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The dimer model

Definition

G = bipartite finite graph, planar
Dimer configuration = perfect matching on G :
each vertex incident to one edge
Dimer model: uniformly chosen configuration

On square lattice, equivalent to domino tiling.



Dimer model as random surface

Example: honeycomb lattice

Dimer = lozenge tiling
Equivalently: stack of 3d cubes.
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Height function

Introduced by Thurston. Hence view as random surface.



Large scale behaviour?
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Kenyon–Okounkov–Sheffield
2006



Background

Classical model of statistical mechanics:

Kasteleyn, Temperley–Fisher 1960s
Kenyon, Propp, Lieb, Okounkov, Sheffield, Dubédat, de Tilière,
Boutillier, Borodin, Petrov, Toninelli, Ferrari, Gorin, ... 1990s+

“Exactly Solvable”: determinantal structure

e.g., Zm,n =
m∏
j=1

n∏
k=1

∣∣2 cos(
πj

m + 1
) + 2i cos(

πk

n + 1
)
∣∣1/2

Analysis via: discrete complex analysis, Schur polynomials, Young
tableaux, algebraic geometry...

Mapping to other models:

Tilings, 6-vertex, Ising, Uniform Spanning Trees (UST)



Dimers and Imaginary Geometry

With B. Laslier and G. Ray, programme to describe scaling limit →
Imaginary Geometry, in various geometries.
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This talk:

Dimers on Riemann surfaces.

Goal: show existence of a universal limiting “height function” and
conformal invariance.



Height as 1-form

In fact, “height function” is a closed 1-form (ie, ∇h well defined)

Hodge decomposition:

h consists of a function together with instanton component (a
harmonic function on universal cover).



Some previous results:

Theorem (Boutillier and de Tilière, AoP 2009)

Convergence of instanton component for honeycomb lattice on
torus + limit law: discrete Gaussian

Theorem (Dubédat, JAMS
2015)

Convergence of instanton and
scalar component on torus for
double isoradial graphs + limit
law: compactified GFF

Theorem (Cimasoni, JEMS 2009)

On general surface, partition function alternating sum of 22g

determinants of Kasteleyn matrices. Coefficients given by Arf
invariants.



Temperley’s bijection; Kenyon–Sheffield

Start with a UST on graph Γ.
Construct associated dimer config. on a modified graph G

Dimer configurations on G ↔ UST on Γ
Height function ↔ Winding of branches in tree

New goal:

Study winding of branches
in UST.

Question

How much do you wind around in a random maze?



Temperley’s bijection: how does it work (1)?

Pair of dual UST on (Γ, Γ†) ↔ dimer on G = Γ⊕ Γ†.

Γ



Temperley’s bijection: how does it work (2)?

Pair of dual UST on (Γ, Γ†) ↔ dimer on G = Γ⊕ Γ†:
(primal, dual and medial lattice).

Γ†



Temperley’s bijection: how does it work (3)?

Pair of dual UST on (Γ, Γ†) ↔ dimer on G = Γ⊕ Γ†.



Temperley’s bijection: how does it work (3.1)?

Pair of dual UST on (Γ, Γ†) ↔ dimer on G = Γ⊕ Γ†.



Temperley’s bijection: how does it work (3.2)?

Pair of dual UST on (Γ, Γ†) ↔ dimer on G = Γ⊕ Γ†.



Temperley’s bijection: how does it work (4)?

Pair of dual UST on (Γ, Γ†) ↔ dimer on G = Γ⊕ Γ†.



Temperley’s bijection: how does it work (5)?

Pair of dual UST on (Γ, Γ†) ↔ dimer on G = Γ⊕ Γ†.

[Trees = oriented edges: each vertex has unique outgoing edge,
except on boundary (wired).]



State of our results

Theorem 1 (B.–Laslier–Ray ’19, in preparation)

We extend Temperley’s bijection to Riemann surfaces.
Instead of UST, “Temperleyan forests”.



Extension of Temperley’s bijection

If Γ a graph embedded on S , Γ† its dual,
G = Superposition Γ ∪ Γ†, + intermediate vertices.

Euler’s formula for Γ:

V − E + F = χ = 2− 2g − b;

g = genus, b = boundary components.

However, for G to be dimerable, V + F = E hence need:

χ = 0, or 2g + b = 2.

In simply connected case we need to remove one vertex
(Kenyon–Propp–Wilson); and remove two on S2.



Extension of Temperley’s bijection

Punctures

Lemma: Removing 2g + b − 2 disjoint edges & medial vertices, G
is dimerable.

Admit this for now.
Temperley’s bijection is local, so can be applied here too.

Instead of UST get a new object: “Temperleyan forests”.



Extension of Temperley’s bijection

Most natural generalisation of UST: Cycle Rooted Spanning Forest

Definition: CRSF

Oriented subgraph T of G :
– ∀v /∈ ∂G , unique outgoing edge (except boundary: wired).
– Every cycle is non-contractible.
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Topological reasons: any component has at most one cycle;



Temperleyan forest

Let T be oriented wired CRSF on Γ, T † = dual.
Problem: Can you orient dual T †? Not always possible!

Definition

Call T Temperleyan if each connected component of T † contains
at most one cycle.

Ex: non-Temperleyan:

T †

T



Characterisation of Temperleyan forests

Let B = special branches
(emanating from
punctures on either side)

B = special branches

Proposition

T is Temperleyan iff every component in the complement of B in
M has the topology of an annulus or a torus.

Proof: “Pair of pants” decomposition.



Dimerability

Corollary

On torus/annulus, CRSF always Temperleyan (note χ = 0).

(In fact, this is how the proposition is proved...)

Corollary

Removing the |χ| punctures, the superposition graph is indeed
dimerable.

Proof: apply pair of pants decomposition and Temperley’s
generalised bijection.



Temperleyan forest holds the key

Theorem 2

Let χ ≤ 0 be arbitrary. Suppose Temperleyan forest converges in
Schramm space. Then both components of dimer height function
converges.

Uses adaptation of our earlier work in simply connected setting:
winding is well behaved...!



Low Euler characteristic

When Euler’s χ = 0 (i.e., annulus or torus), by Proposition:
Temperleyan forest reduces to Cycle Rooted Spanning Forest.

dPTemp

dPCRSF
=

2# dual cycles

ECRSF(2#dual cycles)
=

2# cycles

ECRSF(2# cycles)
.

because you get 2 choices for orientation of each cycle.

Moreover, Wilson’s algorithm for CRSF:
perform LERW but stop if make nontrivial loop.



Scaling limit of CRSF

Theorem 3 (B.–Laslier–Ray)

Let χ ≤ 0 arbitrary. Assume (?).

Then CRSF converges in Schramm space to universal, conformally
invariant scaling limit.

Moreover, ECRSF(q# cycles) uniformly bounded for any q > 0.

Solves some conjectures by Kassel-Kenyon.

(?) generic assumptions on graph:
SRW → BM on surface,
“rectangles” are crossed with positive probability (≈ RSW).



Main conclusion (for now!)

Corollary

Dimer height function converges when χ = 0.
Both components are universal, conformally invariant.

In torus case, proves conjecture by Dubédat, completing partial
results by Dubédat-Ghessari.



In progress

Can handle Riemann surfaces of low complexity (Euler’s χ = 0)

Work on case χ < 0 in progress ...
→ existence of a conformally invariant scaling limit.

Conjecture: the limiting “height function” converges to the
compactified GFF in the punctured surface

THANK YOU!


