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Discrete GFF on an electrical network

G = (V ,E ) �nite undirected graph. Conductances C (x , y) = C (y , x) for
{x , y} ∈ E .

V divided into 2 parts: interior vertices Vint and boundary V∂ .

Boundary condition u : V∂ → R.

Discrete GFF with boundary condition u on V∂ :

1

Z u
exp

(
− 1

2

∑
{x,y}∈E

C (x , y)(φ(y)− φ(x))2
) ∏

z∈Vint

dφ(z).



GFF on metric graph

Metric graph G̃: replace each edge {x , y} ∈ E by a continuous line of
length C (x , y)−1 (length = resistance).

(ϕ(x))x∈V discrete GFF.
We extrapolate ϕ to a continuous Gaussian �eld (ϕ̃(x))x∈G̃ with
conditionally independent Brownian bridges inside the edge-lines.
ϕ̃ is the GFF on the metric graph. Satis�es the Markov property.



Why metric graph GFF?

The metric graph GFF ϕ̃, just as a discrete GFF ϕ, approximates the
continuum GFF in the scaling limit.

ϕ̃ satis�es some exact identities that ϕ does not.

ϕ̃ has more interfaces than ϕ. For instance in 2D the outer
boundaries of sign clusters of ϕ̃ converge to CLE4 (L. 2015, relation
to Miller-She�eld coupling) while the outer boundaries of sign
clusters of ϕ converge to something else (towards ALE).

The relation between ϕ and ϕ̃ is very analogous to the relation
between the spin Ising �eld and the FK-Ising random cluster model.

The random walk representations of the GFF have stronger versions
for ϕ̃.

The connected components of the level sets {ϕ̃ ≥ a} are easier to
study than those for {ϕ ≥ a}, cf works of L., Ding-Wirth and
Drewitz-Prévost-Rodriguez.



CLE4 and ALE

Left: Computer simulation of the CLE4 by David B. Wilson.
Right: Computer simulation of ALE by Brent Werness.



Some exact identities for the metric graph GFF (1)

ϕ̃ with 0 boundary conditions. x , y ∈ G̃.

P(x , y in the same connected component of {ϕ̃ ̸= 0}) =

E[sign(ϕ̃(x)) sign(ϕ̃(y))] =
2

π
arcsin

( G (x , y)√
G (x , x)G (y , y)

)
.



Some exact identities for the metric graph GFF (2)

Boundary V∂ divided into 3 parts V∂,1, V∂,2 and V∂,0, with V∂,0 possibly
empty.
u boundary condition, u > 0 on V∂,1 ∪ V∂,2, u = 0 on V∂,0.
u∗ boundary condition, u∗ = u on V∂,1, u

∗ = −u on V∂,2, u
∗ = 0 on

V∂,0.

ϕ̃u with b.c. u. ϕ̃u∗ with b.c. u∗.

P(V∂,1
ϕ̃u>0↮ V∂,2) =

Z u∗

Z u
= exp

(
− 2

∑
x∈V∂,1

∑
y∈V∂,2

u(x)H(x , y)u(y)
)
,

H(x , y) boundary Poisson kernel.

Conditionally on V∂,1
ϕ̃u>0↮ V∂,2, |ϕ̃u| is distributed as |ϕ̃u∗ |.

No similar formula if the boundary condition u mixes both positive and
negative values.



Some exact identities for the metric graph GFF (3)

ρ̃u, resp. ρ̃u∗ interacting �elds on G̃ with interaction

exp
(
−
∫
G̃ V(|φ|)dx

)
and b.c. u, resp. u∗.

P(V∂,1
ρ̃u>0↮ V∂,2) =

Z u∗E
[
exp

(
−
∫
G̃ V(|ϕ̃u∗ |)dx

)]
Z uE

[
exp

(
−
∫
G̃ V(|ϕ̃u|)dx

)] .

Conditionally on V∂,1
ρ̃u>0↮ V∂,2, |ρ̃u| is distributed as |ρ̃u∗ |.

Examples: V(|φ|) = φ4, V(|φ|) = cosh(γφ).
Not true for eγφ because then the interaction depends on the sign of the
�eld, not just the absolute value.



Some exact identities for the metric graph GFF (4)

Drewitz, Prévost, Rodriguez, 2021:
Exact law of the e�ective conductance between the boundary V∂ and the
connected component of x0 of the level set {ϕ̃ ≥ a}, with x0 ∈ G̃ and
a ≥ 0 �xed.



Exact probabilities for some topological events

L. 2022: There are some exact probabilities for some topological events
for ϕ̃, related to {−1, 1}-valued gauge �elds.
For instance, the probability that a connected component of {ϕ̃ ̸= 0}
surrounds the inner hole of a planar two-connected domain.



Gauge �eld, gauge equivalence and holonomy

Gauge group {−1, 1}.

Gauge �eld σ ∈ {−1, 1}E .

Gauge transformation: σ ∈ {−1, 1}E and σ̂ ∈ {−1, 1}V .

(σ̂ · σ)(x , y) = σ̂(x)σ(x , y)σ̂(y).

σ̂ · σ and σ are gauge equivalent.

Nearest-neighbor path in G, ℘ = (x1, x2, . . . , xn).

holσ(℘) = σ(x1, x2)σ(x2, x3) . . . σ(xn−1, xn).

The gauge equivalence classes are characterized by the holonomies along
closed loops.



Example of gauge transformation (1)



Example of gauge transformation (2)



Example of gauge transformation (3)



Gauge-twisted discrete GFF

ϕ discrete GFF on G with 0 boundary conditions:

1

Z 0
exp

(
− 1

2

∑
{x,y}∈E

C (x , y)(φ(y)− φ(x))2
) ∏

z∈Vint

dφ(z).

σ ∈ {−1, 1}E . ϕσ discrete σ-twisted GFF on G with 0 boundary
conditions:

1

Z 0
σ

exp
(
− 1

2

∑
{x,y}∈E

C (x , y)(σ(x , y)φ(y)− φ(x))2
) ∏

z∈Vint

dφ(z).

If σ′ = σ̂ · σ in the same gauge equivalence class, ϕσ′
(d)
= σ̂ϕσ.

ϕ has a natural extension ϕ̃ to the metric graph G̃.
ϕσ also has a natural extension ϕ̃σ to G̃. Unlike ϕ̃, ϕ̃σ has discontinuities:
one discontinuity per edge e ∈ {e ∈ E |σ(e) = −1}, placed in the middle
of the edge xme .

lim
x→xme,−

ϕ̃σ(x) = − lim
x→xme,+

ϕ̃σ(x).

The absolute value |ϕ̃σ| is continuous on G̃.



Conceptual picture for ϕ̃σ



Double cover of G̃ induced by sigma

V1 and V2 two copies of the set of vertices V .
G̃db
σ double cover of G̃ induced by σ. πσ : G̃db

σ → G̃ cover map.

ϕ̃dbσ GFF on G̃db
σ with 0 boundary conditions.

ψσ : G̃db
σ → G̃db

σ automorphism of the covering map πσ (interchanges the
two sheets).

s : G̃ → G̃db
σ section of πσ (πσ ◦ s = Id). s has discontinuities inside the

edges e ∈ E with σ(e) = −1.

ϕ̃σ
(d)
=

1√
2
(ϕ̃dbσ − ϕ̃dbσ ◦ ψσ) ◦ s.



The topological event

Tσ = {f ∈ C(G̃)|∀U connected component of
{f ̸= 0}, π−1

σ (U) not connected}

P(|ϕ̃σ| ∈ Tσ) = 1.
If U connected component of {|ϕ̃σ| ≠ 0}, and x ∈ U, then s(x) and
ψσ(s(x)) cannot be connected inside π−1

σ (U) because of the change of
sign.



Main result

P(ϕ̃ ∈ Tσ) =
Z 0

σ

Z 0
=

det(−∆G)1/2

det(−∆G
σ)

1/2
.

Conditionally on the event {ϕ̃ ∈ Tσ}, the �eld |ϕ̃| is distributed as |ϕ̃σ|.

ρ̃ interacting �eld on G̃ with interaction exp
(
−
∫
G̃ V(|φ|)dx

)
and 0

boundary condition.

P(ρ̃ ∈ Tσ) =
Z 0

σE
[
exp

(
−
∫
G̃ V(|ϕ̃σ|)dx

)]
Z 0E

[
exp

(
−
∫
G̃ V(|ϕ̃|)dx

)] .



Illustration

Left: ϕ̃ conditioned on ϕ̃ ∈ Tσ.
Right: ϕ̃σ.



Thank you for your attention!


