial_{x_{2}}\right)\left\langle\mathcal{O}_{k}\left(x_{2}\right) \cdots \mathcal{O}_{i_{n}}\left(x_{n}\right)\right\rangle
$$

- Reflection positivity

$$
\begin{gathered}
\left\langle\mathcal{O}_{i_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{i_{n}}\left(x_{n}\right) \mathcal{O}_{i_{1}}\left(x_{1}^{R}\right) \cdots \mathcal{O}_{i_{n}}\left(x_{n}^{R}\right)\right\rangle \geq 0 \\
\int d^{n \times d} x d^{n \times d} y f(x) f^{*}\left(y^{R}\right)\left\langle\mathcal{O}_{i_{1}}\left(x_{1}\right) \cdots \mathcal{O}_{i_{n}}\left(x_{n}\right) \mathcal{O}_{i_{1}}\left(y_{1}\right) \cdots \mathcal{O}_{i_{n}}\left(y_{n}\right)\right\rangle \geq 0
\end{gathered}
$$

is often imposed only on 2-point functions

$$
\int d^{d} x d^{d} y f(x) f^{*}\left(y^{R}\right)\left\langle\mathscr{O}_{i}(x) \mathscr{O}_{i}\left(y^{R}\right)\right\rangle \geq 0
$$

Bootstrap Axiomatics

General idea: if "CFT data" $\left\{\left(\Delta_{k}, \rho_{k}\right), f_{i j}^{k}\right\}$ leads to associative OPE then it should define a QFT (i.e. O-S axioms should follow etc...)

Theorem: if "CFT data" $\left\{\left(\Delta_{k}, \rho_{k}\right), f_{i j}^{k}\right\}$ leads to associative OPE then O-S and Wightman axioms are satisfied by n-point functions with $n \leq 4$. [Qiao, Rychkov, PK'21]

Higher-point functions are more subtle (e.g. precise form of the OPE convergence statement).

Bootstrap Axiomatics

- Reflection positivity can be used to construct the Hilbert space \mathscr{H}

- The conformal group in \mathbb{R}^{d} is $\mathrm{SO}(d+1,1)$
- Due to x^{R} in the positivity condition, $\widetilde{\mathrm{SO}}(d, 2)$ is represented unitarily

$$
\mathscr{H}=\bigoplus_{i} R\left[\mathcal{O}_{i}\right]=\operatorname{Span}\{
$$

- The OPE is the partial wave expansion for $\widetilde{\mathrm{SO}}(d, 2)$

Crossing equations

Crossing equations

$$
\begin{aligned}
& \left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle=\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle \\
& \widetilde{\mathrm{SO}}(d, 2) \\
& \sum_{k} f_{k}^{2} G_{\Delta_{k}, \rho_{k}}(z, \bar{z})=\sum_{k} f_{k}^{2} G_{\Delta_{k} \rho_{k}}\left(1-z, 1-\bar{z}=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}\right. \\
& (1-z)(1-\bar{z})=\frac{x_{23}^{2} x_{14}^{2}}{x_{13}^{2} x_{24}^{2}}
\end{aligned}
$$

Crossing equations

$\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle=\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\rangle$
$\widetilde{\mathrm{SO}}(d, 2)$ symmetry

$$
z \bar{z}=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

\downarrow

$$
(1-z)(1-\bar{z})=\frac{x_{22}^{2} x_{14}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

$$
\sum_{k} f_{k}^{2} G_{\Delta_{k} \rho_{k}}(z, \bar{z})=\sum_{k} f_{k}^{2} G_{\Delta_{k}, \rho_{k}}(1-z, 1-\bar{z})
$$

Crossing equations

Example: $d=1 \quad G_{\Delta}(z)=z^{\Delta-2 \Delta_{\phi_{2}}} F_{1}(\Delta, \Delta, 2 \Delta, z)$

$$
\sum_{k} f_{k}^{2} G_{\Delta_{k}}(z)=\sum_{k} f_{k}^{2} G_{\Delta_{k}}(1-z)
$$

Crossing equations

Example: $d=1 \quad G_{\Delta}(z)=z^{\Delta-2 \Delta_{\phi_{2}}} F_{1}(\Delta, \Delta, 2 \Delta, z)$

$$
\sum_{k} f_{k}^{2} G_{\Delta_{k}}(z)=\sum_{k} f_{k}^{2} G_{\Delta_{k}}(1-z)
$$

$$
\begin{aligned}
& \text { Taylor expansion at } z=\frac{1}{2} \\
& \sum_{k} f_{k}^{2} \vec{F}_{\Delta_{k}}=0
\end{aligned}
$$

Numerical Bootstrap

[Rattazzi,Rychkov,Tonni,Vichi’08]

$$
\sum_{K} f_{k} \vec{F}_{L_{4}}=0
$$

$$
f_{k}^{2} \geq 0
$$

(Reflection positivity)

Numerical Bootstrap

[Rattazzi,Rychkov,Tonni,Vichi'08]

$$
\sum_{k} f_{k}^{2} \vec{F}_{\Delta_{k}}=0
$$

$$
f_{k}^{2} \geq 0
$$

(Reflection positivity)

Numerical Bootstrap

[Rattazzi,Rychkov,Tonni,Vichi'08]

$$
\sum_{k} f_{k}^{2} \vec{F}_{\Delta_{k}}=0
$$

$$
f_{k}^{2} \geq 0
$$

(Reflection positivity)

Numerical Bootstrap

[Rattazzi,Rychkov,Tonni,Vichi’08]

$$
\sum_{k} f_{k}^{2} \vec{F}_{\Delta_{k}}=0
$$

$$
f_{k}^{2} \geq 0
$$

(Reflection positivity)

Numerical Bootstrap

[Rattazzi,Rychkov,Tonni,Vichi’08]

$$
\sum_{k} f_{k}^{2} \vec{F}_{\Delta_{k}}=0 \quad f_{k}^{2} \geq 0
$$

(Reflection positivity)

Numerical Bootstrap

[Rattazzi,Rychkov,Tonni,Vichi'08]

$$
\sum_{k} f_{k}^{2} \vec{F}_{\Delta_{k}}=0 \quad f_{k}^{2} \geq 0
$$

(Reflection positivity)

Numerical bootstrap

- In general try to find $\vec{\alpha}$ such that $\vec{\alpha} \cdot \vec{F}_{\Delta} \geq 0$ for all Δ in a trial spectrum - a linear program.
- Several correlation functions can be studied at the same time using semidefinite programming $\left(\vec{\alpha} \cdot \vec{F}_{\Delta} \geq 0\right)$

$$
\begin{aligned}
& \langle\phi \phi \phi \phi\rangle \longrightarrow\langle\phi \phi \phi \phi\rangle\langle\phi \phi \epsilon \epsilon\rangle\langle\epsilon \epsilon \epsilon \epsilon\rangle \\
& f_{k}^{2}=f_{\phi \phi k}^{2} \longrightarrow f_{\phi \phi k} f_{\epsilon \epsilon k}, f_{\phi \phi k}^{2}, f_{\epsilon \epsilon k}^{2}, f_{\phi \in k}^{2} \\
& f_{\phi \phi k}^{2} \geq 0 \longrightarrow\left\{\begin{array}{c}
\left(\begin{array}{cc}
f_{\phi \phi k}^{2} & f_{\phi \phi k} f_{\epsilon \epsilon k} \\
f_{\phi \phi k} f_{\epsilon \epsilon k} & f_{\epsilon \epsilon k}^{2} \\
f_{\phi \epsilon k}^{2} \geq 0
\end{array}\right) \geq 0
\end{array}\right.
\end{aligned}
$$

- We now have efficient and general algorithms for semidefinite programming (SDPB) and conformal blocks (blocks_3d, ...)
- Mostly numerical, but some exact $\vec{\alpha}$ are known

Numerical bootstrap

3d Ising
$\langle\sigma \sigma \sigma \sigma\rangle$
$\langle\sigma \sigma \epsilon \epsilon\rangle$
$\langle\epsilon \epsilon \epsilon \epsilon\rangle$

Numerical bootstrap

3d Ising
$\langle\sigma \sigma \sigma \sigma\rangle$
$\langle\sigma \sigma \epsilon \epsilon\rangle$
$\langle\epsilon \epsilon \epsilon \epsilon\rangle$
$\Delta_{\epsilon} \quad$ [Kos,Poland,Simmons-Duffin,Vichi'16]

Numerical bootstrap

3d Ising
$\langle\sigma \sigma \sigma \sigma\rangle$
$\langle\sigma \sigma \epsilon \epsilon\rangle$
$\langle\epsilon \epsilon \epsilon \epsilon\rangle$
$\Delta_{\epsilon} \quad[K o s, P o l a n d, S i m m o n s-D u f f i n, V i c h i ' 16] ~$

[Erramilli, Iliesiu, Liu, Poland, Simmons-Duffin, PK]
3d Gross-Neveu-Yukawa $(\partial \sigma)^{2}+\sigma^{4}+\psi_{a} \partial \psi_{a}+\sigma \psi_{a} \psi_{a}$
$\langle\sigma \sigma \sigma \sigma\rangle \quad\langle\psi \psi \psi \psi\rangle$
$\langle\sigma \sigma \epsilon \epsilon\rangle \quad\langle\psi \psi \sigma \sigma\rangle$
$\langle\epsilon \epsilon \epsilon \epsilon\rangle \quad\langle\psi \psi \epsilon \epsilon\rangle$
$\langle\psi \psi \sigma \epsilon\rangle$

Part 2: Euclidean positivity

Reflection positivity

Part 2: Euclidean positivity

Reflection positivity

Part 2: Euclidean positivity

Reflection positivity
$\widetilde{\mathrm{SO}}(2, d)$ unitary action on \mathscr{H}

OPE from irreps

Part 2: Euclidean positivity

Reflection positivity
$\widetilde{\mathrm{SO}}(2, d)$ unitary action on \mathscr{H}

OPE from irreps

Useful results

Part 2: Euclidean positivity

Euclidean positivity
Reflection positivity (probability ≥ 0)

$\widetilde{\mathrm{SO}}(2, d)$ unitary action on \mathscr{H}

OPE from irreps

Useful results

$\mathrm{SO}(1, d+1)$ unitary action on \mathscr{H}_{E}

OPE from irreps

Useful results?

Euclidean positivity

$$
\langle\mathcal{O}\rangle=\int_{\Phi} d \mu(\phi) \mathcal{O}(\phi) \quad d \mu(\phi) \approx D \phi e^{-S[\phi]} \geq 0
$$

Euclidean positivity

$$
\langle\mathcal{O}\rangle=\int_{\Phi} d \mu(\phi) \mathcal{O}(\phi) \quad d \mu(\phi) \approx D \phi e^{-S[\phi]} \geq 0
$$

If $\left.\left.\langle | \mathcal{O}\right|^{2}\right\rangle$ makes sense then

$$
\left.\left.\langle | \mathscr{O}\right|^{2}\right\rangle \geq 0
$$

Euclidean positivity

$$
\langle\mathcal{O}\rangle=\int_{\Phi} d \mu(\phi) \mathcal{O}(\phi) \quad d \mu(\phi) \approx D \phi e^{-S[\phi]} \geq 0
$$

If $\left.\left.\langle | \mathcal{O}\right|^{2}\right\rangle$ makes sense then

$$
\left.\left.\langle | \mathcal{O}\right|^{2}\right\rangle \geq 0
$$

Direct analogue of O-S reconstruction:

$$
\left.\mathscr{H}_{E}=\left\{\mathcal{O} \mid\left.\langle | \mathcal{O}\right|^{2}\right\rangle \text { makes sense }\right\}=L^{2}(\Phi, d \mu)
$$

Euclidean positivity

$$
\langle\mathcal{O}\rangle=\int_{\Phi} d \mu(\phi) \mathcal{O}(\phi)
$$

$$
d \mu(\phi) \approx D \phi e^{-S[\phi]} \geq 0
$$

If $\left.\left.\langle | \mathcal{O}\right|^{2}\right\rangle$ makes sense then

$$
\left.\left.\langle | \mathscr{O}\right|^{2}\right\rangle \geq 0
$$

Direct analogue of O-S reconstruction:

$$
\left.\mathscr{H}_{E}=\left\{\mathcal{O} \mid\left.\langle | \mathcal{O}\right|^{2}\right\rangle \text { makes sense }\right\}=L^{2}(\Phi, d \mu)
$$

$\mathrm{SO}(1, \mathrm{~d}+1)$ invariance of $d \mu(\phi)=>$ unitary action on $L^{2}(\Phi, d \mu)$

Examples

Conformal Field Theories: $\Phi=$ \{distributions $\}$

- GFF
- 2d Ising [Camia,Garban,Newman'12]
- 3d Ising?
- Statistical models without RP?

Examples

Conformal Field Theories: $\Phi=$ \{distributions $\}$

- GFF
- 2d Ising [Camia,Garban,Newman'12]
- 3d Ising?
- Statistical models without RP?

Hyperbolic $(d+1)$-manifolds: $\Phi=\Gamma \backslash G$

- $G=\mathrm{SO}(1, \mathrm{~d}+1)$
- $\Gamma \simeq \pi_{1}(M)$
- $M=\Gamma \backslash G / \mathrm{SO}(d+1)=\Gamma \backslash \mathbb{-}^{d+1}$

Hyperbolic manifolds

Consider $d+1=2$ and compact M

$$
G=\operatorname{SL}(2, \mathbb{R})
$$

$$
L^{2}(\Gamma \backslash G) \simeq \mathbb{C} \oplus \sum_{n}\left(D_{n} \oplus \bar{D}_{n}\right) \oplus \bigoplus_{i} P_{\lambda_{i}}
$$

Hyperbolic manifolds

Consider $d+1=2$ and compact M
$G=\operatorname{SL}(2, \mathbb{R})$

$$
L^{2}(\Gamma \backslash G) \simeq \mathbb{C} \oplus \sum_{n}\left(D_{n} \oplus \bar{D}_{n}\right) \oplus \bigoplus_{i} P_{\lambda_{i}}
$$

Principal series representations $P_{\lambda}, \lambda \geq \frac{1}{4}$

$$
\begin{gathered}
P_{\lambda}=L^{2}\left(S^{1}\right) \\
(g f)(\theta)=\Omega_{g}(\theta)^{1-\Delta} f\left(g^{-1} \theta\right) \quad \lambda=\Delta(1-\Delta)
\end{gathered}
$$

Hyperbolic manifolds

Consider $d+1=2$ and compact M

$$
\begin{equation*}
L^{2}(\Gamma \backslash G) \simeq \mathbb{C} \oplus \sum_{n}\left(D_{n} \oplus \bar{D}_{n}\right) \oplus \bigoplus_{i} P_{\lambda_{i}} \tag{SL}
\end{equation*}
$$

Principal series representations $P_{\lambda}, \lambda \geq \frac{1}{4}$

$$
\begin{gathered}
P_{\lambda}=L^{2}\left(S^{1}\right) \\
(g f)(\theta)=\Omega_{g}(\theta)^{1-\Delta} f\left(g^{-1} \theta\right) \quad \lambda=\Delta(1-\Delta)
\end{gathered}
$$

Define $\mathbb{O}_{i}: C^{\infty}\left(S^{1}\right) \rightarrow\left(L^{2}(\Gamma \backslash G)\right)^{\infty}$ by

$$
\mathbb{O}_{i}(f)=f \in P_{\lambda_{i}}^{\infty}
$$

Correlation functions

In fact,

$$
\begin{gathered}
\mathbb{O}_{i}(f) \in\left(L^{2}(\Gamma \backslash G)\right)^{\infty}=C^{\infty}(\Gamma \backslash G) \\
{[\text { Borel, Wallach] }}
\end{gathered}
$$

Therefore the correlators are well-defined as distributions
$\left\langle\mathbb{O}_{i_{1}}\left(f_{1}\right) \mathbb{O}_{i_{2}}\left(f_{2}\right) \mathbb{O}_{i_{3}}\left(f_{3}\right) \mathbb{O}_{i_{4}}\left(f_{4}\right)\right\rangle \equiv \int_{\Gamma \backslash G} d \mu(g) \mathbb{O}_{i_{1}}\left(f_{1}\right) \mathbb{O}_{i_{2}}\left(f_{2}\right) \mathbb{O}_{i_{3}}\left(f_{3}\right) \mathbb{O}_{i_{4}}\left(f_{4}\right)$
Decomposing into irreps gives the OPE

$$
\begin{gathered}
\mathbb{O}_{i_{1}}\left(f_{1}\right) \mathbb{O}_{i_{2}}\left(f_{2}\right)=\sum_{k} \mathbb{O}_{k}\left(\tau_{i_{1}, i_{2} ; k}\left(f_{1}, f_{2}\right)\right)+\cdots \\
\tau_{i, j ; k}: P_{\lambda_{i}}^{\infty} \times P_{\lambda_{j}}^{\infty} \rightarrow P_{\lambda_{k}}^{\infty}
\end{gathered}
$$

Discrete series

Principal series story generalizes to $d+1 \geq 2$ and to complementary series

In even $d+1$ need to consider discrete series. For $d+1=2$

$$
\begin{array}{ccc}
\mathcal{O}_{n}(z) \in D_{n}^{\infty} & \overline{\mathcal{O}}_{n}(w) \in \bar{D}_{n}^{\infty} \\
|z|<1 & & |w|>1
\end{array}
$$

The correlators are holomorphic functions (boundary values are distributions)

$$
\left\langle\mathcal{O}_{n_{1}}\left(z_{1}\right) \mathcal{O}_{n_{2}}\left(z_{2}\right) \overline{\mathcal{O}}_{n_{3}}\left(z_{3}\right) \overline{\mathcal{O}}_{n_{4}}\left(z_{4}\right)\right\rangle
$$

Crossing equation

$$
\left\langle\mathcal{O}_{n}\left(z_{1}\right) \mathcal{O}_{n}\left(z_{2}\right) \overline{\mathcal{O}}_{n}\left(z_{3}\right) \overline{\mathcal{O}}_{n}\left(z_{4}\right)\right\rangle=\left\langle\mathcal{O}_{n}\left(z_{1}\right) \mathcal{O}_{n}\left(z_{2}\right) \overline{\mathcal{O}}_{n}\left(z_{3}\right) \overline{\mathcal{O}}_{n}\left(z_{4}\right)\right\rangle
$$

$\mathrm{SO}(1,2)$ symmetry

$$
\begin{aligned}
& \downarrow \\
& \sum_{p}\left|f_{p}\right|^{2} G_{p}(z)=\sum_{i} c_{i}^{2} H_{\Delta_{i}}(z) \quad z=\frac{z_{12} z_{34}}{z_{13} z_{24}}
\end{aligned}
$$

Crossing equation

$$
\begin{gathered}
\left\langle\mathbb{O}_{k}\left(h_{m_{1}}\right) \mathbb{O}_{k}\left(h_{m_{2}}\right) \mathbb{O}_{k}\left(h_{m_{3}}\right) \mathbb{O}_{k}\left(h_{m_{4}}\right)\right\rangle=\left\langle\mathbb{O}_{k}\left(h_{m_{1}}\right) \mathbb{O}_{k}\left(h_{m_{2}}\right) \mathbb{O}_{k}\left(h_{m_{3}}\right) \mathbb{O}_{k}\left(h_{m_{4}}\right)\right\rangle \\
\quad h_{m}(\theta)=e^{i m \theta}
\end{gathered}
$$

$\mathrm{SO}(1,2)$ symmetry

$$
\sum_{k} p_{k}^{2} G_{m_{1} m_{2} m_{3} m_{4}}\left(\Delta_{k}\right)=0
$$

Numerical bootstrap

$$
\begin{gathered}
\sum_{p}\left|f_{p}\right|^{2} G_{p}(z)=\sum_{i} c_{i}^{2} H_{\Delta_{i}}(z) \\
\sum_{k} p_{k}^{2} G_{m_{1} m_{2} m_{3} m_{4}}\left(\Delta_{k}\right)=0
\end{gathered}
$$

$$
p_{k}^{2}, c_{k}^{2},\left|f_{k}\right|^{2} \geq 0
$$

+ extensions to mixed correlators

Same numerics*
Dalimil's talk
*in fact can be truncated to exact polynomials in Δ => fully rigorous numerics

Application to CFTs?

- We checked the sum rules for the fundamental fields in GFF and 2d Ising
- Reflection-positive CFTs necessarily have continuous spectrum in $L^{2}(\Phi, \mu)$.
- It seems reasonable to conjecture that sum rules also apply to 3d Ising and other CFTs
- Are there CFTs which are not RP for which these sum rules hold?
- Are there CFTs with discrete spectra in $L^{2}(\Phi, \mu)$?

Application to CFTs?

- We checked the sum rules for the fundamental fields in GFF and 2d Ising
- Reflection-positive CFTs necessarily have continuous spectrum in $L^{2}(\Phi, \mu)$.
- It seems reasonable to conjecture that sum rules also apply to 3d Ising and other CFTs
- Are there CFTs which are not RP for which these sum rules hold?
- Are there CFTs with discrete spectra in $L^{2}(\Phi, \mu)$?

Fin

