Exact probabilities for some topological events for metric graph GFF

Titus Lupu CNRS/Sorbonne Université, LPSM, Paris

Probability and CFT, September 22nd, 2022

 $\mathcal{G} = (V, E)$ finite undirected graph. Conductances C(x, y) = C(y, x) for $\{x, y\} \in E$.

V divided into 2 parts: interior vertices $V_{\rm int}$ and boundary V_{∂} .

Boundary condition $u: V_{\partial} \to \mathbb{R}$.

Discrete GFF with boundary condition u on V_{∂} :

$$\frac{1}{Z^{u}}\exp\left(-\frac{1}{2}\sum_{\{x,y\}\in E}C(x,y)(\varphi(y)-\varphi(x))^{2}\right)\prod_{z\in V_{\mathrm{int}}}d\varphi(z).$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

GFF on metric graph

Metric graph $\tilde{\mathcal{G}}$: replace each edge $\{x, y\} \in E$ by a continuous line of length $C(x, y)^{-1}$ (length = resistance).

 $(\phi(x))_{x \in V}$ discrete GFF.

We extrapolate ϕ to a continuous Gaussian field $(\tilde{\phi}(x))_{x\in\tilde{\mathcal{G}}}$ with conditionally independent Brownian bridges inside the edge-lines. $\tilde{\phi}$ is the GFF on the metric graph. Satisfies the Markov property.

Why metric graph GFF?

- The metric graph GFF $\tilde{\phi}$, just as a discrete GFF ϕ , approximates the continuum GFF in the scaling limit.
- $ilde{\phi}$ satisfies some exact identities that ϕ does not.
- $\tilde{\phi}$ has more interfaces than ϕ . For instance in 2D the outer boundaries of sign clusters of $\tilde{\phi}$ converge to CLE₄ (L. 2015, relation to Miller-Sheffield coupling) while the outer boundaries of sign clusters of ϕ converge to something else (towards ALE).
- The relation between ϕ and $\tilde{\phi}$ is very analogous to the relation between the spin Ising field and the FK-Ising random cluster model.
- The random walk representations of the GFF have stronger versions for $\tilde{\phi}.$
- The connected components of the level sets $\{\tilde{\phi} \ge a\}$ are easier to study than those for $\{\phi \ge a\}$, cf works of L., Ding-Wirth and Drewitz-Prévost-Rodriguez.

・ロト ・日ト ・ヨト

Left: Computer simulation of the CLE₄ by David B. Wilson. Right: Computer simulation of ALE by Brent Werness.

 $ilde{\phi}$ with 0 boundary conditions. $x,y\in\widetilde{\mathcal{G}}.$

 $\mathbb{P}(x, y \text{ in the same connected component of } \{\tilde{\phi} \neq 0\}) = \mathbb{E}[\operatorname{sign}(\tilde{\phi}(x))\operatorname{sign}(\tilde{\phi}(y))] = \frac{2}{\pi} \operatorname{arcsin}\left(\frac{G(x, y)}{\sqrt{G(x, x)G(y, y)}}\right).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Some exact identities for the metric graph GFF(2)

Boundary V_{∂} divided into 3 parts $V_{\partial,1}$, $V_{\partial,2}$ and $V_{\partial,0}$, with $V_{\partial,0}$ possibly empty.

u boundary condition, u > 0 on $V_{\partial,1} \cup V_{\partial,2}$, u = 0 on $V_{\partial,0}$. u^* boundary condition, $u^* = u$ on $V_{\partial,1}$, $u^* = -u$ on $V_{\partial,2}$, $u^* = 0$ on $V_{\partial,0}$.

 $ilde{\phi}_u$ with b.c. u. $ilde{\phi}_{u^*}$ with b.c. u^* .

$$\mathbb{P}(V_{\partial,1} \stackrel{\tilde{\phi}_{u}>0}{\longleftrightarrow} V_{\partial,2}) = \frac{Z^{u*}}{Z^{u}} = \exp\Big(-2\sum_{x \in V_{\partial,1}} \sum_{y \in V_{\partial,2}} u(x)H(x,y)u(y)\Big),$$

H(x, y) boundary Poisson kernel.

Conditionally on $V_{\partial,1} \stackrel{\tilde{\phi}_u>0}{\nleftrightarrow} V_{\partial,2}$, $|\tilde{\phi}_u|$ is distributed as $|\tilde{\phi}_{u^*}|$.

No similar formula if the boundary condition u mixes both positive and negative values.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

 $\tilde{\rho}_{u}$, resp. $\tilde{\rho}_{u^*}$ interacting fields on $\widetilde{\mathcal{G}}$ with interaction $\exp\left(-\int_{\widetilde{\mathcal{G}}} \mathcal{V}(|\varphi|) dx\right)$ and b.c. u, resp. u^* .

$$\mathbb{P}(V_{\partial,1} \stackrel{\tilde{\rho}_{u}>0}{\longleftrightarrow} V_{\partial,2}) = \frac{Z^{u*}\mathbb{E}\Big[\exp\Big(-\int_{\widetilde{\mathcal{G}}} \mathcal{V}(|\tilde{\phi}_{u*}|)dx\Big)\Big]}{Z^{u}\mathbb{E}\Big[\exp\Big(-\int_{\widetilde{\mathcal{G}}} \mathcal{V}(|\tilde{\phi}_{u}|)dx\Big)\Big]}.$$

Conditionally on $V_{\partial,1} \stackrel{\tilde{\rho}_u > 0}{\nleftrightarrow} V_{\partial,2}$, $|\tilde{\rho}_u|$ is distributed as $|\tilde{\rho}_{u^*}|$.

Examples: $\mathcal{V}(|\varphi|) = \varphi^4$, $\mathcal{V}(|\varphi|) = \cosh(\gamma\varphi)$. Not true for $e^{\gamma\varphi}$ because then the interaction depends on the sign of the field, not just the absolute value.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Drewitz, Prévost, Rodriguez, 2021: Exact law of the effective conductance between the boundary V_{∂} and the connected component of x_0 of the level set $\{\tilde{\phi} \ge a\}$, with $x_0 \in \tilde{\mathcal{G}}$ and $a \ge 0$ fixed.

<ロト <回ト < 注ト < 注ト = 注

Exact probabilities for some topological events

L. 2022: There are some exact probabilities for some topological events for $\tilde{\phi}$, related to $\{-1,1\}$ -valued gauge fields. For instance, the probability that a connected component of $\{\tilde{\phi} \neq 0\}$ surrounds the inner hole of a planar two-connected domain.

Gauge field, gauge equivalence and holonomy

Gauge group $\{-1,1\}$.

Gauge field $\sigma \in \{-1,1\}^E$.

Gauge transformation: $\sigma \in \{-1,1\}^{E}$ and $\hat{\sigma} \in \{-1,1\}^{V}$.

$$(\hat{\sigma} \cdot \sigma)(x, y) = \hat{\sigma}(x)\sigma(x, y)\hat{\sigma}(y).$$

 $\hat{\sigma} \cdot \sigma$ and σ are gauge equivalent.

Nearest-neighbor path in \mathcal{G} , $\wp = (x_1, x_2, \dots, x_n)$.

$$\mathsf{hol}^{\sigma}(\wp) = \sigma(x_1, x_2)\sigma(x_2, x_3)\ldots\sigma(x_{n-1}, x_n).$$

The gauge equivalence classes are characterized by the holonomies along closed loops.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

<u>Example</u> of gauge transformation (1)

▲ロト ▲団ト ▲ヨト ▲ヨト 三日 - のへの

Example of gauge transformation (2)

▲ロト ▲母ト ▲ヨト ▲ヨト 三日 - のへで

Example of gauge transformation (3)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Gauge-twisted discrete GFF

 ϕ discrete GFF on ${\cal G}$ with 0 boundary conditions:

$$\frac{1}{Z^0} \exp\left(-\frac{1}{2} \sum_{\{x,y\} \in E} C(x,y)(\varphi(y) - \varphi(x))^2\right) \prod_{z \in V_{\text{int}}} d\varphi(z).$$

 $\sigma \in \{-1,1\}^{E}$. ϕ_{σ} discrete σ -twisted GFF on \mathcal{G} with 0 boundary conditions:

$$\frac{1}{Z_{\sigma}^{0}}\exp\Big(-\frac{1}{2}\sum_{\{x,y\}\in E}C(x,y)(\sigma(x,y)\varphi(y)-\varphi(x))^{2}\Big)\prod_{z\in V_{\mathrm{int}}}d\varphi(z).$$

If $\sigma' = \hat{\sigma} \cdot \sigma$ in the same gauge equivalence class, $\phi_{\sigma'} \stackrel{(d)}{=} \hat{\sigma} \phi_{\sigma}$.

 ϕ has a natural extension $\tilde{\phi}$ to the metric graph $\tilde{\mathcal{G}}$. ϕ_{σ} also has a natural extension $\tilde{\phi}_{\sigma}$ to $\tilde{\mathcal{G}}$. Unlike $\tilde{\phi}$, $\tilde{\phi}_{\sigma}$ has discontinuities: one discontinuity per edge $e \in \{e \in E | \sigma(e) = -1\}$, placed in the middle of the edge x_e^{m} .

$$\lim_{x\to x^{\mathrm{m}}_{e,-}} \tilde{\phi}_{\sigma}(x) = -\lim_{x\to x^{\mathrm{m}}_{e,+}} \tilde{\phi}_{\sigma}(x).$$

The absolute value $|\tilde{\phi}_{\sigma}|$ is continuous on $\widetilde{\mathcal{G}}$.

Conceptual picture for $\tilde{\phi}_\sigma$

▲ロト ▲母ト ▲ヨト ▲ヨト 三日 - のへで

Double cover of $\widetilde{\mathcal{G}}$ induced by sigma

 V_1 and V_2 two copies of the set of vertices V. $\widetilde{\mathcal{G}}_{\sigma}^{\mathrm{db}}$ double cover of $\widetilde{\mathcal{G}}$ induced by σ . $\pi_{\sigma}: \widetilde{\mathcal{G}}_{\sigma}^{\mathrm{db}} \to \widetilde{\mathcal{G}}$ cover map.

 $ilde{\phi}^{
m db}_{\sigma}$ GFF on $\widetilde{\widetilde{\mathcal{G}}}^{
m db}_{\sigma}$ with 0 boundary conditions.

 $\psi_{\sigma}: \widetilde{\mathcal{G}}_{\sigma}^{\mathrm{db}} \to \widetilde{\mathcal{G}}_{\sigma}^{\mathrm{db}}$ automorphism of the covering map π_{σ} (interchanges the two sheets).

 $\mathbf{s}: \widetilde{\mathcal{G}} \to \widetilde{\mathcal{G}}_{\sigma}^{\mathrm{db}}$ section of $\pi_{\sigma} \ (\pi_{\sigma} \circ \mathbf{s} = \mathbf{Id})$. \mathbf{s} has discontinuities inside the edges $e \in E$ with $\sigma(e) = -1$.

$$\tilde{\phi}_{\sigma} \stackrel{(d)}{=} \frac{1}{\sqrt{2}} (\tilde{\phi}_{\sigma}^{\mathrm{db}} - \tilde{\phi}_{\sigma}^{\mathrm{db}} \circ \psi_{\sigma}) \circ \mathbf{s}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

$$\mathcal{T}_{\sigma} = \{f \in \mathcal{C}(\widetilde{\mathcal{G}}) | orall U$$
 connected component of $\{f
eq 0\}, \pi_{\sigma}^{-1}(U)$ not connected}

 $\mathbb{P}(|\tilde{\phi}_{\sigma}| \in \mathcal{T}_{\sigma}) = 1.$ If U connected component of $\{|\tilde{\phi}_{\sigma}| \neq 0\}$, and $x \in U$, then $\mathbf{s}(x)$ and $\psi_{\sigma}(\mathbf{s}(x))$ cannot be connected inside $\pi_{\sigma}^{-1}(U)$ because of the change of sign.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\mathbb{P}(ilde{\phi}\in\mathcal{T}_{\sigma})=rac{Z_{\sigma}^{0}}{Z^{0}}=rac{\det(-\Delta^{\mathcal{G}})^{1/2}}{\det(-\Delta^{\mathcal{G}}_{\sigma})^{1/2}}.$$

Conditionally on the event $\{\tilde{\phi} \in \mathcal{T}_{\sigma}\}$, the field $|\tilde{\phi}|$ is distributed as $|\tilde{\phi}_{\sigma}|$.

 $\tilde{\rho}$ interacting field on $\widetilde{\mathcal{G}}$ with interaction $\exp\left(-\int_{\widetilde{\mathcal{G}}} \mathcal{V}(|\varphi|) dx\right)$ and 0 boundary condition.

$$\mathbb{P}(\tilde{\rho} \in \mathcal{T}_{\sigma}) = \frac{Z_{\sigma}^{0} \mathbb{E}\Big[\exp\Big(-\int_{\widetilde{\mathcal{G}}} \mathcal{V}(|\tilde{\phi}_{\sigma}|)dx\Big)\Big]}{Z^{0} \mathbb{E}\Big[\exp\Big(-\int_{\widetilde{\mathcal{G}}} \mathcal{V}(|\tilde{\phi}|)dx\Big)\Big]}.$$

Illustration

Left: $\tilde{\phi}$ conditioned on $\tilde{\phi} \in \mathcal{T}_{\sigma}$. Right: $\tilde{\phi}_{\sigma}$.

・ロト ・日下 ・モート

æ

Thank you for your attention!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで