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Plan for the mini-course

• Introduction etc (Monday)

• RSW for well decorrelated fields (Tuesday)

• Sharp thresholds and critical points (from Thursday)



Spherical harmonics / Laplacian
eigenfunctions



Random eigenfunction of the Laplacian on the sphere



Random eigenfunction of the Laplacian on the sphere



Random eigenfunction of the Laplacian on the sphere



Random eigenfunction of the Laplacian on the sphere



Random eigenfunction of the Laplacian on the sphere



Random eigenfunction of the Laplacian on the sphere



Random eigenfunction of the Laplacian on the sphere



Random eigenfunction of the Laplacian on the sphere



Plane waves on R2

Consider solutions of the equation

∆f + λf = 0

on the plane. Particular solutions are given by

fα,β(x , y) = cos(αx + βy + ϕ)

with α2 + β2 = λ. By linearity, one can consider linear
combinations of the fα,β .



Plane waves : one component



Plane waves : two components



Plane waves : three components



Plane waves : four components



Infinitely many components / local limit on the sphere



The limit as a Gaussian field

The local limit of random eigenfunctions of ∆ as λ→∞ is given
by a Gaussian field φ of covariance

Cov [φ(x), φ(y)] = J0(‖y − x‖)

The covariance oscillates, and decays as 1/
√
‖y − x‖.



One large connected component



Random polynomials / Kostlan
ensemble



Random polynomial

Define a random homogeneous polynomial on R3 by

Pd(X ) =
∑
|I |=d

aI

√
(d + 2)!

I !
X I

where the aI are i.i.d. Gaussians.

Restrict it to the unit sphere.



Restriction to the sphere (d=30)



Restriction to the sphere (d=100)



Restriction to the sphere (d=200)



Restriction to the sphere (d=1000)



Restriction to the sphere (d=5000)



Restriction to the sphere (d=10000)



Restriction to the sphere (d=20000)



Local limit as d →∞



The limit as a Gaussian field

Qd(x , y) =
∑
i+j6d

aij

√
(d + 2)!

i !j!(d − i − j)!
x iy j

Rescale by a factor
√
d :

Qd(x/
√
d , y/

√
d) '

∑
i+j6d

aij√
i !j!

x iy j

In the limit d →∞:

ψ(x , y) =
∑
i ,j>0

aij√
i !j!

x iy j



The limit as a Gaussian field

Qd(x , y) =
∑
i+j6d

aij

√
(d + 2)!

i !j!(d − i − j)!
x iy j

Rescale by a factor
√
d :

Qd(x/
√
d , y/

√
d) '

∑
i+j6d

aij√
i !j!

x iy j

In the limit d →∞:

ψ(x , y) = e−(x2+y2)/2
∑
i ,j>0

aij√
i !j!

x iy j



The limit as a Gaussian field

The limit is a stationary centered Gaussian field ψ on R2, with
covariance given by

Cov [ψ(x), ψ(y)] = exp(−‖y − x‖2/2).

In particular, the covariance is positive and decays very fast.



Comparison between the two models



A large connected component in ψ



The same, and a critical percolation cluster



Percolation



Percolation : classical results

• Kesten (1980) : pc = 1/2

• For p < pc , sub-critical regime :
• All clusters are a.s. finite
• P[0←→ x ] ≈ exp(−λp‖x‖)
• Largest cluster in Λn has diameter ≈ log n

• For p > pc , super-critical regime :
• There exists a.s. a unique infinite cluster
• P[0←→ x , |C (x)| <∞] ≈ exp(−λp‖x‖)
• Largest finite cluster in Λn has diameter ≈ log n

• At p = pc , critical regime :
• All clusters are a.s. finite
• P[0←→ x ] ≈ ‖x‖−5/24

• Largest cluster in Λn has diameter ≈ n



Russo-Seymour-Welsh



Russo-Seymour-Welsh for critical percolation

Theorem (RSW)

For every λ > 0 there exists c ∈ (0, 1) such that for all n large
enough,

c 6 Ppc [LR(λn, n)] 6 1− c .

The case λ = 1 is easy by duality; it is enough to know how the
estimate for one value of λ > 1 and then to glue the pieces.
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Russo-Seymour-Welsh for the field ψ

Main tools used were decorrelation and the FKG inequality.

Theorem (Beffara, Gayet)
The field ψ satisfies RSW.

A few consequences:

• The set {z : ψ(z) > 0} has no unbounded component

• Neither do {z : ψ(z) < 0} and {z : ψ(z) = 0}
• The universal critical exponents are the same as for percolation

• ψ = 0 is the critical level [Rivera-Vanneuville]
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A few words about the proof

The main obstacle is the analyticity of the field ψ, which goes
against independence of its behavior in distant regions.

To go around it, we discretize the field on the vertices of a
triangular lattice with a small mesh δ, and look only at its sign on
it, to get a dependent, discrete percolation model. The choice of δ
is crucial:

• If δ is too large, the discretization does not catch all the
topology;

• If δ is too small, we lose in the decorrelation.

The case of the Laplacian eigenfunctions is bad on all respects: too
slow decorrelation, no FKG inequality.
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The Bogomolny-Schmidt conjecture

Conjecture
The nodal lines of φ (and ψ) converge, in the scaling limit, to the
same conformally invariant object as interfaces of critical
percolation; in particular, asymptotic crossing probabilities are
given by Cardy’s formula.



The proof of the RSW theorem
for Bargman-Fock (BG improved
by Belyaev-Muirhead and
Rivera-Vanneuville)



Definitions and setup

• ∀x1, · · · xN ∈2, any linear combination of the (f (xi ))i=1,··· ,N is
a Gaussian variable.

• Will always assume that f is centered and of variance 1.

• Characterized by e(x , y) := E [f (x)f (y)] = k(‖x − y‖) with k

symmetric and k(0) = 1.

• Big assumption: Almost surely, f is C 2. This is true if e is C 3.

• Zf = {(x , y) : f (x , y) = 0}, Df = {(x , y) : f (x , y) ≥ 0}

ψ is the Bargman-Fock field with covariance e−‖x−y‖
2/2.



Russo-Seymour-Welsh for the field ψ

Theorem (Beffara, Gayet)
The field ψ satisfies RSW.

A few consequences:

• The set {z : ψ(z) > 0} has no unbounded component

• Neither do {z : ψ(z) < 0} and {z : ψ(z) = 0}
• The universal critical exponents are the same as for percolation

• ψ = 0 is the critical level [Rivera-Vanneuville]



Natural idea: common features with Bernoulli percolation

� Symmetries

� Uniform crossing of squares

� (Asymptotic) independence

� Positive correlation of positive crossings (FKG)

Tassion’s RSW theorem (2016)

If f : R2 → {±1} satisfies these conditions, then it satisfies RSW.
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Checking the assumptions for Bargmann-Fock

� Symmetries ok

� Uniform crossing of squares by duality

� (Asymptotic) independence almost?

� Positive correlation of positive crossings (FKG) Pitt



Discretization scheme

Theorem (Kac-Rice formula)
Let f be a Gaussian field on an interval I ⊂ R, such that almost
surely, f is C 1 and that for any x 6= y ∈ I , cov(f (x), f (y)) is
definite. Then E [NI (NI − 1)] is equal to∫

I 2
E
[
|f ′(x)||f ′(y)|

∣∣ f (x) = f (y) = 0
]
φ(f (x),f (y))(0, 0)dxdy

where φX (u) is the Gaussian density of X ∈ R2 at u ∈ R2.

Corollary

If f is C 2 and k ′(0) 6= 0, then

E(NI (NI − 1)) ≤ O(|I |3).



Main step: discretization of the model

Discretize the sign of ψ on a Union Jack triangulation δT with
mesh δ > 0 (to be fixed later). If the field is smooth and if δ is
small, we catch all the topology of ψ on the discretization:

Theorem (BG 2016)

There exists C > 0 such that for any n > 1, letting δn = n−3,

P [∀R ⊂ Bn, f crosses R iff fδn crosses R] ≥ 1− C

n
.

Topological fact: Since T is a triangulation, it is enough to prove
that {f = 0} cuts all edges at most once.



The Kac-Rice first-moment formula

Theorem

E[NI ] =

∫
I
E
(
|f ′(x)| | f (x) = 0

)
φf (x)(0)dx .

Proof:

• If f vanishes transversally on I ,

NI = lim
ε→0

1
2ε

∫
I
|f ′(x)|1|f |≤εdx ,

• and this implies that

ENI =

∫
I
E
(
|f ′(x)| lim

ε→0

1
2ε
1|f |≤ε

)
dx .
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Proof of the discretization theorem

By the topological fact, is enough to prove that with high
probability,

∀e ∈ 1
n3E ∩ Bn, Ne ≤ 1.

By the Markov inequality and Kac-Rice,

P
[
Ne > 1

]
= P

[
Ne(Ne − 1) ≥ 1

]
≤ C |e|3.

Hence,

P
[
∀e ∈ 1

n3E ∩ Bn, Ne ≤ 1
]
≥ 1−#{e ∈ 1

n3E ∩ Bn}(C |e|3)

≥ 1− Cn2n6 1
n9 → 1.



Proof of the Corollary

By Kac-Rice, E [N(N − 1)] is equal to∫
I 2
E
[
|f ′(x)||f ′(y)|

∣∣ f (x) = f (y) = 0
]
φ(f (x),f (y))(0, 0)dxdy .

When |I | → 0,

•
∫
I 2 dxdy ∼ |I |

2;

• f (x) = f (y) implies |f ′(x)||f ′(y)| ≤ |I |2;
• φ(f (x),f (y))(0, 0) ∼ |I |−1 since (f (x), f (y)) degenerates.

This gives the |I |3.



Back to the proof

Tassion’s condition: dependence
(
A(n, 2n),A(3n, n log n)

)
→n→∞ 0.

If we discretize at mesh (n log n)−3 to apply the discretization
scheme, then we get of the order of n8 log4 n points in the
approximation. The covariance kernel across the annulus A(2n, 3n)

is tiny, but we need a quantitative bound.



A decorrelation inequality

Theorem

Let X and Y be two Gaussian vectors in Rm+n, of covariances

ΣX =

[
Σ1 Σ12

ΣT
12 Σ2

]
and ΣY =

[
Σ1 0
0 Σ2

]
,

where Σ1 ∈ Mm(R) and Σ2 ∈ Mn(R) have all diagonal entries
equal to 1. Denote by µX (resp. µY ) the law of the signs of the
coordinates of X (resp. Y ), and by η the largest absolute value of
the entries of Σ12. Then,

dTV (µX , µY ) 6 C (m + n)8/5η1/5.



Another decorrelation inequality

Theorem

Let X = (xi ) be a centered Gaussian vector in Rn with covariance
matrix A = (aij)1≤i ,j≤n satisfying ∀1 ≤ i ≤ n, aii = 1, and let
δ ∈ (0, 1/n). Then, the shifted truncation

B = (bij) where bij := aij1|aij |>δ + (nδ)3/51i=j

is a positive matrix, and there exists a coupling of X with another
centered Gaussian vector Y = (yi ) with covariance matrix B such
that

P [∀1 ≤ i ≤ n, xiyi > 0] > 1− 3n6/5δ1/5.

Corollary: coupling with a finitely correlated field.



A sharper inequality

Theorem (Piterbarg 1982)
Let f : V → R be a centered centered symmetric Gaussian over a
finite set. Then, there exists C > 0, such that for any R , S two
disjoint open sets in V,

dependence(R, S) := max
A in R
B in S

|P(A and B)− P(A)P(B)|

≤

C |R ∪ S |2 max
x∈R
y∈S

|e(x , y)|√
1− e(x , y)2

.



The Plackett-Piterbarg method (Biometrika 1954)

Let
U :=

(
f (x)

)
x∈R V :=

(
f (y)

)
y∈S

X1 := (U,V ) X0 := (U,V )ind

where

• X0 and X1 are independent, and

• for X0, V is an independent copy of f .

We want a bound for

P[A ∩ B]− P[A]P[B] = EX1(1A∩B)− EX0(1A∩B).



The Plackett-Piterbarg method

Interpolate Xt :=
√
tX1 +

√
1− tX0. Then Xt has covariance

Σt =

(
(U,U) t cov(U,V )

t cov(U,V )T cov(V ,V )

)
with

cov (U,V ) = (e(x , y))x∈R,y∈S .

Then we can rewrite

EX1(1A∩B)− EX0(1A∩B) =

∫ 1

0

d

dt
EXt (1A∩B)dt

=

∫ 1

0
dt

∫
(u,v)∈A×B

dφXt

dt
(u, v)d(u, v)

=
∑
i≤j

∫ 1

0
dt

∫
A×B

dσt,ij
dt

∂φXt

∂σt,ij
d(u, v)



The Plackett-Piterbarg method

EX1(1A∩B)− EX0(1A∩B) =
∑
i≤j

∫ 1

0
dt

∫
A×B

dσt,ij
dt

∂φXt

∂σt,ij
d(u, v)

with dσt,ij
dt = e(x , y) if i = x ∈ R and j = y ∈ S and 0 otherwise.

Lemma (A Gaussian equality)

∀i 6= j ,
∂φX
∂σij

=
∂2φX
∂ui∂uj

.

Proof: Use φX (u) =
∫
ξ∈RN e i〈u,ξ〉e−

1
2 〈Σξ,ξ〉 dξ√

2πN .

Then

P[A ∩ B]− P[A]P[B] =
∑
x∈R
y∈S

e(x , y)

∫ 1

0
dt

∫
A×B

∂2φXt

∂ux∂vy
d(u, v).



The Plackett-Piterbarg method

P[A ∩ B]− P[A]P[B] =
∑
x∈R
y∈S

e(x , y)

∫ 1

0
dt

∫
A×B

∂2φXt

∂ux∂vy
d(u, v).

Recall that A depends only on the signs of f (x) = ux , and B on
the signs of f (y) = vy . Integrating par parts gives the bound

(#R)(#S) max
x∈R
y∈S

|e(x , y)|√
1− e(x , y)2

.



Quasi-independence

Let Dp = {(x , y) : ψ(x , y) ≥ −p}, and fix two families (Ei )i≤k and
(E ′i )i≤k ′ of rectangles or annuli.

Theorem (Rivera-Vanneuville)
Uniformly for A (resp. B) defined in terms of crossings of the Ei
(resp. E ′i ) by Dp, |P[A ∩ B]− P[A]P[B]| is bounded above by

C (p)η√
1− η2

(k +
∑
|Ei |+

∑
|∂Ei |)(k ′ +

∑
|E ′i |+

∑
|∂E ′i |)

where η := sup{e(x , y) : x ∈
⋃
Ei , y ∈

⋃
E ′i }.

Consequence: this is enough to obtain RSW estimates for a
positively correlated field with covariance smaller than d−4.



Quasi-independence: sketch of proof

• Prove a general Quasi-independence of “threshold events” for
Gaussian vectors

• Discretize the events (but the key point is that the bounds will
be independent of the discretization)

• Control the probability that a point is pivotal is small enough
(this involves a percolation type argument and the Kac-Rice
formula)



Quasi-independence for Gaussian vectors

Let Pivi (U) = {x ∈ Rn : ∃y , y ′ ∈ R : x i←y ∈ U, x i←y ′ ∈ Uc}.
Theorem

Let X and Y be two Gaussian vectors in Rk+k ′
, of covariances

ΣX =

[
Σ1 Σ12

ΣT
12 Σ2

]
and ΣY =

[
Σ1 0
0 Σ2

]
, where Σ1 and

Σ2 have all diagonal entries equal to 1. Let q ∈ Rk+k ′
and U and

V be in the σ-field of the {xi ≥ qi} for i ≤ k (resp. i > k). Then
|P[X ∈ U ∩ V ]− P[Y ∈ U ∩ V ]| ≤

∑
i≤k,j>k

Σije
−(q2

i +q2
j )/2

2π
√

1− Σij

×

∫ 1

0
P[Xt ∈ Pivi (U) ∩ Pivj(V )|Xt(i) = qi ,Xt(j) = qj ].



Quasi-independence for the discretized field

Discretize at scale δ > 0:

Theorem (Rivera-Vanneuville)

Uniformly for Aδ (resp. Bδ) defined in terms of crossings of the Ei
(resp. E ′i ) by Dδp, |P[Aδ ∩Bδ]− P[Aδ]P[Bδ]| is bounded above by

C (p)η√
1− η2

(k +
∑
|Ei |+

∑
|∂Ei |)(k ′ +

∑
|E ′i |+

∑
|∂E ′i |)

where η := sup{e(x , y) : x ∈
⋃
Ei , y ∈

⋃
E ′i }.

Main idea of the proof: A vertex is pivotal with small probability;
conditionally on the value of the field there, small means ε2.



The critical threshold for
Bargmann-Fock percolation
(following Rivera-Vanneuville)



The setup and the statement

• Recall that ψ is the Bargmann-Fock Gaussian field in the
plane, with covariance function exp(−‖x − y‖2/2).

• We are interested in the level sets

Dp = {(x , y) : ψ(x , y) ≥ −p}.

• Easy to see that θ(p) := Pp(0←→∞) is non-decreasing.

Theorem (Rivera-Vanneuville, 2019)
The critical level is equal to 0. More precisely,

• If p ≤ 0, then Dp a.s. has no unbounded component, while

• If p ≥ 0, then Dp a.s. has a unique unbounded component.

Moreover, exponential decay away from p = 0.



Warm-up: Bernoulli percolation

Theorem (Kesten)

For Bernoulli site percolation on T , pc = 1/2.

Sketch of the proof (classical style):

• At p = 1/2 we have the box-crossing property

• Whenever the BXP holds, get many pivotal points

• Sharp threshold for large boxes obtained by Russo’s formula:

∂pPp[A] =
∑

Pp[Pivi (A)]

• Glue larger and larger rectangles to build an infinite cluster



Kahn-Kalai-Linial theorem

This is a more manageable tool to obtain a sharp threshold: rather
than proving that each point is pivotal with large probability, show
that the largest influence is small: for a product of Bernoulli
variables,∑

Pp[Pivi (A)] ≥ cPp[A]Pp[Ac ] log
1

maxPp[Pivi (A)]
.

Easier to show that the probability that a vertex is pivotal is small.



Phase transition for Bargmann-Fock: overall strategy

• Discretize the model in the box 2R × R at mesh δR > 0, and
show that Pδp [LR(2R,R)] is close to 1 when R is large. This
turns out to work well if

δR ≥ (logR)−1/2+ε.

• Ensure on the other hand that Pδp and Pp are close enough,
this holds as soon as

δR ≤ R−1−ε.

• Those are incompatible! Instead, sprinkling to obtain that
P[LRp(2R,R)|LRδp/2(2R,R)] ' 1. This works if

δR ≤ (logR)−1/4−ε.
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Sharp threshold for dependent Gaussian vectors

Define the geometric influence of a vector v ∈ Rn ona Borel set A
under a measure µ as

Iv ,µ(A) := lim inf
µ(A + [−r , r ]v)− µ(A)

2r
.

Theorem (Rivera-Vanneuville 2017)
For every increasing event A ⊂ Rn,

n∑
i=1

Ii ,µ(A) ≥ c
∥∥∥√Σ

∥∥∥−1
µ(A)µ(Ac)×

√√√√log+
1∥∥∥√Σ

∥∥∥max Ii ,µ(A)
.

Smaller δ makes
∥∥∥√Σ

∥∥∥ larger, hence lower bound on δ.



Bounding the terms in the KKL estimate

Upper bound on the influences

P
[
Pivx(LRεp(2R,R))

∣∣ ψ(x) = −p
]
≤ CR−η

Upper bound on the operator norm∥∥∥√Σ
∥∥∥ ≤ C

1
ε

log
1
ε



Sprinkling to relate discrete and continuous

In the first step, we had to choose δ not too small, so the discrete
and continuous crossing events are too independent.

Theorem (Rivera-Vanneuville 2017)
For small enough δ, and for every R > 1,

P
[
LRδp/2(2R,R) \ LRp(2R,R)

]
≤ CR2δ−2 exp(−cδ−4).

This is based on the following estimate. If e = (x , y) is an edge of
length δ, define

Fold(e) = {ψ(x) > −p/2, ψ(y) > −p/2, inf
e
ψ < −p}.

Lemma

P[Fold(e)] ≤ C exp(−cδ−4).
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A few open problems



A few open problems: 2d

• Bogomolny-Schmidt conjecture: do we have convergence to
SLE in the scaling limit for Bargmann-Fock?

• How much can one weaken the tail decay condition? For slow
enough decay, can one obtain another scaling limit?

• Is it possible to handle negatively correlated fields?
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A few open problems: 3d

• Dynamical version: exceptional times and so on

• Is it the case that hc > 0?
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That’s all Folks!
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