Percolation and Gaussian fields

V. Beffara and D. Gayet - Université Grenoble Alpes

Porquerolles, 17-21 June 2019

Plan for the mini-course

- Introduction etc (Monday)
- RSW for well decorrelated fields (Tuesday)
- Sharp thresholds and critical points (from Thursday)

Spherical harmonics / Laplacian eigenfunctions

Random eigenfunction of the Laplacian on the sphere

Random eigenfunction of the Laplacian on the sphere

Consider solutions of the equation

$$
\Delta f+\lambda f=0
$$

on the plane. Particular solutions are given by

$$
f_{\alpha, \beta}(x, y)=\cos (\alpha x+\beta y+\varphi)
$$

with $\alpha^{2}+\beta^{2}=\lambda$. By linearity, one can consider linear combinations of the $f_{\alpha, \beta}$.

Plane waves : two components

Plane waves : three components

Infinitely many components / local limit on the sphere

The limit as a Gaussian field

The local limit of random eigenfunctions of Δ as $\lambda \rightarrow \infty$ is given by a Gaussian field ϕ of covariance

$$
\operatorname{Cov}[\phi(x), \phi(y)]=J_{0}(\|y-x\|)
$$

The covariance oscillates, and decays as $1 / \sqrt{\|y-x\|}$.

One large connected component

Random polynomials / Kostlan ensemble

Random polynomial

Define a random homogeneous polynomial on \mathbb{R}^{3} by

$$
P_{d}(X)=\sum_{|I|=d} a_{l} \sqrt{\frac{(d+2)!}{l!}} X^{\prime}
$$

where the $a_{\text {a }}$ are i.i.d. Gaussians.
Restrict it to the unit sphere.

Restriction to the sphere $(\mathrm{d}=30)$

Restriction to the sphere ($\mathrm{d}=100$)

Restriction to the sphere ($\mathrm{d}=200$)

Restriction to the sphere $(\mathrm{d}=1000)$

Restriction to the sphere $(\mathrm{d}=5000)$

Restriction to the sphere $(\mathrm{d}=10000)$

Restriction to the sphere ($\mathrm{d}=20000$)

Local limit as $d \rightarrow \infty$

The limit as a Gaussian field

$$
Q_{d}(x, y)=\sum_{i+j \leqslant d} a_{i j} \sqrt{\frac{(d+2)!}{i!j!(d-i-j)!}} x^{i} y^{j}
$$

Rescale by a factor \sqrt{d} :

$$
Q_{d}(x / \sqrt{d}, y / \sqrt{d}) \simeq \sum_{i+j \leqslant d} \frac{a_{i j}}{\sqrt{i!j!}} x^{i} y^{j}
$$

In the limit $d \rightarrow \infty$:

$$
\psi(x, y)=\sum_{i, j \geqslant 0} \frac{a_{i j}}{\sqrt{i!j!}} x^{i} y^{j}
$$

The limit as a Gaussian field

$$
Q_{d}(x, y)=\sum_{i+j \leqslant d} a_{i j} \sqrt{\frac{(d+2)!}{i!j!(d-i-j)!}} x^{i} y^{j}
$$

Rescale by a factor \sqrt{d} :

$$
Q_{d}(x / \sqrt{d}, y / \sqrt{d}) \simeq \sum_{i+j \leqslant d} \frac{a_{i j}}{\sqrt{i!j!}} x^{i} y^{j}
$$

In the limit $d \rightarrow \infty$:

$$
\psi(x, y)=e^{-\left(x^{2}+y^{2}\right) / 2} \sum_{i, j \geqslant 0} \frac{a_{i j}}{\sqrt{i!j!}} x^{i} y^{j}
$$

The limit as a Gaussian field

The limit is a stationary centered Gaussian field ψ on \mathbb{R}^{2}, with covariance given by

$$
\operatorname{Cov}[\psi(x), \psi(y)]=\exp \left(-\|y-x\|^{2} / 2\right)
$$

In particular, the covariance is positive and decays very fast.

Comparison between the two models

A large connected component in ψ

The same, and a critical percolation cluster

Percolation

Percolation : classical results

- Kesten (1980) : $p_{c}=1 / 2$
- For $p<p_{c}$, sub-critical regime :
- All clusters are a.s. finite
- $P[0 \longleftrightarrow x] \approx \exp \left(-\lambda_{p}\|x\|\right)$
- Largest cluster in Λ_{n} has diameter $\approx \log n$
- For $p>p_{c}$, super-critical regime :
- There exists a.s. a unique infinite cluster
- $P[0 \longleftrightarrow x,|C(x)|<\infty] \approx \exp \left(-\lambda_{p}\|x\|\right)$
- Largest finite cluster in Λ_{n} has diameter $\approx \log n$
- At $p=p_{c}$, critical regime :
- All clusters are a.s. finite
- $P[0 \longleftrightarrow x] \approx\|x\|^{-5 / 24}$
- Largest cluster in Λ_{n} has diameter $\approx n$

Russo-Seymour-Welsh

Russo-Seymour-Welsh for critical percolation

Theorem (RSW)
For every $\lambda>0$ there exists $c \in(0,1)$ such that for all n large enough,

$$
c \leqslant P_{p_{c}}[L R(\lambda n, n)] \leqslant 1-c .
$$

Russo-Seymour-Welsh for critical percolation

Theorem (RSW)
For every $\lambda>0$ there exists $c \in(0,1)$ such that for all n large enough,

$$
c \leqslant P_{p_{c}}[L R(\lambda n, n)] \leqslant 1-c .
$$

The case $\lambda=1$ is easy by duality; it is enough to know how the estimate for one value of $\lambda>1$ and then to glue the pieces.

Russo-Seymour-Welsh : proof $(\lambda=3 / 2)$

Russo-Seymour-Welsh : proof $(\lambda=3 / 2)$

Russo-Seymour-Welsh : proof $(\lambda=3 / 2)$

Russo-Seymour-Welsh : proof $(\lambda=3 / 2)$

Russo-Seymour-Welsh : proof $(\lambda=3 / 2)$

Russo-Seymour-Welsh : proof $(\lambda=3 / 2)$

Russo-Seymour-Welsh for the field ψ

Main tools used were decorrelation and the FKG inequality.

Russo-Seymour-Welsh for the field ψ

Main tools used were decorrelation and the FKG inequality.
Theorem (Beffara, Gayet)
The field ψ satisfies RSW.

Russo-Seymour-Welsh for the field ψ

Main tools used were decorrelation and the FKG inequality.
Theorem (Beffara, Gayet)
The field ψ satisfies RSW.

A few consequences:

- The set $\{z: \psi(z)>0\}$ has no unbounded component
- Neither do $\{z: \psi(z)<0\}$ and $\{z: \psi(z)=0\}$
- The universal critical exponents are the same as for percolation
- $\psi=0$ is the critical level [Rivera-Vanneuville]

A few words about the proof

The main obstacle is the analyticity of the field ψ, which goes against independence of its behavior in distant regions.

A few words about the proof

The main obstacle is the analyticity of the field ψ, which goes against independence of its behavior in distant regions.

To go around it, we discretize the field on the vertices of a triangular lattice with a small mesh δ, and look only at its sign on it, to get a dependent, discrete percolation model. The choice of δ is crucial:

- If δ is too large, the discretization does not catch all the topology;

A few words about the proof

The main obstacle is the analyticity of the field ψ, which goes against independence of its behavior in distant regions.

To go around it, we discretize the field on the vertices of a triangular lattice with a small mesh δ, and look only at its sign on it, to get a dependent, discrete percolation model. The choice of δ is crucial:

- If δ is too large, the discretization does not catch all the topology;
- If δ is too small, we lose in the decorrelation.

A few words about the proof

The main obstacle is the analyticity of the field ψ, which goes against independence of its behavior in distant regions.

To go around it, we discretize the field on the vertices of a triangular lattice with a small mesh δ, and look only at its sign on it, to get a dependent, discrete percolation model. The choice of δ is crucial:

- If δ is too large, the discretization does not catch all the topology;
- If δ is too small, we lose in the decorrelation.

The case of the Laplacian eigenfunctions is bad on all respects: too slow decorrelation, no FKG inequality.

The Bogomolny-Schmidt conjecture

Conjecture

The nodal lines of ϕ (and ψ) converge, in the scaling limit, to the same conformally invariant object as interfaces of critical percolation; in particular, asymptotic crossing probabilities are given by Cardy's formula.

The proof of the RSW theorem for Bargman-Fock (BG improved by Belyaev-Muirhead and Rivera-Vanneuville)

Definitions and setup

- $\forall x_{1}, \cdots x_{N} \in^{2}$, any linear combination of the $\left(f\left(x_{i}\right)\right)_{i=1, \cdots, N}$ is a Gaussian variable.
- Will always assume that f is centered and of variance 1 .
- Characterized by $e(x, y):=E[f(x) f(y)]=k(\|x-y\|)$ with k symmetric and $k(0)=1$.
- Big assumption: Almost surely, f is C^{2}. This is true if e is C^{3}.
- $Z_{f}=\{(x, y): f(x, y)=0\}, D_{f}=\{(x, y): f(x, y) \geq 0\}$
ψ is the Bargman-Fock field with covariance $e^{-\|x-y\|^{2} / 2}$.

Russo-Seymour-Welsh for the field ψ

Theorem (Beffara, Gayet)

The field ψ satisfies RSW.

A few consequences:

- The set $\{z: \psi(z)>0\}$ has no unbounded component
- Neither do $\{z: \psi(z)<0\}$ and $\{z: \psi(z)=0\}$
- The universal critical exponents are the same as for percolation
- $\psi=0$ is the critical level [Rivera-Vanneuville]

Natural idea: common features with Bernoulli percolation

\square Symmetries
\square Uniform crossing of squares
\square (Asymptotic) independence
\square Positive correlation of positive crossings (FKG)

Natural idea: common features with Bernoulli percolation

\square Symmetries
\square Uniform crossing of squares
\square (Asymptotic) independence
\square Positive correlation of positive crossings (FKG)

Tassion's RSW theorem (2016)

If $f: \mathbb{R}^{2} \rightarrow\{ \pm 1\}$ satisfies these conditions, then it satisfies RSW.

Checking the assumptions for Bargmann-Fock

\boxtimes Symmetries ok
\boxtimes Uniform crossing of squares by duality
\square (Asymptotic) independence almost?
\boxtimes Positive correlation of positive crossings (FKG) Pitt

Discretization scheme

Theorem (Kac-Rice formula)

Let f be a Gaussian field on an interval $I \subset \mathbb{R}$, such that almost surely, f is C^{1} and that for any $x \neq y \in I, \operatorname{cov}(f(x), f(y))$ is definite. Then $E\left[N_{l}\left(N_{l}-1\right)\right]$ is equal to

$$
\int_{1^{2}} E\left[\left|f^{\prime}(x)\right|\left|f^{\prime}(y)\right| \mid f(x)=f(y)=0\right] \phi_{(f(x), f(y))}(0,0) d x d y
$$

where $\phi_{X}(u)$ is the Gaussian density of $X \in \mathbb{R}^{2}$ at $u \in \mathbb{R}^{2}$.

Corollary

If f is C^{2} and $k^{\prime}(0) \neq 0$, then

$$
\mathbb{E}\left(N_{l}\left(N_{l}-1\right)\right) \leq O\left(|I|^{3}\right)
$$

Main step: discretization of the model

Discretize the sign of ψ on a Union Jack triangulation $\delta \mathcal{T}$ with mesh $\delta>0$ (to be fixed later). If the field is smooth and if δ is small, we catch all the topology of ψ on the discretization:

Theorem (BG 2016)

There exists $C>0$ such that for any $n>1$, letting $\delta_{n}=n^{-3}$,

$$
P\left[\forall R \subset B_{n}, f \text { crosses } R \text { iff } f_{\delta_{n}} \text { crosses } R\right] \geq 1-\frac{C}{n} .
$$

Topological fact: Since \mathcal{T} is a triangulation, it is enough to prove that $\{f=0\}$ cuts all edges at most once.

The Kac-Rice first-moment formula
Theorem

$$
\mathbb{E}\left[N_{l}\right]=\int_{l} \mathbb{E}\left(\left|f^{\prime}(x)\right| \mid f(x)=0\right) \phi_{f(x)}(0) d x .
$$

The Kac-Rice first-moment formula

Theorem

$$
\mathbb{E}\left[N_{l}\right]=\int_{l} \mathbb{E}\left(\left|f^{\prime}(x)\right| \mid f(x)=0\right) \phi_{f(x)}(0) d x .
$$

Proof:

- If f vanishes transversally on I,

$$
N_{I}=\lim _{\epsilon \rightarrow 0} \frac{1}{2 \epsilon} \int_{I}\left|f^{\prime}(x)\right| \mathbf{1}_{|f| \leq \epsilon} d x
$$

- and this implies that

$$
\mathbb{E} N_{I}=\int_{I} \mathbb{E}\left(\left|f^{\prime}(x)\right| \lim _{\epsilon \rightarrow 0} \frac{1}{2 \epsilon} \mathbf{1}_{|f| \leq \epsilon}\right) d x
$$

Proof of the discretization theorem

By the topological fact, is enough to prove that with high probability,

$$
\forall e \in \frac{1}{n^{3}} \mathcal{E} \cap B_{n}, \quad N_{e} \leq 1
$$

By the Markov inequality and Kac-Rice,

$$
\mathbb{P}\left[N_{e}>1\right]=\mathbb{P}\left[N_{e}\left(N_{e}-1\right) \geq 1\right] \leq C|e|^{3} .
$$

Hence,

$$
\begin{aligned}
\mathbb{P}\left[\forall e \in \frac{1}{n^{3}} \mathcal{E} \cap B_{n}, \quad N_{e} \leq 1\right] & \geq 1-\#\left\{e \in \frac{1}{n^{3}} \mathcal{E} \cap B_{n}\right\}\left(C|e|^{3}\right) \\
& \geq 1-C n^{2} n^{6} \frac{1}{n^{9}} \rightarrow 1
\end{aligned}
$$

Proof of the Corollary

By Kac-Rice, $E[N(N-1)]$ is equal to

$$
\int_{1^{2}} \mathbb{E}\left[\left|f^{\prime}(x)\right|\left|f^{\prime}(y)\right| \mid f(x)=f(y)=0\right] \phi_{(f(x), f(y))}(0,0) d x d y .
$$

When $|I| \rightarrow 0$,

- $\int_{I^{2}} d x d y \sim|I|^{2}$;
- $f(x)=f(y)$ implies $\left|f^{\prime}(x)\right|\left|f^{\prime}(y)\right| \leq|I|^{2}$;
- $\phi_{(f(x), f(y))}(0,0) \sim|I|^{-1}$ since $(f(x), f(y))$ degenerates.

This gives the $|I|^{3}$.

Back to the proof

Tassion's condition: dependence $(A(n, 2 n), A(3 n, n \log n)) \rightarrow_{n \rightarrow \infty} 0$.

If we discretize at mesh $(n \log n)^{-3}$ to apply the discretization scheme, then we get of the order of $n^{8} \log ^{4} n$ points in the approximation. The covariance kernel across the annulus $A(2 n, 3 n)$ is tiny, but we need a quantitative bound.

A decorrelation inequality

Theorem

Let X and Y be two Gaussian vectors in \mathbb{R}^{m+n}, of covariances

$$
\Sigma_{X}=\left[\begin{array}{cc}
\Sigma_{1} & \Sigma_{12} \\
\Sigma_{12}^{T} & \Sigma_{2}
\end{array}\right] \quad \text { and } \quad \Sigma_{Y}=\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right]
$$

where $\Sigma_{1} \in M_{m}(\mathbb{R})$ and $\Sigma_{2} \in M_{n}(\mathbb{R})$ have all diagonal entries equal to 1 . Denote by μ_{X} (resp. μ_{Y}) the law of the signs of the coordinates of X (resp. Y), and by η the largest absolute value of the entries of Σ_{12}. Then,

$$
d_{T V}\left(\mu_{X}, \mu_{Y}\right) \leqslant C(m+n)^{8 / 5} \eta^{1 / 5} .
$$

Another decorrelation inequality

Theorem

Let $X=\left(x_{i}\right)$ be a centered Gaussian vector in \mathbb{R}^{n} with covariance matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ satisfying $\forall 1 \leq i \leq n, a_{i i}=1$, and let $\delta \in(0,1 / n)$. Then, the shifted truncation

$$
B=\left(b_{i j}\right) \quad \text { where } \quad b_{i j}:=a_{i j} 1_{\left|a_{i j}\right|>\delta}+(n \delta)^{3 / 5} 1_{i=j}
$$

is a positive matrix, and there exists a coupling of X with another centered Gaussian vector $Y=\left(y_{i}\right)$ with covariance matrix B such that

$$
P\left[\forall 1 \leq i \leq n, \quad x_{i} y_{i}>0\right] \geqslant 1-3 n^{6 / 5} \delta^{1 / 5} .
$$

Corollary: coupling with a finitely correlated field.

A sharper inequality

Theorem (Piterbarg 1982)

Let $f: \mathcal{V} \rightarrow \mathbb{R}$ be a centered centered symmetric Gaussian over a finite set. Then, there exists $C>0$, such that for any R, S two disjoint open sets in \mathcal{V},

$$
\begin{gathered}
\text { dependence }(R, S):=\max _{\substack{A \text { in } \\
B \text { in } S}} \mid \mathbb{P}(A \text { and } B)-\mathbb{P}(A) \mathbb{P}(B) \mid \\
\leq \\
C|R \cup S|^{2} \max _{\substack{x \in R \\
y \in S}} \frac{|e(x, y)|}{\sqrt{1-e(x, y)^{2}}} .
\end{gathered}
$$

The Plackett-Piterbarg method (Biometrika 1954)

Let

$$
\begin{array}{ll}
U:=(f(x))_{x \in R} & V:=(f(y))_{y \in S} \\
X_{1}:=(U, V) & X_{0}:=(U, V)_{\text {ind }}
\end{array}
$$

where

- X_{0} and X_{1} are independent, and
- for X_{0}, V is an independent copy of f.

We want a bound for

$$
\mathbb{P}[A \cap B]-\mathbb{P}[A] \mathbb{P}[B]=\mathbb{E}_{X_{1}}\left(1_{A \cap B}\right)-\mathbb{E}_{X_{0}}\left(1_{A \cap B}\right)
$$

The Plackett-Piterbarg method

Interpolate $X_{t}:=\sqrt{t} X_{1}+\sqrt{1-t} X_{0}$. Then X_{t} has covariance

$$
\Sigma_{t}=\left(\begin{array}{cr}
(U, U) & t \operatorname{cov}(U, V) \\
t \operatorname{cov}(U, V)^{T} & \operatorname{cov}(V, V)
\end{array}\right)
$$

with

$$
\operatorname{cov}(U, V)=(e(x, y))_{x \in R, y \in S}
$$

Then we can rewrite

$$
\begin{aligned}
\mathbb{E}_{X_{1}}\left(1_{A \cap B}\right)-\mathbb{E}_{X_{0}}\left(1_{A \cap B}\right) & =\int_{0}^{1} \frac{d}{d t} \mathbb{E}_{X_{t}}\left(1_{A \cap B}\right) d t \\
& =\int_{0}^{1} d t \int_{(u, v) \in A \times B} \frac{d \phi X_{t}}{d t}(u, v) d(u, v) \\
& =\sum_{i \leq j} \int_{0}^{1} d t \int_{A \times B} \frac{d \sigma_{t, i j}}{d t} \frac{\partial \phi X_{t}}{\partial \sigma_{t, i j}} d(u, v)
\end{aligned}
$$

The Plackett-Piterbarg method

$$
\mathbb{E}_{X_{1}}\left(1_{A \cap B}\right)-\mathbb{E}_{X_{0}}\left(1_{A \cap B}\right)=\sum_{i \leq j} \int_{0}^{1} d t \int_{A \times B} \frac{d \sigma_{t, j j}}{d t} \frac{\partial \phi_{X_{t}}}{\partial \sigma_{t, i j}} d(u, v)
$$

with $\frac{d \sigma_{t, i j}}{d t}=e(x, y)$ if $i=x \in R$ and $j=y \in S$ and 0 otherwise.

Lemma (A Gaussian equality)

$$
\forall i \neq j, \frac{\partial \phi_{X}}{\partial \sigma_{i j}}=\frac{\partial^{2} \phi_{X}}{\partial u_{i} \partial u_{j}} .
$$

Proof: Use $\phi_{X}(u)=\int_{\xi \in \mathbb{R}^{N}} e^{i\langle u, \xi\rangle} e^{-\frac{1}{2}\langle\Sigma \xi, \xi\rangle} \frac{d \xi}{\sqrt{2 \pi^{N}}}$.
Then

$$
\mathbb{P}[A \cap B]-\mathbb{P}[A] \mathbb{P}[B]=\sum_{\substack{x \in R \\ y \in S}} e(x, y) \int_{0}^{1} d t \int_{A \times B} \frac{\partial^{2} \phi \chi_{t}}{\partial u_{x} \partial v_{y}} d(u, v) .
$$

The Plackett-Piterbarg method

$$
\mathbb{P}[A \cap B]-\mathbb{P}[A] \mathbb{P}[B]=\sum_{\substack{x \in R \\ y \in S}} e(x, y) \int_{0}^{1} d t \int_{A \times B} \frac{\partial^{2} \phi x_{t}}{\partial u_{x} \partial v_{y}} d(u, v) .
$$

Recall that A depends only on the signs of $f(x)=u_{x}$, and B on the signs of $f(y)=v_{y}$. Integrating par parts gives the bound

$$
(\# R)(\# S) \max _{\substack{x \in R \\ y \in S}} \frac{|e(x, y)|}{\sqrt{1-e(x, y)^{2}}} .
$$

Quasi-independence

Let $\mathcal{D}_{p}=\{(x, y): \psi(x, y) \geq-p\}$, and fix two families $\left(\mathcal{E}_{i}\right)_{i \leq k}$ and $\left(\mathcal{E}_{i}^{\prime}\right)_{i \leq k^{\prime}}$ of rectangles or annuli.

Theorem (Rivera-Vanneuville)

Uniformly for A (resp. B) defined in terms of crossings of the \mathcal{E}_{i} (resp. \mathcal{E}_{i}^{\prime}) by $\mathcal{D}_{p},|P[A \cap B]-P[A] P[B]|$ is bounded above by

$$
\frac{C(p) \eta}{\sqrt{1-\eta^{2}}}\left(k+\sum\left|E_{i}\right|+\sum\left|\partial E_{i}\right|\right)\left(k^{\prime}+\sum\left|E_{i}^{\prime}\right|+\sum\left|\partial E_{i}^{\prime}\right|\right)
$$

$$
\text { where } \eta:=\sup \left\{e(x, y): x \in \bigcup \mathcal{E}_{i}, y \in \bigcup \mathcal{E}_{i}^{\prime}\right\} .
$$

Consequence: this is enough to obtain RSW estimates for a positively correlated field with covariance smaller than d^{-4}.

Quasi-independence: sketch of proof

- Prove a general Quasi-independence of "threshold events" for Gaussian vectors
- Discretize the events (but the key point is that the bounds will be independent of the discretization)
- Control the probability that a point is pivotal is small enough (this involves a percolation type argument and the Kac-Rice formula)

Quasi-independence for Gaussian vectors

$$
\text { Let } \operatorname{Piv}_{i}(U)=\left\{x \in \mathbb{R}^{n}: \exists y, y^{\prime} \in \mathbb{R}: x^{i \leftarrow y} \in U, x^{i \leftarrow y^{\prime}} \in U^{c}\right\} \text {. }
$$

Theorem

Let X and Y be two Gaussian vectors in $\mathbb{R}^{k+k^{\prime}}$, of covariances

$$
\Sigma_{X}=\left[\begin{array}{cc}
\Sigma_{1} & \Sigma_{12} \\
\Sigma_{12}^{T} & \Sigma_{2}
\end{array}\right] \quad \text { and } \quad \Sigma_{Y}=\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right] \text {, where } \Sigma_{1} \text { and }
$$

Σ_{2} have all diagonal entries equal to 1 . Let $q \in \mathbb{R}^{k+k^{\prime}}$ and U and V be in the σ-field of the $\left\{x_{i} \geq q_{i}\right\}$ for $i \leq k$ (resp. $i>k$). Then $|P[X \in U \cap V]-P[Y \in U \cap V]| \leq$

$$
\sum_{i \leq k, j>k} \frac{\Sigma_{i j} e^{-\left(q_{i}^{2}+q_{j}^{2}\right) / 2}}{2 \pi \sqrt{1-\Sigma_{i j}}} \times
$$

$$
\int_{0}^{1} P\left[X_{t} \in \operatorname{Piv}_{i}(U) \cap \operatorname{Piv}_{j}(V) \mid X_{t}(i)=q_{i}, X_{t}(j)=q_{j}\right]
$$

Quasi-independence for the discretized field

Discretize at scale $\delta>0$:

Theorem (Rivera-Vanneuville)

Uniformly for A^{δ} (resp. B^{δ}) defined in terms of crossings of the \mathcal{E}_{i} (resp. \mathcal{E}_{i}^{\prime}) by $\mathcal{D}_{p}^{\delta},\left|P\left[A^{\delta} \cap B^{\delta}\right]-P\left[A^{\delta}\right] P\left[B^{\delta}\right]\right|$ is bounded above by

$$
\frac{C(p) \eta}{\sqrt{1-\eta^{2}}}\left(k+\sum\left|E_{i}\right|+\sum\left|\partial E_{i}\right|\right)\left(k^{\prime}+\sum\left|E_{i}^{\prime}\right|+\sum\left|\partial E_{i}^{\prime}\right|\right)
$$

$$
\text { where } \eta:=\sup \left\{e(x, y): x \in \bigcup \mathcal{E}_{i}, y \in \bigcup \mathcal{E}_{i}^{\prime}\right\}
$$

Main idea of the proof: A vertex is pivotal with small probability; conditionally on the value of the field there, small means ε^{2}.

The critical threshold for Bargmann-Fock percolation (following Rivera-Vanneuville)

The setup and the statement

- Recall that ψ is the Bargmann-Fock Gaussian field in the plane, with covariance function $\exp \left(-\|x-y\|^{2} / 2\right)$.
- We are interested in the level sets

$$
\mathcal{D}_{p}=\{(x, y): \psi(x, y) \geq-p\}
$$

- Easy to see that $\theta(p):=P_{p}(0 \longleftrightarrow \infty)$ is non-decreasing.

Theorem (Rivera-Vanneuville, 2019)

The critical level is equal to 0 . More precisely,

- If $p \leq 0$, then \mathcal{D}_{p} a.s. has no unbounded component, while
- If $p \geq 0$, then \mathcal{D}_{p} a.s. has a unique unbounded component.

Moreover, exponential decay away from $p=0$.

Warm-up: Bernoulli percolation

Theorem (Kesten)

For Bernoulli site percolation on \mathcal{T}, $p_{c}=1 / 2$.

Sketch of the proof (classical style):

- At $p=1 / 2$ we have the box-crossing property
- Whenever the BXP holds, get many pivotal points
- Sharp threshold for large boxes obtained by Russo's formula:

$$
\partial_{p} P_{p}[A]=\sum P_{p}\left[\operatorname{Piv}_{i}(A)\right]
$$

- Glue larger and larger rectangles to build an infinite cluster

Kahn-Kalai-Linial theorem

This is a more manageable tool to obtain a sharp threshold: rather than proving that each point is pivotal with large probability, show that the largest influence is small: for a product of Bernoulli variables,

$$
\sum P_{p}\left[\operatorname{Piv}_{i}(A)\right] \geq c P_{p}[A] P_{p}\left[A^{c}\right] \log \frac{1}{\max P_{p}\left[\operatorname{Piv}_{i}(A)\right]}
$$

Easier to show that the probability that a vertex is pivotal is small.

Phase transition for Bargmann-Fock: overall strategy

- Discretize the model in the box $2 R \times R$ at mesh $\delta_{R}>0$, and show that $P_{p}^{\delta}[L R(2 R, R)]$ is close to 1 when R is large. This turns out to work well if

$$
\delta_{R} \geq(\log R)^{-1 / 2+\epsilon} .
$$

Phase transition for Bargmann-Fock: overall strategy

- Discretize the model in the box $2 R \times R$ at mesh $\delta_{R}>0$, and show that $P_{p}^{\delta}[L R(2 R, R)]$ is close to 1 when R is large. This turns out to work well if

$$
\delta_{R} \geq(\log R)^{-1 / 2+\epsilon}
$$

- Ensure on the other hand that P_{p}^{δ} and P_{p} are close enough, this holds as soon as

$$
\delta_{R} \leq R^{-1-\epsilon} .
$$

Phase transition for Bargmann-Fock: overall strategy

- Discretize the model in the box $2 R \times R$ at mesh $\delta_{R}>0$, and show that $P_{p}^{\delta}[L R(2 R, R)]$ is close to 1 when R is large. This turns out to work well if

$$
\delta_{R} \geq(\log R)^{-1 / 2+\epsilon}
$$

- Ensure on the other hand that P_{p}^{δ} and P_{p} are close enough, this holds as soon as

$$
\delta_{R} \leq R^{-1-\epsilon} .
$$

- Those are incompatible! Instead, sprinkling to obtain that $P\left[L R_{p}(2 R, R) \mid L R_{p / 2}^{\delta}(2 R, R)\right] \simeq 1$. This works if

$$
\delta_{R} \leq(\log R)^{-1 / 4-\epsilon}
$$

Sharp threshold for dependent Gaussian vectors

Define the geometric influence of a vector $v \in \mathbb{R}^{n}$ ona Borel set A under a measure μ as

$$
I_{v, \mu}(A):=\liminf \frac{\mu(A+[-r, r] v)-\mu(A)}{2 r}
$$

Theorem (Rivera-Vanneuville 2017)

For every increasing event $A \subset \mathbb{R}^{n}$,

$$
\sum_{i=1}^{n} I_{i, \mu}(A) \geq c\|\sqrt{\Sigma}\|^{-1} \mu(A) \mu\left(A^{c}\right) \times \sqrt{\log _{+} \frac{1}{\|\sqrt{\Sigma}\| \max I_{i, \mu}(A)}} .
$$

Smaller δ makes $\|\sqrt{\Sigma}\|$ larger, hence lower bound on δ.

Bounding the terms in the KKL estimate

Upper bound on the influences

$$
P\left[\operatorname{Piv}_{x}\left(L R_{p}^{\epsilon}(2 R, R)\right) \mid \psi(x)=-p\right] \leq C R^{-\eta}
$$

Upper bound on the operator norm

$$
\|\sqrt{\Sigma}\| \leq C \frac{1}{\varepsilon} \log \frac{1}{\varepsilon}
$$

Sprinkling to relate discrete and continuous

In the first step, we had to choose δ not too small, so the discrete and continuous crossing events are too independent.
Theorem (Rivera-Vanneuville 2017)
For small enough δ, and for every $R>1$,

$$
P\left[L R_{p / 2}^{\delta}(2 R, R) \backslash L R_{p}(2 R, R)\right] \leq C R^{2} \delta^{-2} \exp \left(-c \delta^{-4}\right)
$$

Sprinkling to relate discrete and continuous

In the first step, we had to choose δ not too small, so the discrete and continuous crossing events are too independent.
Theorem (Rivera-Vanneuville 2017)
For small enough δ, and for every $R>1$,

$$
P\left[L R_{p / 2}^{\delta}(2 R, R) \backslash L R_{p}(2 R, R)\right] \leq C R^{2} \delta^{-2} \exp \left(-c \delta^{-4}\right)
$$

This is based on the following estimate. If $e=(x, y)$ is an edge of length δ, define

$$
\text { Fold }(e)=\left\{\psi(x)>-p / 2, \psi(y)>-p / 2, \inf _{e} \psi<-p\right\} .
$$

Lemma

$$
P[\text { Fold }(e)] \leq C \exp \left(-c \delta^{-4}\right)
$$

A few open problems

A few open problems: 2d

- Bogomolny-Schmidt conjecture: do we have convergence to SLE in the scaling limit for Bargmann-Fock?

A few open problems: 2d

- Bogomolny-Schmidt conjecture: do we have convergence to SLE in the scaling limit for Bargmann-Fock?
- How much can one weaken the tail decay condition? For slow enough decay, can one obtain another scaling limit?

A few open problems: 2d

- Bogomolny-Schmidt conjecture: do we have convergence to SLE in the scaling limit for Bargmann-Fock?
- How much can one weaken the tail decay condition? For slow enough decay, can one obtain another scaling limit?
- Is it possible to handle negatively correlated fields?

A few open problems: 3d

- Dynamical version: exceptional times and so on

A few open problems: 3d

- Dynamical version: exceptional times and so on
- Is it the case that $h_{c}>0$?

That's all Folks!

