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N
Outline

@ SE-tensor in classical Liouville CFT
e Uniformisation of Riemann surfaces
o Accessory parameters
e Toy computation for the 2nd part
@ SE-tensor in probabilistic Liouville CFT by varying the background
metric
o Conformal Ward identities on the sphere (joint work with A. Kupiainen)
e Higher genus surfaces
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Conformal Symmetry

e Fix a compact orientable Riemannian surface (X,g) and consider an
action functional

¢ 5(9.8),
satisfying the diffeomorphism covariance property
S(v'o.v'g)=S(p.g), weDiff(X).
and Weyl invariance
5(9,e%g) =S(p.8), ®eC7(LR).
@ These properties imply that for y: (¥,g) — (X, g) conformal
S(W*¢7g) = S((P’g)

@ The group of conformal maps y : ¥ — ¥ is finite-dimensional
(possibly 0). Weyl invariance gives a more general definition of
conformal symmetry.
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Holomorphic Stress-Energy Tensor

@ We define the Stress-Energy Tensor T by

65(9g:8)

Top(z) = —4n 527 () ’

where @, is the minimiser of the action. l.e. if g = g+ &f for f
smooth symmetric 2-tensor, then T is the distribution

/):<f’ T>ngg = —4-77:38’05((Pg>g8)'

o Weyl Invariance = Trg(T) =0
o Diffeomorphism covariance = Div,(T) =0.

@ In 2D these two properties imply that, in conformal coordinates,
TZZ:T22207 aszz:O, azTEZZO-
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Classical Liouville Field Theory

@ Liouville Action on a Riemannian surface (X, g)

n
SL((p,g,x):/Z(%\Vg(p|§+Rg(p+2e‘p)dvg—47tZOtj(p(><j).
=1

o Rg the scalar curvature

o o € (—o,1], X7, a; >2(1—genus).

o x=(x1,...,Xp) € X", x; # xj for i # j.
@ Euler—Lagrange equation %SL =0

n
Dg@ =Ry +2e? —4m ) 0;6g - (1)
j=1
o If @g x solves (1), then Repexg(z) = =2 for z€ X\ {x1,...x,}.
o e%xg describes a hyperbolic surface X4 x with
e conical singularity at x; of angle 27(1 — o) when o <1
e cusp (puncture) at x; when o =1
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Minimiser
@ Liouville Action on a Riemannian surface (X, g)

Su(9.8%) = [ (3IVE0[2+ Ryp+2¢%)dvg 4 ). o50(). ()
j=1

n
Dg@=Rg+2e? —4m Y 06, .
j=1

@ The source term —a;0g x; forces the solution @g  to have the
asymptotic behaviour (for o < 1)

Pgx(z) = —20logdg(z,x;)) + O(1), z— x;. (3)

@ The function @4« is the minimiser of ¢ — S; (¢, g,x) over functions
@ that are smooth on X\ {x1,...x,} and satisfy (3), which means
that (2) has to be regularised (substract infinity).
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Classical symmetries

o Diffeomorphism Covariance: for y € Diff(X)

Sy e, vig, v 1 (x) = Si(p.g.%)

e Weyl Anomaly: for o € C*(X,R)
Si(@,e%8,x) = S(@p+w,g,x)— S} (0,8) — ZA%
where SP(9,g) = f(%|ng]§+ Rg@)dvg and Ay, = (1 — %)

@ The shift @ — @ + ® is natural because e?(e®g) = e?%g.
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SE-tensor in classical LCFT

o Recall

nSSL((Pg.,mgv X)

Tzz =4 5gzz

@ Varying the Dirichlet energy and the curvature w.r.t. g one gets

Tzz = ng)gyx - %(Vz(Pg,x)2 .

@ The Liouville equation Ag@g x = Ry +2e%> and the behaviour
Z—X

Pex(2) = —20;5log|z —x;| imply
n Ay, G
T.2(2) :J; ((2_;.)2 + z—xj> +smooth

where Ay, = a;(1 - %) and ¢; € C.
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Accessory parameters

o Set ¥ =S§?, g =|dz|?, ¢x(z) ~ —4In|z| when |z| — eo. Then

Tzz(z):i< By ., g ).

SNE—x)? z-x

Residues ¢; are the accessory parameters. Geometric objects that
are related to uniformisation and Weil-Petersson metric (o =1).

(]

Polyakov conjectured in the 80's that

G =~y 51 (|2, %) *)

Polyakov's argument was to take a semi-classical limit of the first
Conformal Ward identity of quantised Liouville.
e Proven rigorously using probabilistic LCFT by Lacoin—Rhodes—Vargas,
2019.
Takhtajan—Zograf proved (4) in a classical setting (1988, 2002).

o Based on a relation between the @ and the uniformising map of ¥4 .
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Accessory parameters

e Uniformisation theorem: there is a biholomorphism X4 x — D/T,
where I C PSL(2,R) is a subgroup (Fuchsian when o =1—1,
n € NU{eo}).

@ The covering map J:ID — X defines a hyperbolic metric J,gp on X g «.

o How are e%|dz|? and J.gp related? A computation shows that
e?|dz|? = J.gp if

S (I = Z o~ 5(0:04)° = Tz,
where .7 is the Schwarzian derivative . (f) = (%) — 1 (£1)2.

@ Using this, Takhtajan—Zograf compute, in the conical case, that

Ay pul2) =~ + L1 0((z- 7)) 2.
J J

. . L 2
o Using this, they eventually get ¢; = —0dx St(¢x, |dz|*,x).
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We want to compute T, by using the symmetries

Diffeomorphism Covariance: for y € Diff(X)

Sty e, v'g, v i(x)) = Si(9,g,x)

Weyl Anomaly: for o € C*(%,R)
Si(p,e%g,x) = Si(p+w,g,x) —Alw,g) - Z A 0(

o We want to do the following:
© Perturb the metric: g =g+ &f
@ Apply the symmetries to S; (@g ;8 X)
© Get a formula for T,, by differentiation
@ This leads to the ‘“classical Conformal Ward identity”, and especially
the formula for the accessory parameters.
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|
Moduli Space

@ Every smooth metric g on ¥ has a decomposition
g =e"yg(1),

where @ € C*(X,R), y € Diff(X) and 7 € Mod(X).
© {&(7)}reMod(x) is a fixed family of constant curvature metrics.

@ Mod(X) is the space of conformal (or complex) structures

0, genus =0,
dimg Mod(X) =< 2, genus =1,
6genus—6, genus > 2.

o If ¥ =S?, then g = e®y*g for a single fixed metric .
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Sphere: trivial moduli space

o Let ¥ =S? and g7 = g% +&f# for some smooth % with support
away from {x1,...,Xn}.
@ Rewrite this as g; = e® g, where y; solves the Beltrami equation
Oz We = Ue D, Ye

where e = — £ f#Zg,z + 0(€?), Ye(z) = z+ O(e).
@ Classical theory implies that

oo

Ve(2) =2+% Y (106 e (2),

k=0

where ¢ is the Cauchy transform (¢'h)(w) = % [ :’V(_Zl dvg(z).
o It follows that (&,z) — ye(z) is C* and

W(w) = Oeloye(w) = —3€(F)(w),
D(w) := delowe(w) = —Fu (W) — dwo(W)ir(w), (g =e°|dz|?).
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o For g; = e® y;g the symmetries lead to

SL((Pg,Xageax) = SL((Pg,x OVWe+ W0 Ve, g, V’e_l(x))

n

— S (@weove,8) — Y A 0e(x;).

j=1
@ Now we can compute everything. The relevant terms are:
Q Oc[0SL(Pgx 0 Ve + e 0 Ve, 8, Vi (%)),
2] ae|0):}7:1 Aajws(xj)-
@ To compute the first term, we first write (x — @g x is smooth)
Pex O Ve + Qe 0 Ye = @, o+ O(€)
Then we use the fact that Oy is the minimiser to get
eloSL (P y; 1)+ O(€): 8, Ve ' (X)) = FeloSi(Pg 41 ()0 85 Ve (X))

n

= — Z li/()(j)a)gsl_((pg,x’g7x) .

Jj=1
@ Recall also that @(x;) = dx ¥(x;) + dx 0 (x;) ¥(x)).
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o We get

. aXS Qg x,8,X
4n88|05L((pg,x>g£7X):‘/szz(z)zJL(g')

-7 dvg(z)

JAYS JA, Mo 1 ¢
+ fzz(z)z<(z_;j)2+ fX_’:_( J)>dvg(z)

C =]
- 88‘052((087g)'

j=1

o Left-hand side is equal to [ f# T,,dvg(z) by definition so we get

n yA S A 'ax- . _ax‘s &
TZZ(Z):Z( % 29 JG(XJ) G L (@g, gx)>+

j=1 (ZiXJ')2 Z—=Xj

e In the g = |dz|? case (no background metric) we recover the formula
¢ = —0xS1(Pgx,8,%).
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Quantized Liouville

Su(p.g) = / (\vg<p|g+ORg<p+4weW)dvg

7€ (0,2), Q 2+t u>o0
e Path integral: (Euclidean) Liouville QFT

g _/F _SL((Pg (P
@ Probabilistic definition of the path integral

(F)g ;:/E[F(C+Xg)e—%f(C+Xg)Rgdvg—ueVC.feyxé’dvg]dc,
R

where [E is expectation w.r.t. the zero-mean GFF X, and eyxgdvg is
the GMC measure of Xj.

@ Primary Fields Vi (x) = e®(c+X(x)),
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Symmetries of the Path Integral

o Diffeomorphism covariance (TTN 1 Ve, (%)) yg = (TTY.1 Ve (w(x1))) -
o Weyl Anomaly

N \ N
([T Ve (x))eog = 208 L A 00T Vi () g -
i=1 i=1

Central Charge ¢, = 1+6Q>.
Conformal Dimension A, = 3(Q—35).
@ Correlation functions of the SE-tensor

(Tup(2)Flg 1= 475855 (F)s.

l.e. for ggﬁ =gP yerob

Z/faﬁ(TaﬁF>ngg(z) =470 |o(F)eg. -
a,p

Stress-Energy Tensor in Liouville CFT 17 /26



-
Sphere: Outline

© Perturb the metric ge = g+ Y &xfxk = ey g

@ vV, solves a Beltrami equation, so it has a series expansion in terms of
iterated integral transforms

© Use this series expansion to show that

O (f,....fn) = Tk 9%, |o{IT; Vi (xi)) g defines a distribution
@ When supports of f;'s are disjoint, we show that this distribution is
given in terms of a point-wise defined function, which we denote by

T 559 (T Ve, (x0))
© Show that [], &gz%(n; Vi, (xi))g has a Weyl anomaly and
diffeomorphism covariance relations

© Derive the Conformal Ward identities by varying the metric and using
these relations
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Sphere: First Ward identity

o First Conformal Ward identity: g# = g** +¢€f** and g, = e®yg

%l nva, Ve, = 2l (eSO B 800 T Ve ()

i=1

= (— ;Aa;d)s(xi) + Z,l "V(Xj)a)q) <H Ve, (%))

N
+ e locL SP (e, wig) ([ ] Veu (xi)) g

i=1
N A Aaa X)+0x;
= [ @ (4 ) i)+
j=1
Theorem (J.0. 2019)
(X1, xn) = (TTV.; Vi (xi)) g is C= when x; # x; for i # j. J
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Sphere: Higher Ward identities

@ For higher Ward identities (more T-insertions) one takes
8 = g+ Yk €kfi with fi having disjoint supports.

o After showing that [], %(H,ﬂl Vi, (xi))g is defined point-wise, we
derive the Weyl anomaly

<Tzz(z)ﬁ1 Ve (51)) e

— oL S0 (0.8)—Li Ag;0(x) (Toz(2)+ 47tcL5gZLZ(Z)SE(a),g)) IT Ve, (x))e -
i=1
and diffeomorphism covariance
(Tez(2) [T Veu i) yrg = (W Tzz(2) [T Ve (we (1)) g »
i=1 i=1

where (y* T)uv = Za,ﬁ(DV’T)ua(Taﬁ 0 W)(DW)ﬁv-
@ With these relations, deriving the higher conformal Ward identities
works analogously to the case of the first Ward identity.
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Result

Theorem (A. Kupiainen, J.O. 2020)

For ¥ =S?, the correlation functions (II™4 Vi, (xi))g are smooth with
respect to g. The functional derivatives with respect to g are smooth

functions for non-coinciding z;,x;, and they satisfy the Conformal Ward
Identities

H 7—zz Z_} H VOC (XI Z (zlci/zi)4< H TZZ(ZJ) H Vai(xf)>g
k=1 Jj#Lk i=1

n

+ Y (o + %) <fl Tee(5) [T Vs s

k=2
oA Oy +A (z4)
oy Z) ock k
+Z<zl xk)2+ z1— Xk > HTZZZJ H ( )>g
k=1 =1
y
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Higher genus

@ In general g; = g+ €f takes the form g, = e®y;g(7,) for some
moduli parameter 7, € Mod(X).

o After Weyl anomaly and diffeo covariance we still have

N

as’O(H VOC,‘(XI')>§(T€)

i=1

@ No symmetries to use, have to compute explicitly by varying the
underlying Gaussian measure

OloEg [FOO] = | Golx. By sty FOOIdve (X))

where Gg(x,) = 9e[oEg [X (x)X(y)].
@ Leads to complicated expressions, which can be shown to be
well-defined using properties of Liouville correlation functions.
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Higher genus: First Ward identity

o We have g = g# +¢&f?, ge = e® y;g(7e) and want to compute

N N
a€<H Va,-(Xi)> =0 < L SY( a)g,lVgg(Ts)*ZiNﬂAa,-ws(Xf)<H Vai(l//g(X,')»g(fg))
i=1 i=1
e Again dz;y = —if”gzz, but we don't have a Cauchy transform.
@ Instead, it holds that

Y= —(P) f
where P, maps vector fields to symmetric traceless 2-tensors given by
Pyu=2S(VEW’) —Try(SVEW)g = 2L,g — Trg(Lug)g,

where S denotes symmetrisation and L denotes the Lie derivative.
o (Pg)! sends the perturbation f to the vector field u for which
Ve(z) = z+eu(z) + O(€?) (it kills the part of f that deforms the
complex structure). Appears (in some form) in Eguchi—Ooguri, 1987*.
1" Standard differential operator taking a vector into traceless symmetric tensor”
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Higher genus: Higher Ward identities

@ For higher Ward identities we set

n
Be = g+ Z 8kfk7
k=1
with f, having disjoint supports.
o To show that [Ty e, |o(TT.; Vi, (xi))g, is well-defined need to consider
e.g.

N N
a81 882 <I:11 Vai(q/é‘l (Xi))>§(rg2) = Z (881 Ve, (XJ)) an (882 <q Vaf(xf)>§(rgz))

J

o l.e. need smoothness of x i de|o(ITY.; Vo, (%i)) g (2.)-
Can be proven with the method used for smoothness of
x — ([TV.; Vi, (x:))g (technical).
@ Decompose fy, = fk"”“’+ fS (no more disjoint supports!)
e Showing that [, &Ez%(n,{vzl Vi (xi))g is defined point-wise is more
technical than on the sphere.
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Result

Theorem (J.0. 2021)

The correlation functions are smooth w.r.t. g, and the functional
derivatives are smooth functions for non-coinciding z;,x;, and they satisfy
the Conformal Ward Identities (in terms of the integral kernel & of P, *)

(ﬁ qu;(zj)fll Ve, (%i))g = 15 zi: 2.9 (21, 21)( rnI szzj(zj)f[l Vi, (7))

J#FLi

n m
Z (2vzkg2121(zk’zl)+gzlz1 2;21)Vz, H zjz; ZJ H (Xl)>g
k=2 i=1

Ms

>
Il
—

(B Vo Zotls, (0, 21) + 9555, (X0, 21) Vi) <rlz T2(2)) H Vo, (xi)) g
= -

+ <Tm(zl) H sz(zk) H Va,-(Xi)>g, gzmz/(w,z) = W +smooth
k=2 i=1
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Thank you for your attention!
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