Percolation and Gaussian fields

V. Beffara and D. Gayet — Université Grenoble Alpes Porquerolles, 17–21 June 2019

- Introduction etc (Monday)
- RSW for well decorrelated fields (Tuesday)
- Sharp thresholds and critical points (from Thursday)

Spherical harmonics / Laplacian eigenfunctions

Consider solutions of the equation

$$\Delta f + \lambda f = 0$$

on the plane. Particular solutions are given by

$$f_{\alpha,\beta}(x,y) = \cos(\alpha x + \beta y + \varphi)$$

with $\alpha^2 + \beta^2 = \lambda$. By linearity, one can consider linear combinations of the $f_{\alpha,\beta}$.

Plane waves : one component

Plane waves : two components

Plane waves : three components

Plane waves : four components

Infinitely many components / local limit on the sphere

The local limit of random eigenfunctions of Δ as $\lambda \to \infty$ is given by a Gaussian field ϕ of covariance

$$Cov[\phi(x), \phi(y)] = J_0(||y - x||)$$

The covariance oscillates, and decays as $1/\sqrt{\|y-x\|}$.

One large connected component

Random polynomials / Kostlan ensemble

Define a random homogeneous polynomial on \mathbb{R}^3 by

$$P_d(X) = \sum_{|I|=d} a_I \sqrt{\frac{(d+2)!}{I!}} X^I$$

where the a_I are i.i.d. Gaussians.

Restrict it to the unit sphere.

Restriction to the sphere (d=30)

Restriction to the sphere (d=100)

Restriction to the sphere (d=200)

Restriction to the sphere (d=1000)

Restriction to the sphere (d=5000)

Restriction to the sphere (d=10000)

Restriction to the sphere (d=20000)

Local limit as $d \to \infty$

The limit as a Gaussian field

$$Q_d(x,y) = \sum_{i+j \leq d} a_{ij} \sqrt{\frac{(d+2)!}{i!j!(d-i-j)!}} x^i y^j$$

Rescale by a factor \sqrt{d} :

$$Q_d(x/\sqrt{d}, y/\sqrt{d}) \simeq \sum_{i+j \leqslant d} \frac{a_{ij}}{\sqrt{i!j!}} x^i y^j$$

In the limit $d \to \infty$:

$$\psi(x,y) = \sum_{i,j \ge 0} \frac{a_{ij}}{\sqrt{i!j!}} x^i y^j$$

The limit as a Gaussian field

$$Q_d(x,y) = \sum_{i+j \leq d} a_{ij} \sqrt{\frac{(d+2)!}{i!j!(d-i-j)!}} x^i y^j$$

Rescale by a factor \sqrt{d} :

$$Q_d(x/\sqrt{d}, y/\sqrt{d}) \simeq \sum_{i+j \leqslant d} \frac{a_{ij}}{\sqrt{i!j!}} x^i y^j$$

In the limit $d \to \infty$:

$$\psi(x, y) = e^{-(x^2+y^2)/2} \sum_{i,j \ge 0} \frac{a_{ij}}{\sqrt{i!j!}} x^i y^j$$

The limit is a stationary centered Gaussian field ψ on $\mathbb{R}^2,$ with covariance given by

$$Cov[\psi(x), \psi(y)] = \exp(-\|y - x\|^2/2).$$

In particular, the covariance is positive and decays very fast.

A large connected component in ψ

The same, and a critical percolation cluster

Percolation

Percolation : classical results

- Kesten (1980) : $p_c = 1/2$
- For $p < p_c$, sub-critical regime :
 - All clusters are a.s. finite
 - $P[0 \longleftrightarrow x] \approx \exp(-\lambda_{\rho} \|x\|)$
 - Largest cluster in Λ_n has diameter $\approx \log n$
- For $p > p_c$, super-critical regime :
 - There exists a.s. a unique infinite cluster
 - $P[0 \longleftrightarrow x, |C(x)| < \infty] \approx \exp(-\lambda_p ||x||)$
 - Largest *finite* cluster in Λ_n has diameter $\approx \log n$
- At $p = p_c$, critical regime :
 - All clusters are a.s. finite
 - $P[0 \longleftrightarrow x] \approx ||x||^{-5/24}$
 - Largest cluster in Λ_n has diameter $\approx n$

Russo-Seymour-Welsh

Theorem (RSW)

For every $\lambda > 0$ there exists $c \in (0,1)$ such that for all n large enough,

$$c \leqslant P_{p_c}[LR(\lambda n, n)] \leqslant 1 - c.$$

Theorem (RSW)

For every $\lambda > 0$ there exists $c \in (0,1)$ such that for all n large enough,

$$c \leq P_{p_c}[LR(\lambda n, n)] \leq 1 - c.$$

The case $\lambda = 1$ is easy by duality; it is enough to know how the estimate for one value of $\lambda > 1$ and then to glue the pieces.

Main tools used were decorrelation and the FKG inequality.

Main tools used were decorrelation and the FKG inequality.

Theorem (Beffara, Gayet)

The field ψ satisfies RSW.

Main tools used were decorrelation and the FKG inequality.

Theorem (Beffara, Gayet) *The field* ψ *satisfies RSW.*

A few consequences:

- The set $\{z:\psi(z)>0\}$ has no unbounded component
- Neither do $\{z:\psi(z)<0\}$ and $\{z:\psi(z)=0\}$
- The universal critical exponents are the same as for percolation
- $\psi = 0$ is the critical level [Rivera-Vanneuville]

To go around it, we discretize the field on the vertices of a triangular lattice with a small mesh δ , and look only at its sign on it, to get a dependent, discrete percolation model. The choice of δ is crucial:

• If δ is too large, the discretization does not catch all the topology;

To go around it, we discretize the field on the vertices of a triangular lattice with a small mesh δ , and look only at its sign on it, to get a dependent, discrete percolation model. The choice of δ is crucial:

- If δ is too large, the discretization does not catch all the topology;
- If δ is too small, we lose in the decorrelation.

To go around it, we discretize the field on the vertices of a triangular lattice with a small mesh δ , and look only at its sign on it, to get a dependent, discrete percolation model. The choice of δ is crucial:

- If δ is too large, the discretization does not catch all the topology;
- If δ is too small, we lose in the decorrelation.

The case of the Laplacian eigenfunctions is bad on all respects: too slow decorrelation, no FKG inequality.

Conjecture

The nodal lines of ϕ (and ψ) converge, in the scaling limit, to the same conformally invariant object as interfaces of critical percolation; in particular, asymptotic crossing probabilities are given by Cardy's formula.

The proof of the RSW theorem for Bargman-Fock (BG improved by Belyaev-Muirhead and Rivera-Vanneuville)

Definitions and setup

- ∀x₁, ··· x_N ∈², any linear combination of the (f(x_i))_{i=1,···,N} is a Gaussian variable.
- Will always assume that f is centered and of variance 1.
- Characterized by e(x, y) := E[f(x)f(y)] = k(||x y||) with k symmetric and k(0) = 1.
- Big assumption: Almost surely, f is C^2 . This is true if e is C^3 .

•
$$Z_f = \{(x, y) : f(x, y) = 0\}, D_f = \{(x, y) : f(x, y) \ge 0\}$$

 ψ is the Bargman-Fock field with covariance $e^{-||x-y||^2/2}$.

Theorem (Beffara, Gayet)

The field ψ satisfies RSW.

A few consequences:

- The set $\{z: \psi(z) > 0\}$ has no unbounded component
- Neither do $\{z:\psi(z)<0\}$ and $\{z:\psi(z)=0\}$
- The universal critical exponents are the same as for percolation
- $\psi = 0$ is the critical level [Rivera-Vanneuville]

\Box Symmetries

- □ Uniform crossing of squares
- \Box (Asymptotic) independence
- \Box Positive correlation of positive crossings (FKG)

□ Symmetries

- □ Uniform crossing of squares
- \Box (Asymptotic) independence
- \Box Positive correlation of positive crossings (FKG)

Tassion's RSW theorem (2016)

If $f : \mathbb{R}^2 \to \{\pm 1\}$ satisfies these conditions, then it satisfies RSW.

- \boxtimes Symmetries ok
- \boxtimes Uniform crossing of squares by duality
- □ (Asymptotic) independence almost?
- \boxtimes Positive correlation of positive crossings (FKG) Pitt

Discretization scheme

Theorem (Kac-Rice formula)

Let f be a Gaussian field on an interval $I \subset \mathbb{R}$, such that almost surely, f is C^1 and that for any $x \neq y \in I$, cov(f(x), f(y)) is definite. Then $E[N_I(N_I - 1)]$ is equal to

$$\int_{I^2} E\left[|f'(x)||f'(y)| \mid f(x) = f(y) = 0\right] \phi_{(f(x), f(y))}(0, 0) dx dy$$

where $\phi_X(u)$ is the Gaussian density of $X \in \mathbb{R}^2$ at $u \in \mathbb{R}^2$.

Corollary

If f is C^2 and $k'(0) \neq 0$, then

$$\mathbb{E}(N_I(N_I-1)) \leq O(|I|^3).$$

Discretize the sign of ψ on a Union Jack triangulation δT with mesh $\delta > 0$ (to be fixed later). If the field is smooth and if δ is small, we catch all the topology of ψ on the discretization:

Theorem (BG 2016)

There exists C > 0 such that for any n > 1, letting $\delta_n = n^{-3}$, $P [\forall R \subset B_n, \ f \ crosses \ R \ iff \ f_{\delta_n} \ crosses \ R] \ge 1 - \frac{C}{n}.$

Topological fact: Since T is a triangulation, it is enough to prove that $\{f = 0\}$ cuts all edges at most once.

The Kac-Rice first-moment formula

Theorem

$$\mathbb{E}[N_I] = \int_I \mathbb{E}(|f'(x)| \mid f(x) = 0)\phi_{f(x)}(0)dx.$$

The Kac-Rice first-moment formula

Theorem

$$\mathbb{E}[N_I] = \int_I \mathbb{E}\big(|f'(x)| \mid f(x) = 0\big)\phi_{f(x)}(0)dx.$$

Proof:

• If f vanishes transversally on I,

$$N_I = \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_I |f'(x)| \mathbf{1}_{|f| \le \epsilon} dx,$$

 $\bullet\,$ and this implies that

$$\mathbb{E}N_I = \int_I \mathbb{E}\Big(|f'(x)| \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \mathbf{1}_{|f| \le \epsilon}\Big) dx.$$

By the topological fact, is enough to prove that with high probability,

$$orall e \in rac{1}{n^3} \mathcal{E} \cap B_n, \ N_e \leq 1.$$

By the Markov inequality and Kac-Rice,

$$\mathbb{P}[N_e > 1] = \mathbb{P}[N_e(N_e - 1) \ge 1] \le C|e|^3.$$

Hence,

$$\begin{split} \mathbb{P}\Big[\forall e \in \frac{1}{n^3} \mathcal{E} \cap B_n, \ N_e \leq 1\Big] &\geq 1 - \#\{e \in \frac{1}{n^3} \mathcal{E} \cap B_n\}(C|e|^3) \\ &\geq 1 - Cn^2 n^6 \frac{1}{n^9} \to 1. \end{split}$$

By Kac-Rice, E[N(N-1)] is equal to

$$\int_{I^2} \mathbb{E} \big[|f'(x)| |f'(y)| \mid f(x) = f(y) = 0 \big] \phi_{(f(x), f(y))}(0, 0) dx dy.$$

When $|I| \rightarrow 0$,

- $\int_{I^2} dx dy \sim |I|^2$;
- f(x) = f(y) implies $|f'(x)||f'(y)| \le |I|^2$;
- $\phi_{(f(x),f(y))}(0,0) \sim |I|^{-1}$ since (f(x),f(y)) degenerates.

This gives the $|I|^3$.

Tassion's condition: dependence $(A(n, 2n), A(3n, n \log n)) \rightarrow_{n \to \infty} 0$.

If we discretize at mesh $(n \log n)^{-3}$ to apply the discretization scheme, then we get of the order of $n^8 \log^4 n$ points in the approximation. The covariance kernel across the annulus A(2n, 3n)is tiny, but we need a quantitative bound.

Theorem

Let X and Y be two Gaussian vectors in \mathbb{R}^{m+n} , of covariances

$$\Sigma_X = \begin{bmatrix} \Sigma_1 & \Sigma_{12} \\ \Sigma_{12}^T & \Sigma_2 \end{bmatrix}$$
 and $\Sigma_Y = \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix}$,

where $\Sigma_1 \in M_m(\mathbb{R})$ and $\Sigma_2 \in M_n(\mathbb{R})$ have all diagonal entries equal to 1. Denote by μ_X (resp. μ_Y) the law of the signs of the coordinates of X (resp. Y), and by η the largest absolute value of the entries of Σ_{12} . Then,

$$d_{TV}(\mu_X,\mu_Y) \leqslant C(m+n)^{8/5}\eta^{1/5}.$$

Another decorrelation inequality

Theorem

Let $X = (x_i)$ be a centered Gaussian vector in \mathbb{R}^n with covariance matrix $A = (a_{ij})_{1 \le i,j \le n}$ satisfying $\forall 1 \le i \le n$, $a_{ii} = 1$, and let $\delta \in (0, 1/n)$. Then, the shifted truncation

$$B=(b_{ij})$$
 where $b_{ij}:=a_{ij}1_{|a_{ij}|>\delta}+(n\delta)^{3/5}1_{i=j}$

is a positive matrix, and there exists a coupling of X with another centered Gaussian vector $Y = (y_i)$ with covariance matrix B such that

$$\mathsf{P}\left[\forall 1 \leq i \leq n, \quad x_i y_i > 0\right] \geqslant 1 - 3n^{6/5} \delta^{1/5}.$$

Corollary: coupling with a finitely correlated field.

Theorem (Piterbarg 1982)

Let $f : \mathcal{V} \to \mathbb{R}$ be a centered centered symmetric Gaussian over a finite set. Then, there exists C > 0, such that for any R, S two disjoint open sets in \mathcal{V} ,

dependence
$$(R, S) := \max_{\substack{A \text{ in } R \\ B \text{ in } S}} |\mathbb{P}(A \text{ and } B) - \mathbb{P}(A)\mathbb{P}(B)|$$

$$\leq C|R \cup S|^2 \max_{\substack{x \in R \\ y \in S}} \frac{|e(x, y)|}{\sqrt{1 - e(x, y)^2}}.$$
The Plackett-Piterbarg method (Biometrika 1954)

Let

$$U := (f(x))_{x \in R} \qquad V := (f(y))_{y \in S}$$

$$X_1 := (U, V) \qquad X_0 := (U, V)_{ind}$$

where

- X_0 and X_1 are independent, and
- for X_0 , V is an independent copy of f.

We want a bound for

$$\mathbb{P}[A \cap B] - \mathbb{P}[A]\mathbb{P}[B] = \mathbb{E}_{X_1}(\mathbf{1}_{A \cap B}) - \mathbb{E}_{X_0}(\mathbf{1}_{A \cap B}).$$

The Plackett-Piterbarg method

Interpolate
$$X_t := \sqrt{t}X_1 + \sqrt{1-t}X_0$$
. Then X_t has covariance

$$\Sigma_t = \begin{pmatrix} (U,U) & t \operatorname{cov}(U,V) \\ t \operatorname{cov}(U,V)^T & \operatorname{cov}(V,V) \end{pmatrix}$$

with

$$\operatorname{cov} (U, V) = (e(x, y))_{x \in R, y \in S}.$$

Then we can rewrite

$$\begin{split} \mathbb{E}_{X_1}(\mathbf{1}_{A\cap B}) - \mathbb{E}_{X_0}(\mathbf{1}_{A\cap B}) &= \int_0^1 \frac{d}{dt} \mathbb{E}_{X_t}(\mathbf{1}_{A\cap B}) dt \\ &= \int_0^1 dt \int_{(u,v) \in A \times B} \frac{d\phi_{X_t}}{dt}(u,v) d(u,v) \\ &= \sum_{i \leq j} \int_0^1 dt \int_{A \times B} \frac{d\sigma_{t,ij}}{dt} \frac{\partial\phi_{X_t}}{\partial\sigma_{t,ij}} d(u,v) \end{split}$$

The Plackett-Piterbarg method

$$\mathbb{E}_{X_1}(\mathbf{1}_{A\cap B}) - \mathbb{E}_{X_0}(\mathbf{1}_{A\cap B}) = \sum_{i \leq j} \int_0^1 dt \int_{A \times B} \frac{d\sigma_{t,ij}}{dt} \frac{\partial \phi_{X_t}}{\partial \sigma_{t,ij}} d(u, v)$$

with $\frac{d\sigma_{t,ij}}{dt} = e(x, y)$ if $i = x \in R$ and $j = y \in S$ and 0 otherwise.

Lemma (A Gaussian equality)

$$\forall i \neq j, \ \frac{\partial \phi_X}{\partial \sigma_{ij}} = \frac{\partial^2 \phi_X}{\partial u_i \partial u_j}.$$

Proof: Use
$$\phi_X(u) = \int_{\xi \in \mathbb{R}^N} e^{i \langle u, \xi \rangle} e^{-\frac{1}{2} \langle \Sigma \xi, \xi \rangle} \frac{d\xi}{\sqrt{2\pi}^N}$$

Then

$$\mathbb{P}[A \cap B] - \mathbb{P}[A]\mathbb{P}[B] = \sum_{\substack{x \in R \\ y \in S}} e(x, y) \int_0^1 dt \int_{A \times B} \frac{\partial^2 \phi_{X_t}}{\partial u_x \partial v_y} d(u, v).$$

$$\mathbb{P}[A \cap B] - \mathbb{P}[A]\mathbb{P}[B] = \sum_{\substack{x \in R \\ y \in S}} e(x, y) \int_0^1 dt \int_{A \times B} \frac{\partial^2 \phi_{X_t}}{\partial u_x \partial v_y} d(u, v).$$

Recall that A depends only on the signs of $f(x) = u_x$, and B on the signs of $f(y) = v_y$. Integrating parts gives the bound

$$(\#R)(\#S) \max_{\substack{x \in R \\ y \in S}} \frac{|e(x,y)|}{\sqrt{1-e(x,y)^2}}.$$

Let $\mathcal{D}_p = \{(x, y) : \psi(x, y) \ge -p\}$, and fix two families $(\mathcal{E}_i)_{i \le k}$ and $(\mathcal{E}'_i)_{i \le k'}$ of rectangles or annuli.

Theorem (Rivera-Vanneuville)

Uniformly for A (resp. B) defined in terms of crossings of the \mathcal{E}_i (resp. \mathcal{E}'_i) by \mathcal{D}_p , $|P[A \cap B] - P[A]P[B]|$ is bounded above by

$$\frac{\mathcal{C}(p)\eta}{\sqrt{1-\eta^2}}(k+\sum |E_i|+\sum |\partial E_i|)(k'+\sum |E_i'|+\sum |\partial E_i'|)$$

where $\eta := \sup\{e(x, y) : x \in \bigcup \mathcal{E}_i, y \in \bigcup \mathcal{E}'_i\}.$

Consequence: this is enough to obtain RSW estimates for a positively correlated field with covariance smaller than d^{-4} .

- Prove a general Quasi-independence of "threshold events" for Gaussian vectors
- Discretize the events (but the key point is that the bounds will be independent of the discretization)
- Control the probability that a point is pivotal is small enough (this involves a percolation type argument and the Kac-Rice formula)

Quasi-independence for Gaussian vectors

Let
$$\operatorname{Piv}_i(U) = \{x \in \mathbb{R}^n : \exists y, y' \in \mathbb{R} : x^{i \leftarrow y} \in U, x^{i \leftarrow y'} \in U^c\}.$$

Theorem

Let X and Y be two Gaussian vectors in $\mathbb{R}^{k+k'}$, of covariances $\Sigma_X = \begin{bmatrix} \Sigma_1 & \Sigma_{12} \\ \Sigma_{12}^T & \Sigma_2 \end{bmatrix}$ and $\Sigma_Y = \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix}$, where Σ_1 and Σ_2 have all diagonal entries equal to 1. Let $q \in \mathbb{R}^{k+k'}$ and U and V be in the σ -field of the $\{x_i \ge q_i\}$ for $i \le k$ (resp. i > k). Then $|P[X \in U \cap V] - P[Y \in U \cap V]| \le$

$$\sum_{i \leq k,j > k} \frac{\sum_{ij} e^{-(q_i^2 + q_j^2)/2}}{2\pi \sqrt{1 - \sum_{ij}}} \times \int_0^1 P[X_t \in Piv_i(U) \cap Piv_j(V) | X_t(i) = q_i, X_t(j) = q_j].$$

Discretize at scale $\delta > 0$:

Theorem (Rivera-Vanneuville) Uniformly for A^{δ} (resp. B^{δ}) defined in terms of crossings of the \mathcal{E}_i (resp. \mathcal{E}'_i) by $\mathcal{D}^{\delta}_{p'}$, $|P[A^{\delta} \cap B^{\delta}] - P[A^{\delta}]P[B^{\delta}]|$ is bounded above by $\frac{C(p)\eta}{\sqrt{1-\eta^2}}(k+\sum |E_i|+\sum |\partial E_i|)(k'+\sum |E'_i|+\sum |\partial E'_i|)$ where $\eta := \sup\{e(x,y) : x \in \bigcup \mathcal{E}_i, y \in \bigcup \mathcal{E}'_i\}.$

Main idea of the proof: A vertex is pivotal with small probability; conditionally on the value of the field there, small means ε^2 .

The critical threshold for Bargmann-Fock percolation (following Rivera-Vanneuville)

The setup and the statement

- Recall that ψ is the Bargmann-Fock Gaussian field in the plane, with covariance function $\exp(-||x y||^2/2)$.
- We are interested in the level sets

$$\mathcal{D}_{p} = \{(x, y) : \psi(x, y) \geq -p\}.$$

• Easy to see that $\theta(p) := P_p(0 \longleftrightarrow \infty)$ is non-decreasing.

Theorem (Rivera-Vanneuville, 2019)

The critical level is equal to 0. More precisely,

- If $p \leq 0$, then \mathcal{D}_p a.s. has no unbounded component, while
- If $p \ge 0$, then \mathcal{D}_p a.s. has a unique unbounded component.

Moreover, exponential decay away from p = 0.

Theorem (Kesten)

For Bernoulli site percolation on T, $p_c = 1/2$.

Sketch of the proof (classical style):

- At p = 1/2 we have the box-crossing property
- Whenever the BXP holds, get many pivotal points
- Sharp threshold for large boxes obtained by Russo's formula:

$$\partial_p P_p[A] = \sum P_p[\operatorname{Piv}_i(A)]$$

• Glue larger and larger rectangles to build an infinite cluster

This is a more manageable tool to obtain a sharp threshold: rather than proving that each point is pivotal with large probability, show that the largest influence is small: for a product of Bernoulli variables,

$$\sum P_p[\operatorname{Piv}_i(A)] \ge cP_p[A]P_p[A^c] \log \frac{1}{\max P_p[\operatorname{Piv}_i(A)]}.$$

Easier to show that the probability that a vertex is pivotal is small.

Phase transition for Bargmann-Fock: overall strategy

• Discretize the model in the box $2R \times R$ at mesh $\delta_R > 0$, and show that $P_p^{\delta}[LR(2R, R)]$ is close to 1 when R is large. This turns out to work well if

$$\delta_R \ge (\log R)^{-1/2+\epsilon}.$$

Phase transition for Bargmann-Fock: overall strategy

• Discretize the model in the box $2R \times R$ at mesh $\delta_R > 0$, and show that $P_p^{\delta}[LR(2R, R)]$ is close to 1 when R is large. This turns out to work well if

$$\delta_R \ge (\log R)^{-1/2+\epsilon}.$$

• Ensure on the other hand that P_p^δ and P_p are close enough, this holds as soon as

$$\delta_R \le R^{-1-\epsilon}.$$

Phase transition for Bargmann-Fock: overall strategy

• Discretize the model in the box $2R \times R$ at mesh $\delta_R > 0$, and show that $P_p^{\delta}[LR(2R, R)]$ is close to 1 when R is large. This turns out to work well if

$$\delta_R \ge (\log R)^{-1/2+\epsilon}.$$

• Ensure on the other hand that P_p^δ and P_p are close enough, this holds as soon as

$$\delta_R \le R^{-1-\epsilon}.$$

• Those are incompatible! Instead, sprinkling to obtain that $P[LR_p(2R, R)|LR_{p/2}^{\delta}(2R, R)] \simeq 1$. This works if

$$\delta_R \le (\log R)^{-1/4-\epsilon}$$

Sharp threshold for dependent Gaussian vectors

Define the geometric influence of a vector $v \in \mathbb{R}^n$ on aBorel set A under a measure μ as

$$I_{\mathbf{v},\mu}(A) := \liminf \frac{\mu(A+[-r,r]\mathbf{v})-\mu(A)}{2r}.$$

Theorem (Rivera-Vanneuville 2017)
For every increasing event
$$A \subset \mathbb{R}^n$$
,

$$\sum_{i=1}^n I_{i,\mu}(A) \ge c \left\| \sqrt{\Sigma} \right\|^{-1} \mu(A) \mu(A^c) \times \sqrt{\log_+ \frac{1}{\left\| \sqrt{\Sigma} \right\| \max I_{i,\mu}(A)}}.$$

Smaller δ makes $\left\|\sqrt{\Sigma}\right\|$ larger, hence lower bound on δ .

Upper bound on the influences

$$P\left[\mathsf{Piv}_{\mathsf{x}}(LR_{p}^{\epsilon}(2R,R)) \mid \psi(\mathsf{x}) = -p
ight] \leq CR^{-\eta}$$

Upper bound on the operator norm

$$\left\|\sqrt{\Sigma}\right\| \leq C \frac{1}{\varepsilon} \log \frac{1}{\varepsilon}$$

Sprinkling to relate discrete and continuous

In the first step, we had to choose δ not too small, so the discrete and continuous crossing events are too independent.

Theorem (Rivera-Vanneuville 2017)

For small enough δ , and for every R > 1,

 $P\big[LR_{p/2}^{\delta}(2R,R) \ \setminus \ LR_p(2R,R)\big] \leq CR^2\delta^{-2}\exp(-c\delta^{-4}).$

Sprinkling to relate discrete and continuous

In the first step, we had to choose δ not too small, so the discrete and continuous crossing events are too independent.

Theorem (Rivera-Vanneuville 2017)

For small enough δ , and for every R > 1,

$$P\big[LR_{p/2}^{\delta}(2R,R) \ \setminus \ LR_p(2R,R)\big] \leq CR^2\delta^{-2}\exp(-c\delta^{-4}).$$

This is based on the following estimate. If e = (x, y) is an edge of length δ , define

Fold(e) = {
$$\psi(x) > -p/2, \psi(y) > -p/2, \inf_{e} \psi < -p$$
 }.

Lemma

$$P[Fold(e)] \leq C \exp(-c\delta^{-4}).$$

A few open problems

• Bogomolny-Schmidt conjecture: do we have convergence to SLE in the scaling limit for Bargmann-Fock?

- Bogomolny-Schmidt conjecture: do we have convergence to SLE in the scaling limit for Bargmann-Fock?
- How much can one weaken the tail decay condition? For slow enough decay, can one obtain another scaling limit?

- Bogomolny-Schmidt conjecture: do we have convergence to SLE in the scaling limit for Bargmann-Fock?
- How much can one weaken the tail decay condition? For slow enough decay, can one obtain another scaling limit?
- Is it possible to handle negatively correlated fields?

• Dynamical version: exceptional times and so on

- Dynamical version: exceptional times and so on
- Is it the case that $h_c > 0$?

That's all Folks!