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Plan

1. Spectra of hyperbolic manifolds and the conformal bootstrap.

2. The conformal bootstrap and the sphere packing problem.



1. Contormal Bootstrap and Hyperbolic Geometry



Based on arXiv:2111.12716 with Petr Kravchuk and Sridip Pal.

Similar results appeared in arXiv:2111.13215 by James Bonifacio.

| will also mention some ongoing work with all of the above.



2D Hyperbolic Orbitolds

. , | , dx* + dy*
1. Upper half-plane with the hyperbolic metric ds- = >
y X

o G = PSL,(R) acts on z = x + iy € H? <

2. I' = discrete subgroup of PSL,(R) < I\ H? = a hyperbolic orbifold.

o Will assume '\ H? has finite volume.

o " only has hyperbolic elements < I" \ H” is a compact surface.

o " only has hyperbolic and elliptic elements <> "\ H? is a compact orbifold.



Example 1: Hyperbolic Triangle Groups

v 11 1
T I I <1

| )
area > ()
| | 27
o | generated by rotations around vertices by angles o
i 21
o A fundamental domain of I ' consists of two adjacent triangles. ki

o I"\H? is an orbifold of genus 0 with 3 orbifold points of orders k, k,, k.
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Example 2: The Bolza Surface

A hyperbolic surface without orbifold points must have genus > 2. ST =T N

o Genus = 2: six-dimensional moduli space.

Bolza surface: the genus-two surface with the largest group of isometries.

o Iso(Bolza) = GL,([), a group of order 48.

o Bolza = '\ H?, where I is a normal subgroup of index 48 of the
[2,3,8] triangle group.




General Orbifolds

Topological type of "\ H?: g ky, .. = isomorphism type of I

/ ’\

genus orders of orbifold points



Laplacian Spectrum of I'\ H*
The Laplacian on H?*: V? = yz(@% + 05)

- V20(x,y) = A g(x, y)
@(x,y): a smooth real function on H? satisfying (7 - (x,y)) = @(x,y) forally € T

SpeC’[rum: O — /10 < A’l S /12 S

o no closed expression for 4, in general

o a useful model for studying classical and quantum chaos

Today: New upper bounds on 4.



Main results

Theorem:

1. Every hyperbolic orbifold satisfies: 4, < 44.8883537.
[2,3,7] triangle orbifold: 4; ~ 44.88835

2. Every hyperbolic orbifold of genus two satisfies: 4; < 3.8388977.

Bolza surface: 4; ~ 3.838887258
previous bound: 4; < 4

3. Every hyperbolic orbifold of genus three satisfies: 4, < 2.6734824.

Klein quartic: 4, = 2.6779
previous bound: 4, < 2(4 — \/7) ~ 2.7085



Spectrum of the Spectrum

Conjecture (Selberg 1965): If I ' is a congruence subgroup of SL.(2,7), then A, = 1/4.
<

If X ranges over congruence orbifolds, the image of the map X — 4,(X) is the set { 1/4}.

Question: What is the image of the map X — 4,(X) when X ranges over all orbifolds?

Answer:




The Method

1. The Hilbert space and local operators
2. Operator product expansion
3. Associativity

4. Bounds from linear programming



Previous Work

R
Bonifacio+Hinterbichler (2020): Einstein manifolds R, = —g .

d

Bonifacio (2021): Hyperbolic manifolds R ;.. = £..8y. — &.-8bq

Kravchuk, DM, Pal (2021): Pointed out the role played by SO(1, d) in the case of
hyperbolic manifolds, and systematized the ideas using its representation theory.



The Coset Space
o G — PSLz(R)
o K =PS0O,(R), maximal compact subgroup of G

o | = discrete co-compact subgroup of G

H?=G/K




The Hilbert Space: L*(I'\ G)

Consider the space L*(I'\ G)

o a representation of G: F(g) S F (88)

o unitary, with inner product: ||F(g)||* = J dg | F(g)|”

I'\G

Decomposition under K: L*(I'\G) = @ vV,

ne/

o VO — L2(X)

o V = L*(n-forms):  h(x,y) dz" such that Vy € T: h(z) = (cz + d)"2"h (az b)

cz+d

o Generators of G act as follows: L, |, =nid, Ly, : V, =V,



The Spectral Decomposition

Decompose L*(I"\ G) into irreducible representations of G = PSL,(R):

L’r\6)=c o Pr, o Pw,®D,
i=1 =1

1. Trivial representation C: constant functions.
2. Principal and complementary series P,: Laplace eigenfunction with eigenvalue A.
o principal series: A € [1/4,00), complementary series: 4 € (0,1/4).

o Casimir|,, = Laplacian = v € P, N V,, is a Laplace eigenfunction of eigenvalue A.
V, A 0

3. Holomorphic discrete series D, : holomorphic modular forms of weight 2n € 2N .

oL, =0, L, ‘Dnnvn =0 =>ve D,NV, isaholomorphic modular form of weight 2n.

o Antiholomorphic discrete series En: complex conjugates of modular forms.

Terminology: The Laplace eigenfunctions and holomorphic modular forms are examples of
automorphic forms.



L’r\c)=c e @r,o Pw,oD,
j=1

J
i=1
Question: What are the constraints on the set of representations on the RHS?

Ingredients:

1. Riemann-Roch theorem: The topology of I  determines the spectrum of
holomorphic forms = discrete series. Namely, for [g; k;, ..., k.], we have

r

multiplicity(D,) = 2n - 1)(g = 1) Z nkilzl 5n,1

i=1 |

= Can focus on specific topology by making simple assumptions about the spectrum of D .

2. Consider the pointwise product C*(I'\G) X C*(I'\G) —» C*'\G)
(F1(8), F(8)) = F1(8)F5(8)

Associativity and G-invariance = bounds on the Laplacian spectrum.



Local Operators

Definition (local operator):

Let F(g) € L*(I"\ G) be a holomorphic modular form of weight 27. Define

O(w) = e" L1 - F(g) = F(g)+wL_, - F(g)+2L%, - F(g) + ...
Properties:
o O(w) & LZ(F\G)nanor lw| < 1.
o As w ranges over the unit disk, O(w) generates L*(I'\ G) N D,.

o (O(w) transforms like a conformal primary operator of scaling dimension 7.

L, O(w)=[w""0, + (m+ Dnw™O(w)

Similarly, define the conjugate operator O(w) = w~*"e~ 1" . F(g).

o O(w) € L*T\G)N D, for |w]| > 1.



Correlation Functions

Definition (correlation function):

Given Iy, ..., Fy € C®(I1'\ G), their correlation function is given by

(Fy...Fy) = du F(g)...Fy(g)

vol(I'\ G) J
r'\G

Since u is G-invariant, so are the correlation functions.

Properties:

o one-point functions: (1) = 1, (O, (w)) = (O, (w)) =0

5,

(W) — wy)?"

o two-point functions: (O; (Wl)ﬁj (Wy)) =



Each hyperbolic orbifold defines a large class of observables:

(O1(wy)... @N(WN)5N+1(WN+1)' - '5N+M(WN+M)>

v

- 54(“’4)

J 55(“’5)



The Operator Product Expansion

Express products O(w,)O(w,), O(w,)O(w,) using the spectral decomposition of LA (T\G).

o O (W1)5(W2) —

v — w2 + Z Ji K(wy, w,), where Ki(wj, w,) € P,.

o O(w))O(wy) = ) [; K (wy, w,), where K (w;,w,) € D,
J

Crucial fact: K.(w,, w,) and E(wl, w,) are universal = fixed by G-invariance.
o The space of G-invariant maps D, X D, — P, and D, X D, — D is one-dimensional.

o fi ~ (hh §0i>,]§ ~ (h hﬁj), integrals of triple products of automorphic forms.



Imposing Associativity
Suppose L*(I"\ G) contains D, and let O (w) be the corresponding local operator.

| | 1 _|
(0,(W)0,(W,)0,(W3)0,(Wy))

I’l Dn
Z Z p, (- >2"Z|f\ 6,0 =17 2 Ul Koo
m >0
Laplace modular < > / m even
elgenfunctlons forms n Dn

X Pl m
Ks1—9(X) = 2F1(s,1 — 53 13 F) k() = x"F (m,m;2m; y)

conformal blocks

= Get an infinite number of spectral identities by expanding around y = 0.



Spectral Bounds from Linear Programming

Spectral identities: 2 | /; \2Pn,m(/1i) = |f,|° foralleven m > 0, Z | £ ]° P,.(4) =0 forallodd m > 0

M
Proposition: Fix M € N and suppose Q(A) = Z X, P, (4 with x,, € R, such that

1. x, < 0 for all even m =0

2. 00) =1
3. O(4) > Oforall A > A..

Then there is an upper bound on the Laplace spectral gap 4, < 4. for every hyperbolic
orbifold with a holomorphic form of weight 2.

Proof: Consider Z | /; \ZQ(AZ-), exchange order of summations and use the spectral identities.

l

[

Strategy: Minimize 4. by optimizing over x,, satisfying 1.-3. Increase M to improve the bound.
We used the semidefinite programming solver SDPB.



Results

Let 2n,(1") be the minimal weight of a modular form for I .

Fact: We have n (') € {1,2,3,4,6} for every hyperbolic orbifold.

ny  ourboundon/; largest known 4, orbifold

| 8.47032 8.46776 [1;2] at the Z.-symmetric point

2 15.79144 15.79023 [0; 2,2,2,3] at the Z,-symmetric point
3 23.07917 23.07855 [0; 3,3,4]

4 30.35432 28.07984 [052,4,5]

6 44.8883537 44.88835 [052,3,7]

Corrolary: Every hyperbolic orbifold satisfies: 4; < 44.8883537.



Sharp Bounds

Question: Is the linear-programming upper bound on 4, sharp for M — oc0?

If yes, the linear program must reconstruct the full Laplace spectrum of the [0; 2,3,7] orbifold!

0(7)
o Q(4) = 0forall 4; € spectrum.
o Output of the linear program for M = 41 —¥%
o Zeros agree with the [0; 2,3,7] spectrum! \ +,\+/\+ J
44.88835 142.5552 201.4709 323.40 456.3
o Proof would amount to a construction of Q(A) \]
for M = o0.

This is precisely what happens for the Cohn-Elkies bound on sphere packing in d = 8, 24.
o Viazovska (2016): Construction of optimal OJ(A) for sphere packing.

o DM (2016), DM+Paulos (2018): Construction of optimal Q(4) for the gap problem in 1D CFTs.
o Hartman+DM-+Rastelli (2019): Precise mapping between Viazovska (2016) and DM (2016).

Challenge: Construct the optimal J(A) for the Laplacian spectral gap problem.



Bounds at Fixed Genus

Bounds on A, of genus-g orbifolds: Use g linearly independent holomorphic 1-forms.

Associativity implemented by the system of coupled equations:
<@l(wl)@](Wz)ak(W:s)El(Wél_)) ni — n] — nk — n[ — 1 i,j, k,l — 1,..., g

This Iis a matrix generalization of the original linear program = need semidefinite programming.

genus our boundonA;  largest known 4, orbifold
1 3.47032 3.46776 [1;2] at the Z,-symmetric point
2 3.83890 3.83889 Bolza surface

3 2.67849 2.67793 Klein quartic



Values of 1, Attained by All Orbifolds

Idea: Topological type is uniquely identified by the spectrum of weights of modular forms.
Only finitely many weigths are needed to identify each topological type.

Study associativity for two holomorphic forms of minimal weight 2 < 2n, < 2n,

theorem: If X ranges over all orbifolds, 4,(X) takes the following values:

Example: n, = 6,n, =8 => A, < 23.0997 unless the orbifold is [0; 2,3,7] orn, < 4.



Hyperbolic Three-Manifolds

work in progress with J. Bonifacio, P. Kravchuk and S. Pal

]

m015(3,0)
4 i ® m004(4,0)
m1203(300)(3(0)
$ ceve s e 5948(2,0)(3, (€
$602(2,0)(3,0)
e — m359(2,0)(3,0
m032(3,0) _ ¢175(2.0) m359(2%,0)(3; 0032, 0)(5,0)
< — m007(3,0)
| L m367(2,0)(4,0) W mOTSI2 e
2L - 2 (5127(2,00) + 5090(2,0) °o
m053(3,0) e — t06833(2,0)(2,0)
== m043(2,0) e SBEO0D — il62(2, 0520 410, 0
P + v0247(2,0) + s151(4,0) : (2,0) )
\
0 | &= m082(2,0)
1 # t00324(2 0) 5652(2,0) * —m026(2,0) 0)
- { m150(2,0) m100(2,0) $170(2, 0) I -
_ 1(, cQAT(9 N) ', ® SF m019(270) a— m052(2,0) 1 ) N
_‘_< $19400325(2,0) ,¢084(2,0) e nl21(2,0) @ — s667(2,0) 3275(2, v1422(2.0
I ¢ Y
5093(2,0) 143(2,0) & — s319(2,0 p-— 01700
® T o — v0564(2,0) $ —ml320 (2.0 (1)
I [ ] [ ] [ ] [ ] I [ ] [ ] [ ] [ ] I [ ] [ ] ‘ t
1

1 2 3

| tl(J ) \2 + 1 = the lowest Laplace eigenvalue on symmetric tensors of rank J.



Summary

There is a close analogy between conformal field theories and hyperbolic manifolds.

This leads to an infinite set of identities satisfied by the Laplacian spectra of hyp. manifolds.
Linear/semidefinite programming turns the identites into bounds on the spectral gap 4.
The bounds on 4, for 2D hyperbolic orbifolds are often nearly sharp.

They allow us to (more or less) identify the set of 4, realized by all 2D hyperbolic orbifolds.



2. Conformal Bootstrap and Sphere Packing



Overview

o Problems arising in the conformal bootstrap naturally take the form of infinite-dimensional
linear programs (Rattazzi+Rychkov+Tonni+Vichi 2008).

o This type of problem is hard to solve exactly in general, but examples of exact solutions
have appeared in the conformal bootstrap literature (DM 2016).

o A closely related type of an infinite-dimensional linear program has been used to prove
upper bounds on sphere-packing density (Cohn+Elkies 2001).

o |n this context, Viazovska (2016) found an exact solution of the problem, leading to the
solution of the sphere-packing problem in dimensions 8 and 24.

o Viazovska’s solution can be exactly mapped to the exact solution found in the conformal
bootstrap (Hartman+DM+Rastelli 2019).



Four-Point Bootstrap

o Consider the four-point correlation function in 1D: (W (x)w (0w (x;)w(xy)).

o OPE: y Xy = Zfi@i,wherefie R and 0, = 1.
i=0
o Spectrum: 0 =A< A; <A, <L ...

PAVARCNGED NIRRT
1=0 1=0

o Conformal blocks for the s/,(R) algebra: GAAV’(Z) = ZA—ZszFl(A, A;2A; 7).

Question: What is the maximal possible A; compatible with (x), for a given Aw?



Bounds from Functionals

D APIG (@) = Gl = 2)] = 0
1=0 - .

FAAi‘”(Z)
o Apply linear functionals @ : F(z) — R to rule out possible spectra.

If 4w such that a)[FAA."’] > () for all A;in a putative theory, then the theory is ruled out.

Example: To get an upper bound on A, suppose A
a)[FA V]

1.a)[FOA"’]=1 -

2. a)[FAA‘”] > () forall A > A.

then A; < A. in all consistent theories. A



Analytic Functionals

Question: What is the maximal possible A, for a given A 7

Theorem: The gap-maximizing solution is the fermionic mean field theory, with A;, = ZAW + 1.
w Xy =1+ yoy+ ywow+ ... Spectrum: A = 0,24, + 1,24, + 3,

Proof: Construct a linear functional @ with double zeros on the extremal spectrum.

a)[FAA"’] P(z)

3
2 Q(2)
~ e
1 z=20 z=1
s N N T~ T NS NS

+1 2A,+3 2A,+5 24,

| e

P(2), O(z) are subject to a system of

functional equations which admits a
unigue solution.

1
wlFy] = sin? | 2(A =24, - D] |d20() G

0




Functionals and the 2D Modular Bootstrap

Observable: Torus partition function of a 2D CFT: Z(f) = Z e ~P(A=c12)
i

Constraint: Modular invariance Z(f) = Z(4x*/f).

Question: What is the maximal A (first Virasoro primary) subject to this constraint?

Equivalent to a four-point correlator bootstrap

Z(P) ~ 0w Oy (2w (1)y(o0) | 0)1x7y/2, @ = |
) o0 pZ

A = — —
78 : 05(7)*

= Can uplift the analytic functionals from the four-point function to the modular bootstrap!

= Theorem: Every compact unitary 2D CFT with ¢ & (4,12) contains a Virasoro primary with

C |
A< —+—
8 2



Sphere Packing Problem

Task : Find the densest arrangement of identical, non-overlapping spheres in RY.

Applications: error-correcting codes, stacking of oranges

Known solutions:

ad=2:

d = 8: Ejg lattice d = 24: Leech lattice



Sphere Packing Bounds

Idea: Use bootstrap-like constraints to prove an upper bound on the sphere-packing density.

o For a periodic packing with sphere centers at x; & IRd, define the partition function

mlx —x|
Zo =Y - s DN
oA () ()
e
o Here yx(7) = s a character of the U(1)“ chiral algebra, and A= | x; — X; \2/2.
n(z)?

o Upper bound on the smallest Al-j < upper bound on the density of all sphere packings in R4,

o Poisson summation implies an alternative expression Z(7) = Z P xa(—1/7).
i

= (Can use standard bootstrap techniques to prove upper bounds on sphere packing density.



Resulting BOllIld [Cohn, Elkies *01]

O -
Ao
0.1 -
Ebig
log(density)
-0.2 -
d
Leech
—0.3 - best known packings

| | | | | | | | |
0 5 10 15 20 25 50



Sharp Bounds for d=8 and d=24

o Viazovska (2016): the Cohn-Elkies upper bound is sharp in d = 8, saturated by the Ly lattice.

o Similarly, the Cohn-Elkies upper bound is sharp in d = 24, saturated by the Leech lattice.

Method of proof: (translated to CFT language)

o Construct the analytic functional for the bootstrap problem with U(1)¢ characters.

o Can recover Viazovska’s magic function from the analytic functional for 1D conformal bootstrap.

3
— A = — —
d—8,24 |4 o



Summary

General problem: 0 = Ay, < A; < A, < ..., maximize A, subject to:
1. Four-point bootstrap: Z | /; |2GAA}”(z) = Z | /; IZGAA}"(I — 7) GAA"’(z) = 727N, F (A, A; 24, 7)
=0 i=0

Optimal solution: A} = 2A , + 1 forall A, > 0.

o o e2ﬂiT(A 61_21)
2. Virasoro modular bootstrap: Z £17 Xp(T) = Z 17 X (=1/7) Xa(7) = n(7)?
=0 i=0
Optimal solution: A; = 1 forc =4 and A; =2 forc = 12.
00 00 ; eZﬂiTA
3. Sphere packing bootstrap: 1P 4@ =Y |fI7 x4 (-1/7) xiu(r) =
% A, % A, A n(z)d

Optimal solution: A; = 1 ford = 8 and A, = 2 for d = 24.

o Solution of 2. and 3. < solution of 1. for Aw = 1/2 and Aw = 3/2.



Thank you!
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