Stress-Energy Tensor in Liouville CFT

Joona Oikarinen

University of Helsinki

Probability and CFT Agay 2022

Outline

- SE-tensor in classical Liouville CFT
 - Uniformisation of Riemann surfaces
 - Accessory parameters
 - Toy computation for the 2nd part
- SE-tensor in probabilistic Liouville CFT by varying the background metric
 - Conformal Ward identities on the sphere (joint work with A. Kupiainen)
 - Higher genus surfaces

Conformal Symmetry

• Fix a compact orientable Riemannian surface (Σ, g) and consider an action functional

$$\varphi \mapsto S(\varphi, g)$$
,

satisfying the diffeomorphism covariance property

$$S(\psi^* \varphi, \psi^* g) = S(\varphi, g), \quad \psi \in \mathsf{Diff}(\Sigma).$$

and Weyl invariance

$$S(\varphi, e^{\omega}g) = S(\varphi, g), \quad \omega \in C^{\infty}(\Sigma, \mathbb{R}).$$

ullet These properties imply that for $\psi:(\Sigma,g) o(\Sigma,g)$ conformal

$$S(\psi^*\varphi,g)=S(\varphi,g).$$

 The group of conformal maps ψ : Σ → Σ is finite-dimensional (possibly 0). Weyl invariance gives a more general definition of conformal symmetry.

Holomorphic Stress-Energy Tensor

We define the Stress-Energy Tensor T by

$$T_{lphaeta}(z) := -4\pi rac{\delta S(\phi_g,g)}{\delta g^{lphaeta}(z)},$$

where φ_g is the minimiser of the action. I.e. if $g_{\varepsilon}=g+\varepsilon f$ for f smooth symmetric 2-tensor, then T is the distribution

$$\int_{\Sigma} \langle f, T
angle_g dv_g := -4\pi \partial_{arepsilon} |_0 S(\varphi_g, g_{arepsilon}).$$

- Weyl Invariance $\implies \operatorname{Tr}_g(T) = 0$
- Diffeomorphism covariance \implies Div_g(T) = 0.
- In 2D these two properties imply that, in conformal coordinates,

$$T_{z\bar{z}} = T_{\bar{z}z} = 0$$
, $\partial_{\bar{z}} T_{zz} = 0$, $\partial_{z} T_{\bar{z}\bar{z}} = 0$.

Classical Liouville Field Theory

• Liouville Action on a Riemannian surface (Σ, g)

$$S_L(\varphi, g, \mathbf{x}) = \int_{\Sigma} \left(\frac{1}{2} |\nabla^g \varphi|_g^2 + R_g \varphi + 2e^{\varphi} \right) dv_g - 4\pi \sum_{j=1}^n \alpha_j \varphi(x_j).$$

- \bullet R_g the scalar curvature
- $\alpha_j \in (-\infty, 1]$, $\sum_{j=1}^n \alpha_j > 2(1 \text{genus})$.
- $\mathbf{x} = (x_1, \dots, x_n) \in \Sigma^n$, $x_i \neq x_j$ for $i \neq j$.
- Euler–Lagrange equation $\frac{\delta}{\delta \varphi} S_L = 0$

$$\Delta_{g}\varphi = R_{g} + 2e^{\varphi} - 4\pi \sum_{j=1}^{n} \alpha_{j} \delta_{g,x_{j}}. \tag{1}$$

- If $\varphi_{g,\mathbf{x}}$ solves (1), then $R_{e^{\varphi_{g,\mathbf{x}}}g}(z) = -2$ for $z \in \Sigma \setminus \{x_1, \dots x_n\}$.
- $e^{\varphi_{g,\mathbf{x}}}g$ describes a hyperbolic surface $\Sigma_{\alpha,\mathbf{x}}$ with
 - conical singularity at x_i of angle $2\pi(1-\alpha_i)$ when $\alpha_i < 1$
 - cusp (puncture) at x_i when $\alpha_i = 1$

Minimiser

• Liouville Action on a Riemannian surface (Σ, g)

$$S_L(\varphi, g, \mathbf{x}) = \int_{\Sigma} \left(\frac{1}{2} |\nabla^g \varphi|_g^2 + R_g \varphi + 2e^{\varphi} \right) dv_g - 4\pi \sum_{j=1}^n \alpha_j \varphi(x_j), \quad (2)$$

$$\Delta_g \varphi = R_g + 2e^{\varphi} - 4\pi \sum_{j=1}^n \alpha_j \delta_{g, x_j}.$$

• The source term $-\alpha_j \delta_{g, x_j}$ forces the solution $\varphi_{g, \mathbf{x}}$ to have the asymptotic behaviour (for $\alpha_j < 1$)

$$\varphi_{g,\mathbf{x}}(z) = -2\alpha_j \log d_g(z, x_j) + O(1), \quad z \to x_j. \tag{3}$$

• The function $\varphi_{g,\mathbf{x}}$ is the minimiser of $\varphi \mapsto S_L(\varphi,g,\mathbf{x})$ over functions φ that are smooth on $\Sigma \setminus \{x_1,\ldots x_n\}$ and satisfy (3), which means that (2) has to be regularised (substract infinity).

Classical symmetries

• **Diffeomorphism Covariance**: for $\psi \in \mathsf{Diff}(\Sigma)$

$$S_L(\psi^*\varphi,\psi^*g,\psi^{-1}(\mathbf{x})) = S_L(\varphi,g,\mathbf{x})$$

• Weyl Anomaly: for $\omega \in C^{\infty}(\Sigma, \mathbb{R})$

$$S_L(\varphi, e^{\omega}g, \mathbf{x}) = S_L(\varphi + \omega, g, \mathbf{x}) - S_L^0(\omega, g) - \sum_{j=1}^n \Delta_{\alpha_j}\omega(x_j),$$

where $S^0_L(\phi,g)=\int ({1\over 2}|
abla^g\omega|_g^2+R_g\omega)dv_g$ and $\Delta_{lpha_j}=lpha_j(1-{lpha_j\over 2}).$

ullet The shift $\phi o\phi+\omega$ is natural because $e^\phi(e^\omega g)=e^{\phi+\omega}g$.

SE-tensor in classical LCFT

Recall

$$\mathcal{T}_{zz} = -4\pi \frac{\delta S_L(\varphi_{g,\mathbf{x}},g,\mathbf{x})}{\delta g^{zz}}$$

• Varying the Dirichlet energy and the curvature w.r.t. g one gets

$$T_{zz} = \nabla_z^2 \varphi_{g,\mathbf{x}} - \frac{1}{2} (\nabla_z \varphi_{g,\mathbf{x}})^2$$
.

• The Liouville equation $\Delta_g \varphi_{g,\mathbf{x}} = R_g + 2e^{\varphi_{g,\mathbf{x}}}$ and the behaviour $\varphi_{g,\mathbf{x}}(z) \overset{z \to x_j}{\simeq} -2\alpha_j \log|z-x_j|$ imply

$$T_{zz}(z) = \sum_{j=1}^{n} \left(\frac{\Delta_{\alpha_j}}{(z - x_j)^2} + \frac{c_j}{z - x_j} \right) + \text{smooth}$$

where $\Delta_{\alpha_j} = \alpha_j (1 - \frac{\alpha_j}{2})$ and $c_j \in \mathbb{C}$.

Accessory parameters

• Set $\Sigma = \mathbb{S}^2$, $g = |dz|^2$, $\varphi_{\mathbf{x}}(z) \sim -4 \ln |z|$ when $|z| \to \infty$. Then

$$T_{zz}(z) = \sum_{j=1}^{n} \left(\frac{\Delta_{\alpha_j}}{(z-x_j)^2} + \frac{c_j}{z-x_j} \right).$$

- Residues c_j are the **accessory parameters**. Geometric objects that are related to uniformisation and Weil–Petersson metric ($\alpha_i = 1$).
- Polyakov conjectured in the 80's that

$$c_j = -\partial_{x_j} S_L(\varphi_{\mathbf{x}}, |dz|^2, \mathbf{x})$$
(4)

- Polyakov's argument was to take a semi-classical limit of the first Conformal Ward identity of quantised Liouville.
 - Proven rigorously using probabilistic LCFT by Lacoin–Rhodes–Vargas, 2019.
- Takhtajan–Zograf proved (4) in a classical setting (1988, 2002).
 - Based on a relation between the $\varphi_{\mathbf{x}}$ and the uniformising map of $\Sigma_{\alpha,\mathbf{x}}$.

Accessory parameters

- Uniformisation theorem: there is a biholomorphism $\Sigma_{\alpha,\mathbf{x}} \to \mathbb{D}/\Gamma$, where $\Gamma \subset \mathsf{PSL}(2,\mathbb{R})$ is a subgroup (Fuchsian when $\alpha_j = 1 \frac{1}{n}$, $n \in \mathbb{N} \cup \{\infty\}$).
- ullet The covering map $J:\mathbb{D} o\Sigma$ defines a hyperbolic metric $J_*g_\mathbb{D}$ on $\Sigma_{lpha,\mathbf{x}}$.
- How are $e^{\varphi_{\mathbf{x}}}|dz|^2$ and $J_*g_{\mathbb{D}}$ related? A computation shows that $e^{\varphi_{\mathbf{x}}}|dz|^2=J_*g_{\mathbb{D}}$ if

$$\mathscr{S}(J^{-1}) = \partial_z^2 \phi_{\mathbf{x}} - \frac{1}{2} (\partial_z \phi_{\mathbf{x}})^2 = \mathcal{T}_{zz} \,,$$

where \mathscr{S} is the Schwarzian derivative $\mathscr{S}(f) = \left(\frac{f''}{f'}\right)' - \frac{1}{2}\left(\frac{f''}{f'}\right)^2$.

Using this, Takhtajan–Zograf compute, in the conical case, that

$$\partial_{x_j} \varphi_{\mathbf{x}}(z) = -\frac{\alpha_j}{z - z_j} + \frac{c_j}{\alpha_j} + O((z - z_j)^{1 - 2\alpha_j}) \quad z \to x_j.$$

• Using this, they eventually get $c_j = -\partial_{x_j} S_L(\varphi_{\mathbf{x}}, |dz|^2, \mathbf{x})$.

- We want to compute T_{zz} by using the symmetries
- **Diffeomorphism Covariance**: for $\psi \in \mathsf{Diff}(\Sigma)$

$$S_L(\psi^*\varphi,\psi^*g,\psi^{-1}(\mathbf{x})) = S_L(\varphi,g,\mathbf{x})$$

• Weyl Anomaly: for $\omega \in C^{\infty}(\Sigma, \mathbb{R})$

$$S_L(\varphi, e^{\omega}g, \mathbf{x}) = S_L(\varphi + \omega, g, \mathbf{x}) - A(\omega, g) - \sum_{j=1}^n \Delta_{\alpha_j}\omega(x_j),$$

- We want to do the following:
 - **1** Perturb the metric: $g_{\varepsilon} = g + \varepsilon f$
 - ② Apply the symmetries to $S_L(\varphi_{g,x}, g_{\varepsilon}, \mathbf{x})$
 - 3 Get a formula for T_{zz} by differentiation
- This leads to the "classical Conformal Ward identity", and especially the formula for the accessory parameters.

(ロ) (部) (注) (注) (注) の(○)

Moduli Space

ullet Every smooth metric g on Σ has a decomposition

$$g=e^{\omega}\psi^{*}\hat{g}(\tau),$$

where $\omega \in C^{\infty}(\Sigma, \mathbb{R})$, $\psi \in \text{Diff}(\Sigma)$ and $\tau \in \text{Mod}(\Sigma)$.

- $\{\hat{g}(\tau)\}_{\tau \in \mathsf{Mod}(\Sigma)}$ is a fixed family of constant curvature metrics.
- ullet Mod(Σ) is the space of conformal (or complex) structures

$$\mathsf{dim}_{\mathbb{R}}\,\mathsf{Mod}(\Sigma) = \begin{cases} 0\,, & \mathsf{genus} = 0\,, \\ 2\,, & \mathsf{genus} = 1\,, \\ 6\,\mathsf{genus} - 6\,, & \mathsf{genus} \geq 2\,. \end{cases}$$

• If $\Sigma = \mathbb{S}^2$, then $g = e^{\omega} \psi^* \hat{g}$ for a single fixed metric \hat{g} .

Sphere: trivial moduli space

- Let $\Sigma = \mathbb{S}^2$ and $g_{\varepsilon}^{zz} = g^{zz} + \varepsilon f^{zz}$ for some smooth f^{zz} with support away from $\{x_1, \dots, x_n\}$.
- Rewrite this as $g_{\varepsilon}=e^{\omega_{\varepsilon}}\psi_{\varepsilon}^{*}g$, where ψ_{ε} solves the Beltrami equation

$$\partial_{\bar{z}}\psi_{\varepsilon} = \mu_{\varepsilon}\partial_{z}\psi_{\varepsilon}$$
,

where $\mu_{\varepsilon} = -\frac{\varepsilon}{2\pi} f^{zz} g_{z\bar{z}} + O(\varepsilon^2)$, $\psi_{\varepsilon}(z) = z + O(\varepsilon)$.

Classical theory implies that

$$\psi_{\varepsilon}(z) = z + \mathscr{C} \sum_{k=0}^{\infty} (\mu_{\varepsilon} \partial_{z} \mathscr{C})^{k} \mu_{\varepsilon}(z),$$

where $\mathscr C$ is the Cauchy transform $(\mathscr Ch)(w)=\frac{1}{\pi}\int_{\mathbb C}\frac{h(z)}{w-z}dv_g(z)$.

• It follows that $(\varepsilon,z)\mapsto \psi_{\varepsilon}(z)$ is C^{∞} and

$$\begin{split} \dot{\psi}(w) &:= \partial_{\varepsilon}|_{0} \psi_{\varepsilon}(w) = -\frac{1}{4} \mathscr{C}(f^{zz})(w), \\ \dot{\omega}(w) &:= \partial_{\varepsilon}|_{0} \omega_{\varepsilon}(w) = -\partial_{w} \dot{\psi}(w) - \partial_{w} \sigma(w) \dot{\psi}(w), \quad (g = e^{\sigma} |dz|^{2}). \end{split}$$

• For $g_{\varepsilon}=e^{\omega_{\varepsilon}}\psi_{\varepsilon}^{*}g$ the symmetries lead to

$$S_{L}(\varphi_{g,\mathbf{x}},g_{\varepsilon},\mathbf{x}) = S_{L}(\varphi_{g,\mathbf{x}} \circ \psi_{\varepsilon} + \omega_{\varepsilon} \circ \psi_{\varepsilon},g,\psi_{\varepsilon}^{-1}(\mathbf{x})) \\ - S_{L}^{0}(\omega_{\varepsilon} \circ \psi_{\varepsilon},g) - \sum_{j=1}^{n} \Delta_{\alpha_{j}}\omega_{\varepsilon}(x_{j}).$$

- Now we can compute everything. The relevant terms are:
- ullet To compute the first term, we first write $({f x} \mapsto {f arphi}_{g,{f x}}$ is smooth)

$$arphi_{\mathsf{g},\mathsf{x}} \circ \psi_{arepsilon} + \omega_{arepsilon} \circ \psi_{arepsilon} = arphi_{\mathsf{g},\psi_{arepsilon}^{-1}(\mathsf{x})} + O(arepsilon)$$

Then we use the fact that $\varphi_{g,\psi_{\varepsilon}^{-1}}$ is the minimiser to get

$$\begin{split} \partial_{\varepsilon}|_{0}S_{L}\big(\varphi_{g,\psi_{\varepsilon}^{-1}(\mathbf{x})} + O(\varepsilon), g, \psi_{\varepsilon}^{-1}(\mathbf{x})\big) &= \partial_{\varepsilon}|_{0}S_{L}\big(\varphi_{g,\psi_{\varepsilon}^{-1}(\mathbf{x})}, g, \psi_{\varepsilon}^{-1}(\mathbf{x})\big) \\ &= -\sum_{i=1}^{n} \dot{\psi}(x_{i})\partial_{x_{i}}S_{L}(\varphi_{g,\mathbf{x}}, g, \mathbf{x}). \end{split}$$

• Recall also that $\dot{\omega}(x_j) = \partial_{x_i} \dot{\psi}(x_j) + \partial_{x_i} \sigma(x_j) \dot{\psi}(x_j)$.

14 / 26

We get

$$4\pi \partial_{\varepsilon}|_{0}S_{L}(\varphi_{g,\mathbf{x}},g_{\varepsilon},\mathbf{x}) = \int_{\mathbb{C}} f^{zz}(z) \sum_{j=1}^{n} \frac{\partial_{x_{j}}S_{L}(\varphi_{g,\mathbf{x}},g,\mathbf{x})}{x_{j}-z} dv_{g}(z)$$

$$+ \int_{\mathbb{C}} f^{zz}(z) \sum_{j=1}^{n} \left(\frac{\Delta_{\alpha_{j}}}{(z-x_{j})^{2}} + \frac{\Delta_{\alpha_{j}}\partial_{x_{j}}\sigma(x_{j})}{x-z_{j}} \right) dv_{g}(z)$$

$$- \partial_{\varepsilon}|_{0}S_{L}^{0}(\omega_{\varepsilon},g).$$

• Left-hand side is equal to $\int f^{zz} T_{zz} dv_g(z)$ by definition so we get

$$T_{zz}(z) = \sum_{j=1}^{n} \left(\frac{\Delta_{\alpha_j}}{(z-x_j)^2} + \frac{\Delta_{\alpha_j} \partial_{x_j} \sigma(x_j) - \partial_{x_j} S_L(\phi_{g,\mathbf{x}},g,\mathbf{x})}{z-x_j} \right) + \dots$$

• In the $g = |dz|^2$ case (no background metric) we recover the formula $c_i = -\partial_{x_i} S_L(\varphi_{\sigma,\mathbf{X}},g,\mathbf{X})$.

Quantized Liouville

$$S_L(\varphi,g) = \frac{1}{4\pi} \int_{\Sigma} \left(|\nabla^g \varphi|_g^2 + \frac{Q}{Q} R_g \varphi + 4\pi \mu e^{\gamma \varphi} \right) dv_g,$$

$$\gamma \in (0,2), \ Q = \frac{2}{\gamma} + \frac{\gamma}{2}, \ \mu > 0.$$

• Path integral: (Euclidean) Liouville QFT

$$\langle F \rangle_g := \int F(\varphi) e^{-S_L(\varphi,g)} D\varphi$$

Probabilistic definition of the path integral

$$\langle F \rangle_g := \int_{\mathbb{R}} \mathbb{E}[F(c+X_g)e^{-\frac{Q}{4\pi}\int(c+X_g)R_gdv_g - \mu e^{\gamma c}\int e^{\gamma X_g}dv_g}]dc,$$

where $\mathbb E$ is expectation w.r.t. the zero-mean GFF X_g and $e^{\gamma X_g} dv_g$ is the GMC measure of X_g .

• Primary Fields $V_{\alpha}(x) = e^{\alpha(c+X(x))}$.

Symmetries of the Path Integral

- Diffeomorphism covariance $\langle \prod_{i=1}^N V_{\alpha_i}(x_i) \rangle_{\psi^*g} = \langle \prod_{i=1}^N V_{\alpha_i}(\psi(x_i)) \rangle_g$.
- Weyl Anomaly

$$\langle \prod_{i=1}^N V_{\alpha_i}(x_i) \rangle_{\boldsymbol{e^{\omega}}g} = e^{c_L S_L^0(\boldsymbol{\omega},g) - \sum_{i=1}^N \Delta_{\alpha_i} \boldsymbol{\omega}(x_i)} \langle \prod_{i=1}^N V_{\alpha_i}(x_i) \rangle_g \,.$$

- Central Charge $c_L = 1 + 6Q^2$.
- Conformal Dimension $\Delta_{\alpha} = \frac{\alpha}{2}(Q \frac{\alpha}{2})$.
- Correlation functions of the SE-tensor

$$\langle T_{\alpha\beta}(z)F\rangle_g := 4\pi \frac{\delta}{\delta g^{\alpha\beta}(z)} \langle F\rangle_g$$
.

• I.e. for $g_{\varepsilon}^{\alpha\beta} = g^{\alpha\beta} + \varepsilon f^{\alpha\beta}$

$$\sum_{\alpha\beta}\int f^{\alpha\beta}\langle T_{\alpha\beta}F\rangle_g dv_g(z):=4\pi\partial_\varepsilon|_0\langle F\rangle_{g_\varepsilon}.$$

Sphere: Outline

- **1** Perturb the metric $g_{\varepsilon}=g+\sum_k \varepsilon_k f_k=e^{\omega_{\varepsilon}}\psi_{\varepsilon}^*g$
- Use this series expansion to show that

 - When supports of f_k 's are disjoint, we show that this distribution is given in terms of a point-wise defined function, which we denote by $\prod_k \frac{\delta}{\delta \sigma^2 k^2 k} \langle \prod_i V_{\alpha_i}(x_i) \rangle_g$
- **3** Show that $\prod_k \frac{\delta}{\delta g^{z_k z_k}} \langle \prod_i V_{\alpha_i}(x_i) \rangle_g$ has a Weyl anomaly and diffeomorphism covariance relations
- Oerive the Conformal Ward identities by varying the metric and using these relations

Sphere: First Ward identity

• First Conformal Ward identity: $g^{zz}_{arepsilon}=g^{zz}+arepsilon f^{zz}$ and $g_{arepsilon}=e^{\omega_{arepsilon}}\psi^*_{arepsilon}g$

$$\begin{split} \partial_{\varepsilon}|_{0}\langle\prod_{i=1}^{N}V_{\alpha_{i}}(x_{i})\rangle_{g_{\varepsilon}} &= \partial_{\varepsilon}|_{0}\left(e^{c_{L}S_{L}^{0}(\omega_{\varepsilon},\psi_{\varepsilon}^{*}g)-\sum_{i=1}^{N}\Delta_{\alpha_{i}}\omega_{\varepsilon}(x_{i})}\langle\prod_{i=1}^{N}V_{\alpha_{i}}(\psi_{\varepsilon}(x_{i}))\rangle_{g}\right) \\ &= \left(-\sum_{i=1}^{N}\Delta_{\alpha_{i}}\dot{\omega}_{\varepsilon}(x_{i})+\sum_{i=1}^{N}\dot{\psi}(x_{j})\partial_{x_{j}}\right)\langle\prod_{i=1}^{N}V_{\alpha_{i}}(x_{i})\rangle_{g} \\ &+\partial_{\varepsilon}|_{0}c_{L}S_{L}^{0}(\omega_{\varepsilon},\psi_{\varepsilon}^{*}g)\langle\prod_{i=1}^{N}V_{\alpha_{i}}(x_{i})\rangle_{g} \\ &= \int f^{zz}(z)\left(\sum_{i=1}^{N}\left(\frac{\Delta_{\alpha_{j}}}{(z-x_{j})^{2}}+\frac{\Delta_{\alpha_{j}}\partial_{x_{j}}\sigma(x_{j})+\partial_{x_{j}}}{z-x_{j}}\right)\langle\prod_{i=1}^{N}V_{\alpha_{i}}(x_{i})\rangle_{g}dv_{g}(z)+\ldots\right. \end{split}$$

Theorem (J.O. 2019)

$$(x_1,\ldots,x_N)\mapsto \langle \prod_{i=1}^N V_{\alpha_i}(x_i)\rangle_g$$
 is C^∞ when $x_i\neq x_i$ for $i\neq j$.

Sphere: Higher Ward identities

- For higher Ward identities (more T-insertions) one takes $g_{\varepsilon} = g + \sum_{k} \varepsilon_{k} f_{k}$ with f_{k} having disjoint supports.
- After showing that $\prod_k \frac{\delta}{\delta g^{z_k z_k}} \langle \prod_{i=1}^m V_{\alpha_i}(x_i) \rangle_g$ is defined point-wise, we derive the Weyl anomaly

$$\begin{split} &\langle T_{zz}(z) \prod_{i=1}^{m} V_{\alpha_{i}}(x_{i}) \rangle_{\mathbf{e}^{\omega}g} \\ &= e^{c_{L}S_{L}^{0}(\boldsymbol{\omega},g) - \sum_{i} \Delta_{\alpha_{i}} \boldsymbol{\omega}(x_{i})} \langle \left(T_{zz}(z) + 4\pi c_{L} \frac{\delta}{\delta g^{zz}(z)} S_{L}^{0}(\boldsymbol{\omega},g) \right) \prod_{i=1}^{m} V_{\alpha_{i}}(x_{i}) \rangle_{g} \,. \end{split}$$

and diffeomorphism covariance

$$\langle T_{zz}(z) \prod_{i=1}^{m} V_{\alpha_i}(x_i) \rangle_{\boldsymbol{\psi}^* \boldsymbol{g}} = \langle (\boldsymbol{\psi}^* T)_{zz}(z) \prod_{i=1}^{m} V_{\alpha_i}(\boldsymbol{\psi}_{\boldsymbol{\varepsilon}}(x_i)) \rangle_{\boldsymbol{g}},$$

where $(\psi^* T)_{\mu\nu} = \sum_{\alpha,\beta} (D\psi^T)_{\mu\alpha} (T_{\alpha\beta} \circ \psi)(D\psi)_{\beta\nu}$.

 With these relations, deriving the higher conformal Ward identities works analogously to the case of the first Ward identity

Result

Theorem (A. Kupiainen, J.O. 2020)

For $\Sigma = \mathbb{S}^2$, the correlation functions $\langle \prod_{i=1}^m V_{\alpha_i}(x_i) \rangle_{\mathfrak{g}}$ are smooth with respect to g. The functional derivatives with respect to g are smooth functions for non-coinciding z_i, x_i , and they satisfy the Conformal Ward Identities

$$\begin{split} \langle \prod_{j=1}^{n} T_{zz}(z_{j}) \prod_{i=1}^{m} V_{\alpha_{i}}(x_{i}) \rangle_{g} &= \sum_{k=1}^{n} \frac{c_{L}/2}{(z_{1}-z_{k})^{4}} \langle \prod_{j\neq 1,k}^{n} T_{zz}(z_{j}) \prod_{i=1}^{m} V_{\alpha_{i}}(x_{i}) \rangle_{g} \\ &+ \sum_{k=2}^{n} \left(\frac{2}{(z_{1}-z_{k})^{2}} + \frac{\partial_{z_{k}}}{z_{1}-z_{k}} \right) \langle \prod_{j=2}^{n} T_{zz}(z_{j}) \prod_{i=1}^{m} V_{\alpha_{i}}(x_{i}) \rangle_{g} \\ &+ \sum_{k=1}^{m} \left(\frac{\Delta_{\alpha_{k}}}{(z_{1}-x_{k})^{2}} + \frac{\partial_{z_{k}} + \Delta_{\alpha_{k}} \partial_{z_{k}} \sigma(z_{k})}{z_{1}-x_{k}} \right) \langle \prod_{j=2}^{n} T_{zz}(z_{j}) \prod_{i=1}^{m} V_{\alpha_{i}}(x_{i}) \rangle_{g} \end{split}$$

Higher genus

- In general $g_{\varepsilon} = g + \varepsilon f$ takes the form $g_{\varepsilon} = e^{\omega_{\varepsilon}} \psi_{\varepsilon}^* \hat{g}(\tau_{\varepsilon})$ for some moduli parameter $\tau_{\varepsilon} \in \mathsf{Mod}(\Sigma)$.
- After Weyl anomaly and diffeo covariance we still have

$$\partial_{\varepsilon}|_{0}\langle\prod_{i=1}^{N}V_{\alpha_{i}}(x_{i})\rangle_{\hat{g}(\tau_{\varepsilon})}$$

 No symmetries to use, have to compute explicitly by varying the underlying Gaussian measure

$$\partial_{\varepsilon}|_{0}\mathbb{E}_{g_{\varepsilon}}[F(X)] = \frac{1}{2}\int_{\Sigma}\dot{G}_{g}(x,y)\mathbb{E}_{g}\left[\frac{\delta}{\delta X(x)}\frac{\delta}{\delta X(y)}F(X)\right]dv_{g}(x)dv_{g}(y),$$

where
$$\dot{G}_g(x,y) = \partial_{\varepsilon}|_0 \mathbb{E}_{g_{\varepsilon}}[X(x)X(y)].$$

 Leads to complicated expressions, which can be shown to be well-defined using properties of Liouville correlation functions.

Higher genus: First Ward identity

• We have $g^{zz}_{\varepsilon}=g^{zz}+\varepsilon f^{zz}$, $g_{\varepsilon}=e^{\omega_{\varepsilon}}\psi_{\varepsilon}^{*}\hat{g}(au_{\varepsilon})$ and want to compute

$$\partial_{\varepsilon}\langle \prod_{i=1}^{N} V_{\alpha_{i}}(x_{i})\rangle_{g_{\varepsilon}} = \frac{\partial_{\varepsilon}}{\partial_{\varepsilon}} \left(e^{c_{L}S_{L}^{0}(\omega_{\varepsilon}, \psi_{\varepsilon}^{*}\hat{g}(\tau_{\varepsilon}) - \sum_{i=1}^{N} \Delta_{\alpha_{i}} \omega_{\varepsilon}(x_{i})} \langle \prod_{i=1}^{N} V_{\alpha_{i}}(\psi_{\varepsilon}(x_{i}))\rangle_{\hat{g}(\tau_{\varepsilon})} \right)$$

- Again $\partial_{\bar{z}}\dot{\psi} = -\frac{1}{2\pi}f^{zz}g_{z\bar{z}}$, but we don't have a Cauchy transform.
- Instead, it holds that

$$\dot{\psi} = -(P_g)^{-1}f$$

where P_g maps vector fields to symmetric traceless 2-tensors given by

$$P_g u = 2S(\nabla^g u^{\flat}) - \operatorname{Tr}_g(S\nabla^g u^{\flat})g = 2L_u g - \operatorname{Tr}_g(L_u g)g,$$

where S denotes symmetrisation and L denotes the Lie derivative.

• $(P_g)^{-1}$ sends the perturbation f to the vector field u for which $\psi_{\mathcal{E}}(z) = z + \varepsilon u(z) + O(\varepsilon^2)$ (it kills the part of f that deforms the complex structure). Appears (in some form) in Eguchi–Ooguri, 1987¹.

 1 "Standard differential operator taking a vector into traceless symmetric tensor:

Higher genus: Higher Ward identities

For higher Ward identities we set

$$g_{\varepsilon} = g + \sum_{k=1}^{n} \varepsilon_k f_k,$$

with f_k having disjoint supports.

• To show that $\prod_k \partial_{\varepsilon_k} |_0 \langle \prod_{i=1}^N V_{\alpha_i}(x_i) \rangle_{g_{\varepsilon}}$ is well-defined need to consider e.g.

$$\partial_{\varepsilon_{1}}\partial_{\varepsilon_{2}}\langle\prod_{i=1}^{N}V_{\alpha_{i}}(\psi_{\varepsilon_{1}}(x_{i}))\rangle_{\hat{g}(\tau_{\varepsilon_{2}})}=\sum_{j}\left(\partial_{\varepsilon_{1}}\psi_{\varepsilon_{1}}(x_{j})\right)\partial_{x_{j}}\left(\partial_{\varepsilon_{2}}\langle\prod_{i=1}^{N}V_{\alpha_{i}}(x_{i})\rangle_{\hat{g}(\tau_{\varepsilon_{2}})}\right)$$

- I.e. need smoothness of $\mathbf{x} \mapsto \partial_{\varepsilon}|_{0} \langle \prod_{i=1}^{N} V_{\alpha_{i}}(x_{i}) \rangle_{\hat{g}(\tau_{\varepsilon})}$. Can be proven with the method used for smoothness of $\mathbf{x} \mapsto \langle \prod_{i=1}^{N} V_{\alpha_{i}}(x_{i}) \rangle_{g}$ (technical).
- Decompose $f_k = f_k^{\bar{\psi},\omega} + f_k^{\tau}$ (no more disjoint supports!)
- Showing that $\prod_k \frac{\delta}{\delta g^{2k^2k}} \langle \prod_{i=1}^N V_{\alpha_i}(x_i) \rangle_g$ is defined point-wise is more technical than on the sphere.

Result

Theorem (J.O. 2021)

The correlation functions are smooth w.r.t. g, and the functional derivatives are smooth functions for non-coinciding z_j, x_i , and they satisfy the Conformal Ward Identities (in terms of the integral kernel $\mathscr G$ of P_g^{-1})

$$\begin{split} &\langle \prod_{j=1}^{n} T_{z_{j}z_{j}}(z_{j}) \prod_{i=1}^{m} V_{\alpha_{i}}(x_{i}) \rangle_{g} = \frac{c_{L}}{12} \sum_{k=1}^{n} \nabla_{z_{k}}^{3} \mathscr{G}_{z_{1}z_{1}}^{z_{k}}(z_{k}, z_{1}) \langle \prod_{j\neq 1, i}^{n} T_{z_{j}z_{j}}(z_{j}) \prod_{i=1}^{m} V_{\alpha_{i}}(x_{i}) \rangle_{g} \\ &+ \sum_{k=2}^{n} \left(2 \nabla_{z_{k}} \mathscr{G}_{z_{1}z_{1}}^{z_{k}}(z_{k}, z_{1}) + \mathscr{G}_{z_{1}z_{1}}^{z_{k}}(z_{k}, z_{1}) \nabla_{z_{k}} \right) \langle \prod_{j=2}^{n} T_{z_{j}z_{j}}(z_{j}) \prod_{i=1}^{m} V_{\alpha_{i}}(x_{i}) \rangle_{g} \\ &+ \sum_{k=1}^{m} \left(\Delta_{\alpha_{k}} \nabla_{x_{k}} \mathscr{G}_{z_{1}z_{1}}^{x_{k}}(x_{k}, z_{1}) + \mathscr{G}_{z_{1}z_{1}}^{x_{k}}(x_{k}, z_{1}) \nabla_{x_{k}} \right) \langle \prod_{j=2}^{n} T_{z_{j}z_{j}}(z_{j}) \prod_{i=1}^{m} V_{\alpha_{i}}(x_{i}) \rangle_{g} \\ &+ \langle T_{m}(z_{1}) \prod_{k=2}^{n} T_{z_{k}z_{k}}(z_{k}) \prod_{i=1}^{m} V_{\alpha_{i}}(x_{i}) \rangle_{g} , \qquad \mathscr{G}_{zz}^{w}(w, z) = \frac{1}{z - w} + \text{smooth} \end{split}$$

- Kupiainen, O.: Stress-Energy in Liouville Conformal Field Theory. Journal of Statistical Physics volume 180, pages 1128–1166 (2020)
- ② O.: Stress-Energy in Liouville Conformal Field Theory on Compact Riemann Surfaces. arXiv:2108.06767 (2021)
- Section 2. Lacoin, Rhodes, Vargas: The semiclassical limit of Liouville conformal field theory. arXiv:1903.08883 (2019)
- Takhtajan, Zograf: On the Liouville equation, accessory parameters and the geometry of the Teichmüller space for the Riemann surfaces of genus 0. Mat. Sb. 132 (1987), 147-166 (Russian); English transl. in: Math. USSR Sb. 60 (1988), 143-161.
- **3** Takhtajan, Zograf: Hyperbolic 2-spheres with conical singularities, accessory parameters and Kähler metrics on $M_{0,n}$. Transactions of the American Mathematical Society. 355. (2002)
- Eguchi, Ooguri: Conformal and current algebras on a general Riemann surface. Nuclear Physics B Volume 282, 1987, Pages 308-328.

Thank you for your attention!