Exact probabilities for some topological events for metric graph GFF

Titus Lupu
CNRS/Sorbonne Université, LPSM, Paris

Probability and CFT, September 22nd, 2022

Discrete GFF on an electrical network

$\mathcal{G}=(V, E)$ finite undirected graph. Conductances $C(x, y)=C(y, x)$ for $\{x, y\} \in E$.
V divided into 2 parts: interior vertices $V_{\text {int }}$ and boundary V_{∂}.
Boundary condition $u: V_{\partial} \rightarrow \mathbb{R}$.
Discrete GFF with boundary condition u on V_{∂} :

$$
\frac{1}{Z^{u}} \exp \left(-\frac{1}{2} \sum_{\{x, y\} \in E} C(x, y)(\varphi(y)-\varphi(x))^{2}\right) \prod_{z \in V_{\mathrm{int}}} d \varphi(z) .
$$

GFF on metric graph

Metric graph $\widetilde{\mathcal{G}}$: replace each edge $\{x, y\} \in E$ by a continuous line of length $C(x, y)^{-1}$ (length $=$ resistance).
$(\phi(x))_{x \in V}$ discrete GFF.
We extrapolate ϕ to a continuous Gaussian field $(\tilde{\phi}(x))_{x \in \tilde{\mathcal{G}}}$ with conditionally independent Brownian bridges inside the edge-lines. $\tilde{\phi}$ is the GFF on the metric graph. Satisfies the Markov property.

Why metric graph GFF?

- The metric graph GFF $\tilde{\phi}$, just as a discrete GFF ϕ, approximates the continuum GFF in the scaling limit.
- $\tilde{\phi}$ satisfies some exact identities that ϕ does not.
- $\tilde{\phi}$ has more interfaces than ϕ. For instance in 2D the outer boundaries of sign clusters of $\tilde{\phi}$ converge to CLE $_{4}$ (L. 2015, relation to Miller-Sheffield coupling) while the outer boundaries of sign clusters of ϕ converge to something else (towards ALE).
- The relation between ϕ and $\tilde{\phi}$ is very analogous to the relation between the spin Ising field and the FK-Ising random cluster model.
- The random walk representations of the GFF have stronger versions for $\tilde{\phi}$.
- The connected components of the level sets $\{\tilde{\phi} \geq a\}$ are easier to study than those for $\{\phi \geq a\}$, cf works of L., Ding-Wirth and Drewitz-Prévost-Rodriguez.

Left: Computer simulation of the CLE_{4} by David B. Wilson. Right: Computer simulation of ALE by Brent Werness.

Some exact identities for the metric graph GFF (1)

$\tilde{\phi}$ with 0 boundary conditions. $x, y \in \widetilde{\mathcal{G}}$.
$\mathbb{P}(x, y$ in the same connected component of $\{\tilde{\phi} \neq 0\})=$

$$
\mathbb{E}[\operatorname{sign}(\tilde{\phi}(x)) \operatorname{sign}(\tilde{\phi}(y))]=\frac{2}{\pi} \arcsin \left(\frac{G(x, y)}{\sqrt{G(x, x) G(y, y)}}\right) .
$$

Some exact identities for the metric graph GFF (2)

Boundary V_{∂} divided into 3 parts $V_{\partial, 1}, V_{\partial, 2}$ and $V_{\partial, 0}$, with $V_{\partial, 0}$ possibly empty.
u boundary condition, $u>0$ on $V_{\partial, 1} \cup V_{\partial, 2}, u=0$ on $V_{\partial, 0}$.
u^{*} boundary condition, $u^{*}=u$ on $V_{\partial, 1}, u^{*}=-u$ on $V_{\partial, 2}, u^{*}=0$ on
$V_{\partial, 0}$.
$\tilde{\phi}_{u}$ with b.c. u. $\tilde{\phi}_{u^{*}}$ with b.c. u^{*}.

$$
\begin{aligned}
& \mathbb{P}\left(V_{\partial, 1} \stackrel{\tilde{\phi}_{u}>0}{\nrightarrow 0} V_{\partial, 2}\right)= \\
& \frac{Z^{u *}}{Z^{u}}=\exp \left(-2 \sum_{x \in V_{\partial, 1}} \sum_{y \in V_{\partial, 2}} u(x) H(x, y) u(y)\right),
\end{aligned}
$$

$H(x, y)$ boundary Poisson kernel.
Conditionally on $V_{\partial, 1} \stackrel{\tilde{\phi}_{u}>0}{\nless} V_{\partial, 2},\left|\tilde{\phi}_{u}\right|$ is distributed as $\left|\tilde{\phi}_{u^{*}}\right|$.
No similar formula if the boundary condition u mixes both positive and negative values.

Some exact identities for the metric graph GFF (3)

$\tilde{\rho}_{u}$, resp. $\tilde{\rho}_{u^{*}}$ interacting fields on $\widetilde{\mathcal{G}}$ with interaction
$\exp \left(-\int_{\tilde{\mathcal{G}}} \mathcal{V}(|\varphi|) d x\right)$ and b.c. u, resp. u^{*}.

$$
\mathbb{P}\left(V_{\partial, 1} \stackrel{\tilde{\rho}_{u}>0}{\nless} V_{\partial, 2}\right)=\frac{Z^{u *} \mathbb{E}\left[\exp \left(-\int_{\tilde{\mathcal{G}}} \mathcal{V}\left(\left|\tilde{\phi}_{u^{*}}\right|\right) d x\right)\right]}{Z^{u} \mathbb{E}\left[\exp \left(-\int_{\tilde{\mathcal{G}}} \mathcal{V}\left(\left|\tilde{\phi}_{u}\right|\right) d x\right)\right]}
$$

Conditionally on $V_{\partial, 1} \stackrel{\tilde{\rho}_{u}>0}{\leftrightarrow} V_{\partial, 2},\left|\tilde{\rho}_{u}\right|$ is distributed as $\left|\tilde{\rho}_{u^{*}}\right|$.
Examples: $\mathcal{V}(|\varphi|)=\varphi^{4}, \mathcal{V}(|\varphi|)=\cosh (\gamma \varphi)$.
Not true for $e^{\gamma \varphi}$ because then the interaction depends on the sign of the field, not just the absolute value.

Some exact identities for the metric graph GFF (4)

Drewitz, Prévost, Rodriguez, 2021:
Exact law of the effective conductance between the boundary $V_{\tilde{\partial}}$ and the connected component of x_{0} of the level set $\{\tilde{\phi} \geq a\}$, with $x_{0} \in \tilde{\mathcal{G}}$ and $a \geq 0$ fixed.

Exact probabilities for some topological events

L. 2022: There are some exact probabilities for some topological events for $\tilde{\phi}$, related to $\{-1,1\}$-valued gauge fields.
For instance, the probability that a connected component of $\{\tilde{\phi} \neq 0\}$ surrounds the inner hole of a planar two-connected domain.

Gauge field, gauge equivalence and holonomy

Gauge group $\{-1,1\}$.
Gauge field $\sigma \in\{-1,1\}^{E}$.
Gauge transformation: $\sigma \in\{-1,1\}^{E}$ and $\hat{\sigma} \in\{-1,1\}^{V}$.

$$
(\hat{\sigma} \cdot \sigma)(x, y)=\hat{\sigma}(x) \sigma(x, y) \hat{\sigma}(y)
$$

$\hat{\sigma} \cdot \sigma$ and σ are gauge equivalent.
Nearest-neighbor path in $\mathcal{G}, \wp=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

$$
\operatorname{hol}^{\sigma}(\wp)=\sigma\left(x_{1}, x_{2}\right) \sigma\left(x_{2}, x_{3}\right) \ldots \sigma\left(x_{n-1}, x_{n}\right) .
$$

The gauge equivalence classes are characterized by the holonomies along closed loops.

Example of gauge transformation (1)

Example of gauge transformation (2)

Example of gauge transformation (3)

Gauge-twisted discrete GFF

ϕ discrete GFF on \mathcal{G} with 0 boundary conditions:

$$
\frac{1}{Z^{0}} \exp \left(-\frac{1}{2} \sum_{\{x, y\} \in E} C(x, y)(\varphi(y)-\varphi(x))^{2}\right) \prod_{z \in V_{\mathrm{int}}} d \varphi(z)
$$

$\sigma \in\{-1,1\}^{E} . \phi_{\sigma}$ discrete σ-twisted GFF on \mathcal{G} with 0 boundary conditions:

$$
\frac{1}{Z_{\sigma}^{0}} \exp \left(-\frac{1}{2} \sum_{\{x, y\} \in E} C(x, y)(\sigma(x, y) \varphi(y)-\varphi(x))^{2}\right) \prod_{z \in V_{\mathrm{int}}} d \varphi(z)
$$

If $\sigma^{\prime}=\hat{\sigma} \cdot \sigma$ in the same gauge equivalence class, $\phi_{\sigma^{\prime}} \stackrel{(d)}{=} \hat{\sigma} \phi_{\sigma}$.
ϕ has a natural extension $\tilde{\phi}$ to the metric graph $\widetilde{\mathcal{G}}$.
ϕ_{σ} also has a natural extension $\tilde{\phi}_{\sigma}$ to $\widetilde{\mathcal{G}}$. Unlike $\tilde{\phi}, \tilde{\phi}_{\sigma}$ has discontinuities: one discontinuity per edge $e \in\{e \in E \mid \sigma(e)=-1\}$, placed in the middle of the edge x_{e}^{m}.

$$
\lim _{x \rightarrow x_{e,-}^{m}} \tilde{\phi}_{\sigma}(x)=-\lim _{x \rightarrow x_{e,+}^{m}} \tilde{\phi}_{\sigma}(x)
$$

The absolute value $\left|\tilde{\phi}_{\sigma}\right|$ is continuous on $\widetilde{\mathcal{G}}$.

Conceptual picture for $\tilde{\phi}_{\sigma}$

Double cover of $\widetilde{\mathcal{G}}$ induced by sigma

V_{1} and V_{2} two copies of the set of vertices V. $\widetilde{\mathcal{G}}_{\sigma}^{\mathrm{db}}$ double cover of $\widetilde{\mathcal{G}}$ induced by $\sigma . \pi_{\sigma}: \widetilde{\mathcal{G}}_{\sigma}^{\mathrm{db}} \rightarrow \widetilde{\mathcal{G}}$ cover map.

$\tilde{\phi}_{\sigma}^{\mathrm{db}}$ GFF on $\widetilde{\mathcal{G}}_{\sigma}^{\mathrm{db}}$ with 0 boundary conditions.
$\psi_{\sigma}: \widetilde{\mathcal{G}}_{\sigma}^{\mathrm{db}} \rightarrow \widetilde{\mathcal{G}}_{\sigma}^{\mathrm{db}}$ automorphism of the covering map π_{σ} (interchanges the two sheets).
$\mathrm{s}: \widetilde{\mathcal{G}} \rightarrow \widetilde{\mathcal{G}}_{\sigma}^{\mathrm{db}}$ section of $\pi_{\sigma}\left(\pi_{\sigma} \circ \mathrm{s}=I d\right)$. s has discontinuities inside the edges $e \in E$ with $\sigma(e)=-1$.

$$
\tilde{\phi}_{\sigma} \stackrel{(d)}{=} \frac{1}{\sqrt{2}}\left(\tilde{\phi}_{\sigma}^{\mathrm{db}}-\tilde{\phi}_{\sigma}^{\mathrm{db}} \circ \psi_{\sigma}\right) \circ \mathrm{s} .
$$

$\mathcal{T}_{\sigma}=\{f \in \mathcal{C}(\widetilde{\mathcal{G}}) \mid \forall U$ connected component of $\{f \neq 0\}, \pi_{\sigma}^{-1}(U)$ not connected $\}$
$\mathbb{P}\left(\left|\tilde{\phi}_{\sigma}\right| \in \mathcal{T}_{\sigma}\right)=1$.
If U connected component of $\left\{\left|\tilde{\phi}_{\sigma}\right| \neq 0\right\}$, and $x \in U$, then $s(x)$ and $\psi_{\sigma}(\mathrm{s}(x))$ cannot be connected inside $\pi_{\sigma}^{-1}(U)$ because of the change of sign.

Main result

$$
\mathbb{P}\left(\tilde{\phi} \in \mathcal{T}_{\sigma}\right)=\frac{Z_{\sigma}^{0}}{Z^{0}}=\frac{\operatorname{det}\left(-\Delta^{\mathcal{G}}\right)^{1 / 2}}{\operatorname{det}\left(-\Delta_{\sigma}^{\mathcal{G}}\right)^{1 / 2}}
$$

Conditionally on the event $\left\{\tilde{\phi} \in \mathcal{T}_{\sigma}\right\}$, the field $|\tilde{\phi}|$ is distributed as $\left|\tilde{\phi}_{\sigma}\right|$. $\tilde{\rho}$ interacting field on $\widetilde{\mathcal{G}}$ with interaction $\exp \left(-\int_{\widetilde{\mathcal{G}}} \mathcal{V}(|\varphi|) d x\right)$ and 0 boundary condition.

$$
\mathbb{P}\left(\tilde{\rho} \in \mathcal{T}_{\sigma}\right)=\frac{Z_{\sigma}^{0} \mathbb{E}\left[\exp \left(-\int_{\tilde{\mathcal{G}}} \mathcal{V}\left(\left|\tilde{\phi}_{\sigma}\right|\right) d x\right)\right]}{Z^{0} \mathbb{E}\left[\exp \left(-\int_{\tilde{\mathcal{G}}} \mathcal{V}(|\tilde{\phi}|) d x\right)\right]}
$$

Illustration

Left: $\tilde{\phi}$ conditioned on $\tilde{\phi} \in \mathcal{T}_{\sigma}$.
Right: $\tilde{\phi}_{\sigma}$.

Thank you for your attention!

