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Low-energy excitations behave like d = 3 + 1 Dirac fermions
= at low T, Weyl semimetal mimicks infrared QED,.

Do Weyl semimetals support the analogue of chiral anomaly?
Nielsen-Ninomiya 1983: YES, the analogue being a flow of
quasi-particles from one Fermi point to the other:

Ou(N(t) — Ni(£)) = ——E - B.
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Weyl semimetals: 3D materials with degenerate Fermi surface.
Two Fermi points, around which dispersion relation is conical.

Low-energy excitations behave like d = 3 + 1 Dirac fermions
= at low T, Weyl semimetal mimicks infrared QED,.

Do Weyl semimetals support the analogue of chiral anomaly?
Nielsen-Ninomiya 1983: YES, the analogue being a flow of
quasi-particles from one Fermi point to the other:

Or (Nr(£) — Ny (1)) = 2—;5 .B.

The 515 is the analogue of the Adler-Bell-Jackiw anomaly.
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Overview

In QED, ABJ anomaly not dressed by radiative corrections:
Adler-Bardeen anomaly non-renormalization theorem.

Its perturbative proof is based on cancellations of loop
integrals, which require exact relativistic invariance.

Should the same universal coefficient be observed in
interacting Weyl semimetals? Remarkably, YES!

We consider a class of lattice Weyl semimetals with short
range interactions, and prove universality of the ABJ anomaly.

Mechanism: very different from Adler-Bardeen proof. Our ingredients:
rigorous RG, regularity of current correlations, lattice Ward Identities.
Important fact: short range interactions are irrelevant in the IR.
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The chiral anomaly
Massless Dirac fermions, gauge symmetries

Consider massless 4D Dirac fermions in a background field:

£(¢; A) = QZ%L(’.a# - Au)d}

where ¢ = 1T, and 7, are Euclidean Gamma matrices:

0 1 0 o
{V W}l =20u0, eg.: %:<1 0), wz(_,-(,j 0’)-

L covariant under local U(1) gauge transformation:

e — e Wyl s ylet M A LS AL+ 9ua(x).
Axial symm. can be promoted to local U(1), by adding to £
an auxiliary term —Afﬂﬁ%%zﬁ, and letting

Uy — ey gl et A A 10,05(x)
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i.e., conservation of the total and axial charges:

=0 =)Wl g =vls = wili.
w==% w==£

These conservation laws might be broken in quantum theory,
due to UV regularization.
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Here P(di))oc Dipe=(79%) a Grassmann Gaussian measure s.t.
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The chiral anomaly
Conserved currents: classical and quantum

Classically, Noether's theorem = |9, j, = 0|and 8Hj3 =0

i.e., conservation of the total and axial charges:

=0 =)Wl g =vls = wili.
w==% w==£

These conservation laws might be broken in quantum theory,
due to UV regularization.

SW(AAS) _ / P(dup) el i)+ (45 2)
Formally, W(A, A®) = W(A + da, A®> + ), from which
<auju>A =0, <auj3>A =0,

[ P(di)elnin) O(y)
J P(dy)eAu: i)

where (O())a =
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The chiral anomaly

Loop cancellation and UV divergences

Note: (0, ]E)A = 0 is the same as [letting p = p1 + - - - + p,)

1 4 A . . .
Py <jﬁ,p>A = Z HpuAm,m “ Apn (l;g,p;lul,m; S Jmapa)o = 0.

n>1

That is, all loop diagrams cancel:

However, the loop diagrams with n < 4 are UV divergent! We
need an UV regularization (to be eventually removed) in order
to give the diagrams and to the cancellations a meaning.



The chiral anomaly

The axial anomaly

Fact: there is no way to add an UV regularization preserving
both the vectorial and axial current conservations. If we
choose to preserve the vectorial U(1) gauge symmetry, then
i
€agyga A 65

<8NJB>A 2 2
1

5.2 i1s the ABJ anomaly, determined by the triangle graph:




The chiral anomaly

Radiative corrections, Adler-Bardeen theorem

What if we add interactions, i.e., coupling with dynamical e.m.
field? Is the triangle graph dressed by radiative corrections?

P
& LSl 8 &« -

Adler-Bardeen theorem: NO! All possible dressings of the
triangle cancel exactly. Required: specific UV regularization,
exact relativistic invariance of the fermionic propagator.

[Deep consequences in QED and Standard Model: exact decay rate of
70 — 77, constraint on the number of lepton/quark families.]
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Lattice Weyl semimetals

The non-interacting model

Fermions on a lattice A4 U Ag, with n.n. and n.n.n. hoppings,
in staggered chemical potential and magnetic field.

We let Hy = (¢, hotp™) f( 3wljh° wk’ with 1/1;( N <Z::>

ho(k) = t) cos k3 + j1 — t' cos ky cos ky tysink; — ity sin ky
T ty sin ky + ity sin ky —t| cos ks — 1 + t' cos ky cos ky
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Free propagator, dispersion relation, Fermi points

Two point function: if (-} = limg o, Tr(e=#Ho.)/Tr e=Pth,
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Lattice Weyl semimetals

Free propagator, dispersion relation, Fermi points

Two point function: if (-} = limg o, Tr(e=#Ho.)/Tr e=Pth,

<w;rwy>0:/(2ﬂ_)4§(k)eik(x)/)’ with  g(k) = (—iko+ho(k)) 2.

For |u — t'| <ty < pu+ t, the energy bands barely touch at
two Fermi points p¢ = (0,0, wpg), around which

1
hg(k + ka]) ~ ?(v{)klal + nggo'z — wv§k303)

with Z =1, vf = t,
v =tp, v) =t sinpE.
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Lattice Weyl semimetals

Lattice interacting model

We consider an interacting version of the model:
H= Ho+)\V0—|—I/N3

where Vj is a short-range density-density interaction, N3 =
= Na — Np, and v is used to fix the location of pf.

We let (-) = limg o Tr(e#".)/Tr e PH. We are interested
in the response of N> = 3" p?> to an external e.m. field, where

5 _ L+ = + - ;
Px = 3 ey — Vires Vi) it xeh
Note:

N° = /( 27)? S|nk31/1k1/1k _SlonZ / dk/ k@;k/,

’|<a

and ww o= zzkiurp?: N5 is lattice analogue of the chiral charge.



Lattice Weyl semimetals

Coupling with an external e.m. field, Peierls’ substitution

Gauge invariant coupling to an external e.m. field: any
hopping tx7y@/)fij_y is modified into (Peierl's substitution):

+ - 4+ - i Al)-de |+ | —
txy@bi,x iy >ty (A) ixVjy = bey€ > ix¥iy



Lattice Weyl semimetals

Coupling with an external e.m. field, Peierls’ substitution

Gauge invariant coupling to an external e.m. field: any
hopping tx7y@/)fij_y is modified into (Peierl's substitution):

+ - 4+ - i Al)-de |+ | —
txy@bi,x iy >ty (A) ixVjy = bey€ > ix¥iy

The A-dependent hopping term is gauge covariant under

w,-lfx — gl E A(x) — A(x) + Oa(x).

ix?



Lattice Weyl semimetals

Coupling with an external e.m. field, Peierls’ substitution

Gauge invariant coupling to an external e.m. field: any
hopping tx7y@/)fij_y is modified into (Peierl's substitution):

+ - 4+ - i Al)-de |+ | —
txy@bi,x iy >ty (A) ixVjy = bey€ > ix¥iy

The A-dependent hopping term is gauge covariant under

w,-lfx — gl E A(x) — A(x) + Oa(x).

ix?

We let Ho(A) = (¢, ho(A)1p~) be the gauge covariant
hopping term. Note: the interaction is gauge invariant.



Lattice Weyl semimetals

Coupling with an external e.m. field, Peierls’ substitution

Gauge invariant coupling to an external e.m. field: any
hopping tx7y@/)fij_y is modified into (Peierl's substitution):

+ - 4+ - i Al)-de |+ | —
txy@bi,x iy >ty (A) ixVjy = bey€ > ix¥iy

The A-dependent hopping term is gauge covariant under

w,-lfx — gl E A(x) — A(x) + Oa(x).

We let Ho(A) = (¢, ho(A)1p~) be the gauge covariant
hopping term. Note: the interaction is gauge invariant.

The chiral density is also promoted to a gauge invariant
observable: if x € A;, then

pr(A) = (é j,rijter%eifol Fobcrsald 4 C'C'>



Lattice Weyl semimetals
Generating function of lattice correlations

Generating function of lattice current correlations:

eW(AA5 / (dw) —AVo(¥)—vN3(¥)+B(A 71/’)+(Awfu(A))’

where: P(dv) has propagator g(k) = (—iko + ho(k)) ™2,
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Lattice Weyl semimetals
Generating function of lattice correlations

Generating function of lattice current correlations:

SWIARS) _ / P(d) e MVolo) M)+ (AW (A5.J2(A)).

where: P(d4) has propagator g(k) = (—iko + ho(k))™ 1,
B(Avw) = (era (ho—ho(A)W*)_"(Ao, :0)7 with Px = ?ﬁj?ﬁ;:

while (A, j>(A)) is the chiral source term, with

Jox(A) = —iZ5pi(A),

KA = 7% (wglwm i3 As(xrses)ds | o o >
BA) =  Z% (W@z/;x Lo el o Aalesends o )
Bx(A) = —ZZ¢osy,

for suitable normalization factors Zi, to be fixed below.
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Rationale behind the definition of the chiral lattice currents?
© They are invariant under the natural lattice symmetries
@ They reduce to the ‘right’ relativistic expression near p%
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Lattice Weyl semimetals

The lattice chiral current, |

Rationale behind the definition of the chiral lattice currents?
© They are invariant under the natural lattice symmetries

@ They reduce to the ‘right’ relativistic expression near p%

Lattice current: j, ,(A) = w. Close to p%,
P

N N dk "
Jup = Jup(0) = v, Z / Wd’l:rp,wau,wwk ;
w=%

with ag,, = —il, a1, = 01, o = 02, A3, = —WO3.

Similarly, the chiral currents satisfy
dk - n
5. 55 ~ 75 + 5 -
Jup = ju,p(o) - ZMC# Z / (27T)4wk+p,wau,wwk ’
w==%

with aijw =wa,, and @ = =1, a = ¢ = sin pe.



Lattice Weyl semimetals

The lattice chiral current, Il

Normalization condition: we fix the constants Z/f in such a
way that the chiral currents are proportional to the vectorial
ones, close to the Fermi points, in the sense of correlations:

<j2,p'¢k+pwk ‘A —0 — Ju,pv1/’k+p¢k ’A 0 (1+0(|k— pﬁ pl)) (%)

fork:pf,p:ﬂ.



Lattice Weyl semimetals

The lattice chiral current, Il

Normalization condition: we fix the constants Z/f in such a
way that the chiral currents are proportional to the vectorial
ones, close to the Fermi points, in the sense of correlations:

<j2,p'¢k+pwk ‘A —0 — Ju,pv1/’k+p¢k ’A 0 (1+0(|k— pﬁ pl)) (%)
fork:pf,p:ﬂ.

Note: if desired, it is possible to choose jﬁ,x in such a way that
it satisfies a lattice continuity equation [but this doesn't help].



Lattice Weyl semimetals
Lattice gauge invariance

VAN _ / P(dip) e~ Volh)—vNs()+B(AD)+(A5 5(A)

Exact lattice gauge symmetry:

W(A,A%) = W(A + da, A°) (%)



Lattice Weyl semimetals
Lattice gauge invariance

VAN _ / P(dip) e~ Volh)—vNs()+B(AD)+(A5 5(A)

Exact lattice gauge symmetry:
W(A, A%) = W(A + da, A°) (14)

No way of choosing the chiral currents in such a way that W
is chiral gauge invariant!



Lattice Weyl semimetals
Lattice gauge invariance

VAN _ / P(dip) e~ Volh)—vNs()+B(AD)+(A5 5(A)

Exact lattice gauge symmetry:
W(A, A%) = W(A + da, A°) (14)

No way of choosing the chiral currents in such a way that W
is chiral gauge invariant!

By differentiating (**) w.r.t. « as many times as we like, we
obtain a hierarchy of Ward Ildentities, among which

Pu(Jup(A))a = 0.



Lattice Weyl semimetals
Lattice gauge invariance

VAN _ / P(dip) e~ Volh)—vNs()+B(AD)+(A5 5(A)

Exact lattice gauge symmetry:
W(A, A%) = W(A + da, A°) (14)

No way of choosing the chiral currents in such a way that W
is chiral gauge invariant!

By differentiating (**) w.r.t. « as many times as we like, we
obtain a hierarchy of Ward Ildentities, among which

Pu(Jup(A))a = 0.

No analogue for <j27P(A)>A [in agreement w. what we said for QED].
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Linear and quadratic responses of the chiral current

W(AAS) _ / P(dip) e NV () M)+ BAD)+(A3 2 (A)

o} ,0
We let (55 ,(A))a = %
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as a formal power series: the coefficients define the linear,

quadratic, etc., response coefficients [in the same sense as Kubo].
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Linear and quadratic responses of the chiral current

W(AA) _ / P(dv) e —AVo(¥)—vN3(p)+B(A 7w)+(AwJH(A))7

We let (75 ,(A))a = agVA—;“’ That is,

R 1 o n
pu(]ls)(A»A = Z mpuri,m,...,un(pla s Pa) A A,

n>1

as a formal power series: the coefficients define the linear,
quadratic, etc., response coefficients [in the same sense as Kubo].
0" 1w(0,0)

r5 p]_?...,pn — ~ = ~ ) p:p1+-..—|—pn
/1,,,[1,1,-.-7/1117( ) aAz,P@AMI’pI e a/4,l-l'n7pn




Lattice Weyl semimetals

Linear and quadratic responses of the chiral current

W(AA) _ / P(dv) e —AVo(¥)—vN3(p)+B(A 7w)+(AwJH(A))7

We let (75 ,(A))a = agVA—;“’ That is,

R 1 o n
pu(]ls)(A»A = Z mpuri,m,...,un(pla s Pa) A A,

n>1

as a formal power series: the coefficients define the linear,
quadratic, etc., response coefficients [in the same sense as Kubo].
0" 1w(0,0)

r5 p]_?...,pn — ~ = ~ ) p:p1+-..—|—pn
/1,,,[1,1,-.-7/1117( ) aAz,P@AMI’pI e a/4,l-l'n7pn

Non-linear coupling with A = Schwinger terms.



Lattice Weyl semimetals
Main result

Theorem (G., Mastropietro, Porta 2019.)

For |\| small enough, there exists v(\) = O(\) such that the
interacting two point function behaves like

o —Iko T V3CUk3 V]_k]_ aF I'ngz
<¢k+p 7kaerF> <V1k1 _ ivzkz) —iko _ V3(,dk3 (1 + O(k)),

for suitable v; = vj(\) = v + O(\). Moreover, there exists
Z> = Z>(\) such that (**) holds; once Z? are fixed in this
way the linear and quadratic chiral response coefficients satisfy

P50 (P) = O(P°),
1
p,uri,u,a(pla p2) = ﬁpl,apZ,Bgaﬁya + O((piv pg))
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Remarks

e The interaction dresses the physical parameters, v, v, Zj,
which are analytic functions of A. However, the quadratic
response coefficient of the chiral current is universal.

Analogous earlier results for graphene's optical conductivity and Hall
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) 1 N
p,u<],5%p>A = 2_7r2p1,o¢p2ﬁ5aﬁuaAu,p1Aa,pg + ...

where the dots indicate higher order terms in p1, p2, A.
Taking a field A corresponding to constant E || B, i.e.,
Ay = A1 =0, Ay(x) = Bxq, As(x) = —Et, we get
1
O (N2(A)) 4 = =5 EB + ...
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response coefficient of the chiral current is universal.
Analogous earlier results for graphene's optical conductivity and Hall
conductivity of Haldane [Giuliani-Mastropietro-Porta 2011,2017].

o The result can be restated as
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Remarks

e The interaction dresses the physical parameters, v, v, Zj,
which are analytic functions of A. However, the quadratic
response coefficient of the chiral current is universal.
Analogous earlier results for graphene's optical conductivity and Hall
conductivity of Haldane [Giuliani-Mastropietro-Porta 2011,2017].

o The result can be restated as

) 1 N
pu<],i’p>A = 2_7r2p1,o¢p2ﬁ5aﬁuaAu,p1Aa,pg + ...

where the dots indicate higher order terms in p1, p2, A.
Taking a field A corresponding to constant E || B, i.e.,
Ay = A1 =0, Ay(x) = Bxq, As(x) = —Et, we get
1
5 _
0e(N2(A)) 4 = ﬁEB + ..
Same as Nielsen-Ninomiya, but in the interacting case!

Prediction can potentially be verified experimentally.
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Constructive RG

We compute

AN _ / P(di) e MVol)oNs(W)HBAD)HAL, 5 ()

+(h
via a multiscale procedure. We decompose wk = Zh<0 w(k)

and, after having integrated the fields with h < /' < 0, we get
eW(AAY) _ /P<h(d¢) V(AN VZy))

Here: P~j has propagator gwgh)(k) with dressed parameters
Zy, v} and an UV cutoff s.t. [k| < 2% and VIW(A A% ) =

=) / o (2l 03 A ZE A G s+ Z A Dok RV
w==+
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Scaling dimensions, irrelevance of the interaction

The scaling dimension of the kernels with n, m fields of type
U, Ais D=4 — %n — m. l.e., if we symbolically write

RV = Z/dédy W (%, ¥t - - U Ay - Ay,

m,n

then the kernels W,E'Z,), are analytic in A\, vy, Z, Z>" and

/dg dy W (x. y)| ecV2"dxy) < Cn7m2(4f%nfm)h

)

Even better: the contributions to W,S'Z,), explicitly depending on
A admit an improved bound by a factor 209" for any § > 0.
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Flow of the running coupling constants, IR fixed point

The running coupling constants vy, Zy, v, Z", Z>" satisfy
recursive equations, controlled by a beta function that is itself
analytic in A\, vy, Z,. By properly fixing v, Zlf at the initial

step, we obtain a bounded IR flow s.t.
> h h —5.h
vh—=0, Zn—Z, v, =, 220" — 2,

as h — —oo, exponentially fast.

Moreover, using the exact lattice Ward |dentities,

Z,=v,Z.

Exponentially fast convergence to the IR fixed point: the
correlation functions are the same as the free ones with
dressed parameters, plus corrections decaying faster to zero
at large distances (faster by additional 1/(dist.)!~°).
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Quadratic response, relativistic and Schwinger terms

In conclusion,
rz l/o'(p].7 p2) - ri;elg(ph p2) + H,u Va(pla p2)

Here: H?> _includes the subdominant contributions to chiral

W,V,0
triangle graph and Schwinger terms (C*° in py, p2),
2,2,Z
r5rel ’ :_,uualyg_7_’

where p = (po, vap1, vap2, v3p3) and, after rescaling k — k,

)
B Y(k ) X(k+p1) x(k + p2)
/N,u,o(ply p2) - / ( ) Tr { K K + pl T K + p2 } +

+ (v, p1) © (0,p2)]-
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The relativistic triangle graph

2,207 ViV Vo

We now use Z, = v, Z to rewrite 5% .
K Z3vivovg Vivav3

Moreover, the relativistic triangle graph, /., »(P1, P2), can be
computed explicitly and gives:

1
5,rel
(pluu +p27#)r,u, l/a(p17p2) 672
5,rel

1
P1 ery o‘(p17 p2) 6772 ——5 P1,aP2,8EaBuc + h.o.

pl,ap2,ﬂ5aﬁucr + h.O.,
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We now use ply,,rft,w(pl, p>) = 0, which implies, together
with 3 =T>r 4 H> and the differentiability of H,,

/J,,ZI,O' /,L,l/,O' /J’7V’O—
p ,ap s Eafuc aH Vo
: 2752 ﬁu +p17l’(Hp‘7V70(07 0)+Z pj7a 8: (0’ 0)) = O(pj3)'
J,x

j=1,2
From this: H,,,(0,0) =0 and
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We now use pL,,rfW(pl, p>) = 0, which implies, together
with 3 =T>r 4 H> and the differentiability of H,,

w,v,o MV, Mu,v,o
pl,apZ, Eafuc 8H WO
%MW(HW(O,OHZ P (0, 0)) = 0(p}).

j=12 e

From this: H,,,(0,0) =0 and

OH, 1 oH 1

—72(0,0) = —— VB0 £272(0,0) = ——; regeITmY

8,02,[3 ( ’ ) 671'28 B apl,a ( ) ) 671'28 ek (***)
We now contract p, with >, (p1,p2):

pﬂri,y,a(p) = pur,i’,:/e:g'(plu p2) + p,uH,u,u,cr(ply P2)

First term: we computed it explicitly. Second term: use (***).
Combining things together,

p,uri,y,a(ph p2) - P1,0.P2,8€aBro + O((pl7 p2)3) .4

22



Sketch of the proof

Conclusions

— The chiral anomaly of QED,4 has a cond-mat counterpart in
Weyl semimetals. We proved the nonperturbative analogue of
the Adler-Bardeen thm for interacting lattice Weyl fermions:
non-renormalization of the anomaly.



Sketch of the proof

Conclusions

— The chiral anomaly of QED,4 has a cond-mat counterpart in
Weyl semimetals. We proved the nonperturbative analogue of
the Adler-Bardeen thm for interacting lattice Weyl fermions:
non-renormalization of the anomaly.

— Proof based on constructive RG methods combined with
lattice Ward Identities 4+ bounds on regularity of correlations
and of the Schwinger terms.



Sketch of the proof

Conclusions

— The chiral anomaly of QED,4 has a cond-mat counterpart in
Weyl semimetals. We proved the nonperturbative analogue of
the Adler-Bardeen thm for interacting lattice Weyl fermions:
non-renormalization of the anomaly.

— Proof based on constructive RG methods combined with
lattice Ward Identities 4+ bounds on regularity of correlations
and of the Schwinger terms.

— Open problems:
© Effects of disorder?



Sketch of the proof

Conclusions

— The chiral anomaly of QED,4 has a cond-mat counterpart in
Weyl semimetals. We proved the nonperturbative analogue of
the Adler-Bardeen thm for interacting lattice Weyl fermions:
non-renormalization of the anomaly.

— Proof based on constructive RG methods combined with
lattice Ward Identities 4+ bounds on regularity of correlations
and of the Schwinger terms.

— Open problems:

@ Effects of disorder?

@ Coupling to a dynamical e.m. field: rigorous construction
of infrared QEDy, [at least perturbatively at all orders]?
Renormalizability [without photon mass counterterms]?
Dynamical restoration of Lorentz invariance in the IR?
Non-renormalization of the chiral anomaly?
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Thank you!



	Overview
	The chiral anomaly
	Lattice Weyl semimetals
	Sketch of the proof

