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Discrete GFF on an electrical network

G = (V, E) finite undirected graph. Conductances C(x,y) = C(y, x) for
{x,y} € E.

V divided into 2 parts: interior vertices Vi, and boundary Vj.
Boundary condition v : V5 — R.
Discrete GFF with boundary condition u on Vjy:

Zow(—5 3 Clanet) - eta?) [T dotz

{x,y}€E z€ Vint



GFF on metric graph

Metric graph G: replace each edge {x,y} € E by a continuous line of
length C(x,y)~! (length = resistance).

(é(x))xev discrete GFF. R
We extrapolate ¢ to a continuous Gaussian field (¢(x)), .z with
conditionally independent Brownian bridges inside the edge-lines.

¢ is the GFF on the metric graph. Satisfies the Markov property.




Why metric graph GFF?

o The metric graph GFF &, just as a discrete GFF ¢, approximates the
continuum GFF in the scaling limit.

e ¢ satisfies some exact identities that ¢ does not.

@ ¢ has more interfaces than ¢. For instance in 2D the outer
boundaries of sign clusters of ¢ converge to CLE, (L. 2015, relation
to Miller-Sheffield coupling) while the outer boundaries of sign
clusters of ¢ converge to something else (towards ALE).

@ The relation between ¢ and ¢ is very analogous to the relation
between the spin Ising field and the FK-Ising random cluster model.

@ The random walk representations of the GFF have stronger versions
for ¢.

@ The connected components of the level sets {¢ > a} are easier to
study than those for {¢ > a}, cf works of L., Ding-Wirth and
Drewitz-Prévost-Rodriguez.



CLE4 and ALE

Left: Computer simulation of the CLE, by David B. Wilson.
Right: Computer simulation of ALE by Brent Werness.



Some exact identities for the metric graph GFF (1)

& with 0 boundary conditions. x,y € G.

P(x, y in the same connected component of {¢ # 0}) =

E[sign($(x)) sign(3(y ))]_2arcsm<\/%)'




Some exact identities for the metric graph GFF (2)

Boundary Vj divided into 3 parts Vy 1, Vg2 and Vo, with Vj ¢ possibly

empty.

u boundary condition, u > 0on Vy1 U Vgo, u=0o0n Vyo.

u* boundary condition, u* = wuon Vg1, u* = —uon Vy,, u* =0o0n
Vs o.

by with b.c. u. ¢+ with b.c. u*.

P(Vi1 “5° Vo) =

Zzu: = eXP( > Y u(x)H(x,y)u (y))

x€EVo1y€EVs 2

H(x, y) boundary Poisson kernel.

Conditionally on Vi1 “2° Vi, |yl is distributed as |G,- .

No similar formula if the boundary condition u mixes both positive and
negative values.



Some exact identities for the metric graph GFF (3)

[u, resp. Py~ interacting fields on G with interaction
exp( Jz Vel dx) and b.c. u, resp. u*

Z“*E[exp( fg (|Gu dx)}

5,50 _
P(Vo1 2" Vo) = ZuE[exp<—f§V(|¢u dx)} |

o 5y >0 o e ~
Conditionally on Vi1 45" Vi 5, || is distributed as |f,-|-

Examples: V(|¢|) = ¢*, V(|¢l) = cosh(y¢).
Not true for 7% because then the interaction depends on the sign of the
field, not just the absolute value.



Some exact identities for the metric graph GFF (4)

Drewitz, Prévost, Rodriguez, 2021:

Exact law of the effective conductance between the boundary Vj and the
connected component of xo of the level set {¢ > a}, with xo € G and

a > 0 fixed.



Exact probabilities for some topological events

L. 2022: There are some exact probabilities for some topological events

for ¢, related to {—1,1}-valued gauge fields. N
For instance, the probability that a connected component of {¢ # 0}

surrounds the inner hole of a planar two-connected domain.




Gauge field, gauge equivalence and holonomy

Gauge group {—1,1}.
Gauge field o € {—1,1}F.
Gauge transformation: o € {—1,1}F and 6 € {-1,1}".
(6-0)(x.y) = 6(x)o(x,y)é(y)-
6 -0 and o are gauge equivalent.
Nearest-neighbor path in G, p = (x1, X2, ..., Xn).
hol? (p) = o(x1,x2)0(x2,x3) - .. 0(Xn_1, Xn)-

The gauge equivalence classes are characterized by the holonomies along
closed loops.



Example of gauge transformation (1)




Example of gauge transformation (2)




Example of gauge transformation (3)




Gauge-twisted discrete GFF

¢ discrete GFF on G with 0 boundary conditions:

Zlo eXP( > Clay)ely) - ) [T de(2).

{X,y}EE 2€ Vint

o€ {-1,1}E ¢, discrete o-twisted GFF on G with 0 boundary
conditions:

Zop(—5 3 Cen)obenitn) - o) TT dete

{x,y}GE ZE€Vint

~ . . (d) A
If o/ =& - o in the same gauge equivalence class, ¢,/ = 6¢,.

6 has a natural extension ¢ to the metric graph g
b also has a natural extension ¢, to G. Unlike b, ¢, has discontinuities:
one discontinuity per edge e € {e € E|o(e) = —1}, placed in the middle
of the edge x".
I|m gi)g(x) — lim ¢ ().

X~>x;"“4r

X—rX,

The absolute value |¢,| is continuous on G.



Conceptual picture for ggg




Double cover of G induced by sigma

Vi and V5 two copies of the set of vertices V.
gdb double cover of G induced by o. 7, : gdb — G cover map.

$d> GFF on GI° with 0 boundary conditions.

Vo - GI* — GIP automorphism of the covering map 7, (interchanges the
two sheets).

s: G — §gb section of 7, (7, os = Id). s has discontinuities inside the
edges e € E with o(e) = —

3, 2 T(aﬁd" 95" o ths) o8



The topological event

To = {f € C(G)|YU connected component of
{f # 0}, 7, 1(U) not connected}

P($a] € T2) = 1. ]

If U connected component of {|¢,| # 0}, and x € U, then s(x) and
1o (s(x)) cannot be connected inside 7, *(U) because of the change of
sign.



Main result

Z%  det(—A9)Y/2

BoeTs) =25 = det(—AQ)1/2

Conditionally on the event {¢ € 7}, the field || is distributed as |¢,|.

j interacting field on G with interaction exp( fg (I dx) and 0
boundary condition.

ZgE[exp(—ng(Mzg dx)}
ZOE{exp( JzV(3)) dx)]

P(peTs) =



[llustration

Left: qNSNconditioned ondeT,.
Right: ¢, .



Thank you for your attention!



