Dimers on Riemann Surfaces
Nathanaël Berestycki
Universität Wien*
with B. Laslier (Paris) and G. Ray (Victoria, BC)

Porquerolles, June 2019

* on leave from University of Cambridge

The dimer model

Definition

$G=$ bipartite finite graph, planar
Dimer configuration $=$ perfect matching on G :
each vertex incident to one edge
Dimer model: uniformly chosen configuration

On square lattice, equivalent to domino tiling.

Dimer model as random surface

Example: honeycomb lattice
Dimer $=$ lozenge tiling
Equivalently: stack of 3d cubes.

© Kenyon

Height function
Introduced by Thurston. Hence view as random surface.

Large scale behaviour?

(c)Kenyon

Kenyon-Okounkov-Sheffield 2006

Background

Classical model of statistical mechanics:
Kasteleyn, Temperley-Fisher 1960s
Kenyon, Propp, Lieb, Okounkov, Sheffield, Dubédat, de Tilière, Boutillier, Borodin, Petrov, Toninelli, Ferrari, Gorin, ... 1990s+

"Exactly Solvable": determinantal structure

$$
\text { e.g., } \quad Z_{m, n}=\prod_{j=1}^{m} \prod_{k=1}^{n}\left|2 \cos \left(\frac{\pi j}{m+1}\right)+2 i \cos \left(\frac{\pi k}{n+1}\right)\right|^{1 / 2}
$$

Analysis via: discrete complex analysis, Schur polynomials, Young tableaux, algebraic geometry...

Mapping to other models:
Tilings, 6-vertex, Ising, Uniform Spanning Trees (UST)

Dimers and Imaginary Geometry

With B. Laslier and G. Ray, programme to describe scaling limit \rightarrow Imaginary Geometry, in various geometries.

This talk:
Dimers on Riemann surfaces.
Goal: show existence of a universal limiting "height function" and conformal invariance.

Height as 1 -form

In fact, "height function" is a closed 1-form (ie, ∇h well defined)

Hodge decomposition:
h consists of a function together with instanton component (a harmonic function on universal cover).

Some previous results:

Theorem (Boutillier and de Tilière, AoP 2009)

Convergence of instanton component for honeycomb lattice on torus + limit law: discrete Gaussian

Theorem (Dubédat, JAMS 2015)

Convergence of instanton and scalar component on torus for double isoradial graphs + limit law: compactified GFF

Theorem (Cimasoni, JEMS 2009)
On general surface, partition function alternating sum of $2^{2 g}$ determinants of Kasteleyn matrices. Coefficients given by Arf invariants.

Temperley's bijection; Kenyon-Sheffield

Start with a UST on graph 「.
Construct associated dimer config. on a modified graph G

Dimer configurations on $G \leftrightarrow$ UST on Γ Height function \leftrightarrow Winding of branches in tree

New goal:

Study winding of branches in UST.

Question

How much do you wind around in a random maze?

Temperley's bijection: how does it work (1)?

Pair of dual UST on $\left(\Gamma, \Gamma^{\dagger}\right) \leftrightarrow$ dimer on $G=\Gamma \oplus \Gamma^{\dagger}$.

Temperley's bijection: how does it work (2)?

Pair of dual UST on $\left(\Gamma, \Gamma^{\dagger}\right) \leftrightarrow$ dimer on $G=\Gamma \oplus \Gamma^{\dagger}$:
(primal, dual and medial lattice).

Temperley's bijection: how does it work (3)?

Pair of dual UST on $\left(\Gamma, \Gamma^{\dagger}\right) \leftrightarrow$ dimer on $G=\Gamma \oplus \Gamma^{\dagger}$.

Temperley's bijection: how does it work (3.1)?

Pair of dual UST on $\left(\Gamma, \Gamma^{\dagger}\right) \leftrightarrow$ dimer on $G=\Gamma \oplus \Gamma^{\dagger}$.

Temperley's bijection: how does it work (3.2)?

Pair of dual UST on $\left(\Gamma, \Gamma^{\dagger}\right) \leftrightarrow$ dimer on $G=\Gamma \oplus \Gamma^{\dagger}$.

Temperley's bijection: how does it work (4)?

Pair of dual UST on $\left(\Gamma, \Gamma^{\dagger}\right) \leftrightarrow$ dimer on $G=\Gamma \oplus \Gamma^{\dagger}$.

Temperley's bijection: how does it work (5)?

Pair of dual UST on $\left(\Gamma, \Gamma^{\dagger}\right) \leftrightarrow$ dimer on $G=\Gamma \oplus \Gamma^{\dagger}$.

[Trees $=$ oriented edges: each vertex has unique outgoing edge, except on boundary (wired).]

State of our results

Theorem 1 (B.-Laslier-Ray '19, in preparation)
We extend Temperley's bijection to Riemann surfaces.
Instead of UST, "Temperleyan forests".

Extension of Temperley's bijection

If Γ a graph embedded on S, Γ^{\dagger} its dual,
$G=$ Superposition $\Gamma \cup \Gamma^{\dagger}$, + intermediate vertices.
Euler's formula for Γ :

$$
V-E+F=\chi=2-2 g-b
$$

$g=$ genus, $b=$ boundary components.
However, for G to be dimerable, $V+F=E$ hence need:

$$
\chi=0, \text { or } 2 g+b=2
$$

In simply connected case we need to remove one vertex (Kenyon-Propp-Wilson); and remove two on \mathbb{S}^{2}.

Extension of Temperley's bijection

Punctures

Lemma: Removing $2 g+b-2$ disjoint edges \& medial vertices, G is dimerable.

Admit this for now.
Temperley's bijection is local, so can be applied here too.
Instead of UST get a new object: "Temperleyan forests".

Extension of Temperley's bijection

Most natural generalisation of UST: Cycle Rooted Spanning Forest

Definition: CRSF

Oriented subgraph T of G :

- $\forall v \notin \partial G$, unique outgoing edge (except boundary: wired).
- Every cycle is non-contractible.

Topological reasons: any component has at most one cycle;

Temperleyan forest

Let T be oriented wired CRSF on $\Gamma, T^{\dagger}=$ dual.
Problem: Can you orient dual T^{\dagger} ? Not always possible!

Definition

Call T Temperleyan if each connected component of T^{\dagger} contains at most one cycle.

Ex: non-Temperleyan:

Characterisation of Temperleyan forests

Let $\mathcal{B}=$ special branches (emanating from punctures on either side)

Proposition

T is Temperleyan iff every component in the complement of \mathcal{B} in M has the topology of an annulus or a torus.

Proof: "Pair of pants" decomposition.

Dimerability

Corollary

On torus/annulus, CRSF always Temperleyan (note $\chi=0$).
(In fact, this is how the proposition is proved...)

Corollary

Removing the $|\chi|$ punctures, the superposition graph is indeed dimerable.

Proof: apply pair of pants decomposition and Temperley's generalised bijection.

Temperleyan forest holds the key

Theorem 2

Let $\chi \leq 0$ be arbitrary. Suppose Temperleyan forest converges in Schramm space. Then both components of dimer height function converges.

Uses adaptation of our earlier work in simply connected setting: winding is well behaved...!

Low Euler characteristic

When Euler's $\chi=0$ (i.e., annulus or torus), by Proposition: Temperleyan forest reduces to Cycle Rooted Spanning Forest.

$$
\frac{d \mathbb{P}_{\text {Temp }}}{d \mathbb{P}_{\mathrm{CRSF}}}=\frac{2^{\# \text { dual cycles }}}{\mathbb{E}_{\mathrm{CRSF}}\left(2^{\# \text { dual cycles })}\right.}=\frac{2^{\# \text { cycles }}}{\mathbb{E}_{\mathrm{CRSF}}\left(2^{\# \text { cycles }}\right)}
$$

because you get 2 choices for orientation of each cycle.
Moreover, Wilson's algorithm for CRSF:
perform LERW but stop if make nontrivial loop.

Scaling limit of CRSF

Theorem 3 (B.-Laslier-Ray)
Let $\chi \leq 0$ arbitrary. Assume (\star).
Then CRSF converges in Schramm space to universal, conformally invariant scaling limit.
Moreover, $\mathbb{E}_{\text {CRSF }}\left(q^{\#}\right.$ cycles $)$ uniformly bounded for any $q>0$.
Solves some conjectures by Kassel-Kenyon.
($)$ generic assumptions on graph: SRW $\rightarrow B M$ on surface, "rectangles" are crossed with positive probability (\approx RSW).

Main conclusion (for now!)

Corollary

Dimer height function converges when $\chi=0$. Both components are universal, conformally invariant.

In torus case, proves conjecture by Dubédat, completing partial results by Dubédat-Ghessari.

In progress

Can handle Riemann surfaces of low complexity (Euler's $\chi=0$)

Work on case $\chi<0$ in progress ...
\rightarrow existence of a conformally invariant scaling limit.

Conjecture: the limiting "height function" converges to the compactified GFF in the punctured surface

