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Overview

Weyl semimetals: 3D materials with degenerate Fermi surface.
Two Fermi points, around which dispersion relation is conical.

Low-energy excitations behave like d = 3 + 1 Dirac fermions
⇒ at low T , Weyl semimetal mimicks infrared QED4.

Do Weyl semimetals support the analogue of chiral anomaly?
Nielsen-Ninomiya 1983: YES, the analogue being a flow of
quasi-particles from one Fermi point to the other:

∂t〈NR(t)− NL(t)〉 =
1

2π2
E · B .

The 1
2π2 is the analogue of the Adler-Bell-Jackiw anomaly.
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Overview

In QED, ABJ anomaly not dressed by radiative corrections:
Adler-Bardeen anomaly non-renormalization theorem.

Its perturbative proof is based on cancellations of loop
integrals, which require exact relativistic invariance.

Should the same universal coefficient be observed in
interacting Weyl semimetals? Remarkably, YES!

We consider a class of lattice Weyl semimetals with short
range interactions, and prove universality of the ABJ anomaly.

Mechanism: very different from Adler-Bardeen proof. Our ingredients:
rigorous RG, regularity of current correlations, lattice Ward Identities.
Important fact: short range interactions are irrelevant in the IR.



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

Overview

In QED, ABJ anomaly not dressed by radiative corrections:
Adler-Bardeen anomaly non-renormalization theorem.

Its perturbative proof is based on cancellations of loop
integrals, which require exact relativistic invariance.

Should the same universal coefficient be observed in
interacting Weyl semimetals? Remarkably, YES!

We consider a class of lattice Weyl semimetals with short
range interactions, and prove universality of the ABJ anomaly.

Mechanism: very different from Adler-Bardeen proof. Our ingredients:
rigorous RG, regularity of current correlations, lattice Ward Identities.
Important fact: short range interactions are irrelevant in the IR.



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

Overview

In QED, ABJ anomaly not dressed by radiative corrections:
Adler-Bardeen anomaly non-renormalization theorem.

Its perturbative proof is based on cancellations of loop
integrals, which require exact relativistic invariance.

Should the same universal coefficient be observed in
interacting Weyl semimetals?

Remarkably, YES!

We consider a class of lattice Weyl semimetals with short
range interactions, and prove universality of the ABJ anomaly.

Mechanism: very different from Adler-Bardeen proof. Our ingredients:
rigorous RG, regularity of current correlations, lattice Ward Identities.
Important fact: short range interactions are irrelevant in the IR.



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

Overview

In QED, ABJ anomaly not dressed by radiative corrections:
Adler-Bardeen anomaly non-renormalization theorem.

Its perturbative proof is based on cancellations of loop
integrals, which require exact relativistic invariance.

Should the same universal coefficient be observed in
interacting Weyl semimetals? Remarkably, YES!

We consider a class of lattice Weyl semimetals with short
range interactions, and prove universality of the ABJ anomaly.

Mechanism: very different from Adler-Bardeen proof. Our ingredients:
rigorous RG, regularity of current correlations, lattice Ward Identities.
Important fact: short range interactions are irrelevant in the IR.



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

Overview

In QED, ABJ anomaly not dressed by radiative corrections:
Adler-Bardeen anomaly non-renormalization theorem.

Its perturbative proof is based on cancellations of loop
integrals, which require exact relativistic invariance.

Should the same universal coefficient be observed in
interacting Weyl semimetals? Remarkably, YES!

We consider a class of lattice Weyl semimetals with short
range interactions, and prove universality of the ABJ anomaly.

Mechanism: very different from Adler-Bardeen proof. Our ingredients:
rigorous RG, regularity of current correlations, lattice Ward Identities.
Important fact: short range interactions are irrelevant in the IR.



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

Overview

In QED, ABJ anomaly not dressed by radiative corrections:
Adler-Bardeen anomaly non-renormalization theorem.

Its perturbative proof is based on cancellations of loop
integrals, which require exact relativistic invariance.

Should the same universal coefficient be observed in
interacting Weyl semimetals? Remarkably, YES!

We consider a class of lattice Weyl semimetals with short
range interactions, and prove universality of the ABJ anomaly.

Mechanism: very different from Adler-Bardeen proof. Our ingredients:
rigorous RG, regularity of current correlations, lattice Ward Identities.
Important fact: short range interactions are irrelevant in the IR.



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

Outline

1 Overview

2 The chiral anomaly

3 Lattice Weyl semimetals

4 Sketch of the proof



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

Massless Dirac fermions, gauge symmetries

Consider massless 4D Dirac fermions in a background field:

L(ψ,A) = ψ̄γµ(i∂µ − Aµ)ψ

where ψ̄ = ψ†γ0 and γµ are Euclidean Gamma matrices:

{γµ, γν} = 2δµ,ν , e.g. : γ0 =

(
0 1

1 0

)
, γj =

(
0 iσj
−iσj 0

)
.

L covariant under local U(1) gauge transformation:

ψx → e−iα(x)ψx , ψ†x → ψ†xe
+iα(x), Aµ,x → Aµ,x + ∂µα(x).
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L covariant under local U(1) gauge transformation:

ψx → e−iα(x)ψx , ψ†x → ψ†xe
+iα(x), Aµ,x → Aµ,x + ∂µα(x).

L invariant under global axial U(1) gauge transformation:

ψx → e iγ5α
5

ψx , γ5 = γ0γ1γ2γ3 =

(
1 0
0 −1

)
.



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

Massless Dirac fermions, gauge symmetries

Consider massless 4D Dirac fermions in a background field:

L(ψ,A) = ψ̄γµ(i∂µ − Aµ)ψ

where ψ̄ = ψ†γ0 and γµ are Euclidean Gamma matrices:

{γµ, γν} = 2δµ,ν , e.g. : γ0 =

(
0 1

1 0

)
, γj =

(
0 iσj
−iσj 0

)
.

L covariant under local U(1) gauge transformation:

ψx → e−iα(x)ψx , ψ†x → ψ†xe
+iα(x), Aµ,x → Aµ,x + ∂µα(x).

Axial symmetry: same as ψx,ω → e−iωα
5
ψx,ω, with ω = ±:(

ψ+

0

)
=

1 + γ5

2
ψ,

(
0
ψ−

)
=

1− γ5

2
ψ, i.e., ψ =

(
ψ+

ψ−

)
.
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L covariant under local U(1) gauge transformation:

ψx → e−iα(x)ψx , ψ†x → ψ†xe
+iα(x), Aµ,x → Aµ,x + ∂µα(x).

Axial symm. can be promoted to local U(1), by adding to L
an auxiliary term −A5

µψ̄γµγ5ψ, and letting

ψx → e−iγ
5α5(x)ψx , ψ†x → ψ†xe

+iγ5α5(x), A5
µ,x → A5

µ,x+∂µα
5(x)
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Conserved currents: classical and quantum

Classically, Noether’s theorem ⇒ ∂µ jµ = 0 and ∂µ j
5
µ = 0

i.e., conservation of the total and axial charges:

j0 = ψ†ψ =
∑
ω=±

ψ†ωψω, j5
0 = ψ†γ5ψ =

∑
ω=±

ωψ†ωψω.

These conservation laws might be broken in quantum theory,
due to UV regularization.

eW (A,A5) =

∫
P(dψ)e(Aµ, jµ)+(A5

µ, j
5
µ).



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

Conserved currents: classical and quantum

Classically, Noether’s theorem ⇒ ∂µ jµ = 0 and ∂µ j
5
µ = 0

i.e., conservation of the total and axial charges:

j0 = ψ†ψ =
∑
ω=±

ψ†ωψω, j5
0 = ψ†γ5ψ =

∑
ω=±

ωψ†ωψω.

These conservation laws might be broken in quantum theory,
due to UV regularization.

eW (A,A5) =

∫
P(dψ)e(Aµ, jµ)+(A5

µ, j
5
µ).



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

Conserved currents: classical and quantum

Classically, Noether’s theorem ⇒ ∂µ jµ = 0 and ∂µ j
5
µ = 0

i.e., conservation of the total and axial charges:

j0 = ψ†ψ =
∑
ω=±

ψ†ωψω, j5
0 = ψ†γ5ψ =

∑
ω=±

ωψ†ωψω.

These conservation laws might be broken in quantum theory,
due to UV regularization.

eW (A,A5) =

∫
P(dψ)e(Aµ, jµ)+(A5

µ, j
5
µ).

Here P(dψ)∝Dψe−i(ψ̄,6∂ψ) a Grassmann Gaussian measure s.t.

ĝ(k) =

∫
P(dψ)ψkψ̄k =

1

/k
, /k = γµkµ.
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Classically, Noether’s theorem ⇒ ∂µ jµ = 0 and ∂µ j
5
µ = 0

i.e., conservation of the total and axial charges:

j0 = ψ†ψ =
∑
ω=±

ψ†ωψω, j5
0 = ψ†γ5ψ =

∑
ω=±

ωψ†ωψω.

These conservation laws might be broken in quantum theory,
due to UV regularization.

eW (A,A5) =

∫
P(dψ)e(Aµ, jµ)+(A5

µ, j
5
µ).

Formally, W (A,A5) = W (A + ∂α,A5 + ∂α5), from which

〈∂µ jµ〉A = 0, 〈∂µ j5
µ〉A = 0,

where 〈O(ψ)〉A =
∫
P(dψ)e(Aµ, jµ)O(ψ)∫

P(dψ)e(Aµ, jµ) .
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Loop cancellation and UV divergences

Note: 〈∂µ ]µ〉A = 0 is the same as [letting p = p1 + · · ·+ pn]

pµ 〈̂]µ,p〉A =
∑
n≥1

1

n!
pµÂµ1,p1 · · · Âµn,pn〈j ]µ,p; jµ1,p1 ; · · · ; jmn,pn〉0 = 0.

That is, all loop diagrams cancel:

However, the loop diagrams with n ≤ 4 are UV divergent! We
need an UV regularization (to be eventually removed) in order
to give the diagrams and to the cancellations a meaning.
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The axial anomaly

Fact: there is no way to add an UV regularization preserving
both the vectorial and axial current conservations. If we
choose to preserve the vectorial U(1) gauge symmetry, then

〈∂µ j5
µ〉A = − i

2π2
εαβνσ∂αAν∂βAσ .

1
2π2 is the ABJ anomaly, determined by the triangle graph:
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Radiative corrections, Adler-Bardeen theorem

What if we add interactions, i.e., coupling with dynamical e.m.
field? Is the triangle graph dressed by radiative corrections?

Adler-Bardeen theorem: NO! All possible dressings of the
triangle cancel exactly. Required: specific UV regularization,
exact relativistic invariance of the fermionic propagator.

[Deep consequences in QED and Standard Model: exact decay rate of

π0 → γγ, constraint on the number of lepton/quark families.]



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

Outline

1 Overview

2 The chiral anomaly

3 Lattice Weyl semimetals

4 Sketch of the proof



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

The non-interacting model

Fermions on a lattice ΛA ∪ ΛB , with n.n. and n.n.n. hoppings,
in staggered chemical potential and magnetic field.

We let H0 = (ψ+,h0ψ
−) =

∫
dk

(2π)3 ψ̂
+
k h0(k)ψ̂−k , with ψ̂−k =

(
â−k
b̂−k

)
,

ĥ0(k)=

(
t⊥ cos k3 + µ− t ′ cos k1 cos k2 t1 sin k1 − it2 sin k2

t1 sin k1 + it2 sin k2 −t⊥ cos k3 − µ + t ′ cos k1 cos k2

)
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Free propagator, dispersion relation, Fermi points

Two point function: if 〈·〉0 = limβ,L→∞Tr(e−βH0·)/Tr e−βH0 ,

〈ψ+
x ψ
−
y 〉0 =

∫
dk0 d

3k

(2π)4
(−ik0 + ĥ0(k))−1e ik(x−y).

For |µ− t ′| < t⊥ < µ + t ′, the energy bands barely touch at
two Fermi points pωF = (0, 0, ωpF ), around which
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Two point function: if 〈·〉0 = limβ,L→∞Tr(e−βH0·)/Tr e−βH0 ,

〈ψ+
x ψ
−
y 〉0 =

∫
dk

(2π)4
ĝ(k)e ik(x−y), with ĝ(k) = (−ik0+ĥ0(k))−1.

For |µ− t ′| < t⊥ < µ + t ′, the energy bands barely touch at
two Fermi points pωF = (0, 0, ωpF ), around which

h0(k + kωF ) ' 1

Z

(
−v 0

3ωk3 v 0
1 k1 − iv 0

2 k2

v 0
1 k1 + iv 0

2 k2) v 0
3ωk3

)
with Z = 1, v 0

1 = t1,
v 0

2 = t2, v 0
3 = t⊥ sin pF .
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Free propagator, dispersion relation, Fermi points

Two point function: if 〈·〉0 = limβ,L→∞Tr(e−βH0·)/Tr e−βH0 ,
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−
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ĝ(k)e ik(x−y), with ĝ(k) = (−ik0+ĥ0(k))−1.

For |µ− t ′| < t⊥ < µ + t ′, the energy bands barely touch at
two Fermi points pωF = (0, 0, ωpF ), around which

h0(k + kωF ) ' 1

Z
(v 0

1 k1σ1 + v 0
2 k2σ2 − ωv 0

3 k3σ3)

with Z = 1, v 0
1 = t1,

v 0
2 = t2, v 0

3 = t⊥ sin pF .
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Lattice interacting model

We consider an interacting version of the model:

H = H0 + λV0 + νN3

where V0 is a short-range density-density interaction, N3 =
= NA − NB , and ν is used to fix the location of pωF .

We let 〈·〉 = limβ,L→∞Tr(e−βH ·)/Tr e−βH . We are interested
in the response of N5 =

∑
x ρ

5
x to an external e.m. field, where

ρ5
x = i

2
(ψ+

j ,xψ
−
j ,x+e3

− ψ+
j ,x+e3

ψ−j ,x) if x ∈ Λj .

Note:

N5 =

∫
dk

(2π)3
sin k3ψ̂

+
k ψ̂
−
k ' sin pF

∑
ω=±

ω

∫
|k ′|≤ε

dk ′

(2π)3
ψ̂+
ω,k ′ψ̂

−
ω,k ′ ,

and ψ̂±ω,k ′ = ψ̂±k ′+pωF
: N5 is lattice analogue of the chiral charge.
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Coupling with an external e.m. field, Peierls’ substitution

Gauge invariant coupling to an external e.m. field: any
hopping tx ,yψ

+
i ,xψ

−
j ,y is modified into (Peierl’s substitution):

tx ,yψ
+
i ,xψ

−
j ,y −→ tx ,y (A)ψ+

i ,xψ
−
j ,y = tx ,ye

i
∫
x→y A(`)·d`ψ+

i ,xψ
−
j ,y .

The A-dependent hopping term is gauge covariant under

ψ±i ,x → e±iα(x)ψ±i ,x , A(x)→ A(x) + ∂α(x).

We let H0(A) = (ψ+, h0(A)ψ−) be the gauge covariant
hopping term. Note: the interaction is gauge invariant.

The chiral density is also promoted to a gauge invariant
observable: if x ∈ Λj , then

ρ5
x(A) =

(
i
2
ψ+
j ,xψ

−
j ,x+e3

e i
∫ 1

0 A3(x+se3)ds + c .c .
)



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

Coupling with an external e.m. field, Peierls’ substitution
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hopping tx ,yψ
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Generating function of lattice correlations

Generating function of lattice current correlations:

eW (A,A5) =

∫
P(dψ) e−λV0(ψ)−νN3(ψ)+B(A,ψ)+(A5

µ, j
5
µ(A)),

where: P(dψ) has propagator ĝ(k) = (−ik0 + ĥ0(k))−1,

B(A, ψ) = (ψ+, (h0−h0(A))ψ−)−i(A0, ρ), with ρx = ψ+
x ψ
−
x ,

while (A5
µ, j

5
µ(A)) is the chiral source term, with

j5
0,x(A) = −iZ 5

0 ρ
5
x(A),

j5
1,x(A) = Z 5

1
i
2

(
ψ+
x σ1ψ

−
x+e3

e i
∫ 1

0 A3(x+se3)ds + c .c .
)
,

j5
2,x(A) = Z 5

2
i
2

(
ψ+
x σ2ψ

−
x+e3

e i
∫ 1

0 A3(x+se3)ds + c .c .
)
,

j5
3,x(A) = −Z 5

3ψ
+
x σ3ψ

−
x ,

for suitable normalization factors Z 5
µ , to be fixed below.
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The lattice chiral current, I

Rationale behind the definition of the chiral lattice currents?

1 They are invariant under the natural lattice symmetries
2 They reduce to the ‘right’ relativistic expression near pωF

Lattice current: jµ,p(A) = ∂B(A,ψ)

∂Âµ,p
. Close to pωF ,

̂µ,p := ̂µ,p(0) ' v 0
µ

∑
ω=±

∫
dk

(2π)4
ψ̂+
k+p,ωαµ,ωψ̂

−
k ,

with α0,ω = −i1, α1,ω = σ1, α2,ω = σ2, α3,ω = −ωσ3.

Similarly, the chiral currents satisfy

̂5
µ,p := ̂5

µ,p(0) ' Z 5
µcµ

∑
ω=±

∫
dk

(2π)4
ψ̂+
k+p,ωα

5
µ,ωψ̂

−
k ,

with α5
µ,ω = ωαµ,ω and c0 = c3 = 1, c1 = c2 = sin pF .
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∂Âµ,p
. Close to pωF ,

̂µ,p := ̂µ,p(0) ' v 0
µ

∑
ω=±

∫
dk

(2π)4
ψ̂+
k+p,ωαµ,ωψ̂

−
k ,

with α0,ω = −i1, α1,ω = σ1, α2,ω = σ2, α3,ω = −ωσ3.

Similarly, the chiral currents satisfy

̂5
µ,p := ̂5

µ,p(0) ' Z 5
µcµ

∑
ω=±

∫
dk

(2π)4
ψ̂+
k+p,ωα

5
µ,ωψ̂

−
k ,

with α5
µ,ω = ωαµ,ω and c0 = c3 = 1, c1 = c2 = sin pF .



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

The lattice chiral current, I

Rationale behind the definition of the chiral lattice currents?
1 They are invariant under the natural lattice symmetries
2 They reduce to the ‘right’ relativistic expression near pωF

Lattice current: jµ,p(A) = ∂B(A,ψ)
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The lattice chiral current, II

Normalization condition: we fix the constants Z 5
µ in such a

way that the chiral currents are proportional to the vectorial
ones, close to the Fermi points, in the sense of correlations:

〈̂5
µ,p; ψ̂−k+pψ̂

+
k 〉
∣∣
A=0

= ±〈̂µ,p; ψ̂−k+pψ̂
+
k 〉
∣∣
A=0

0(1+O(|k−p±F |, |p|)) (∗)

for k ' p±F , p ' 0.

Note: if desired, it is possible to choose j5
µ,x in such a way that

it satisfies a lattice continuity equation [but this doesn’t help].
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Lattice gauge invariance

eW (A,A5) =

∫
P(dψ) e−λV0(ψ)−νN3(ψ)+B(A,ψ)+(A5

µ, j
5
µ(A)),

Exact lattice gauge symmetry:

W (A,A5) = W (A + ∂α,A5) (∗∗)

No way of choosing the chiral currents in such a way that W
is chiral gauge invariant!

By differentiating (**) w.r.t. α as many times as we like, we
obtain a hierarchy of Ward Identities, among which

pµ〈̂µ,p(A)〉A = 0.

No analogue for 〈̂5
µ,p(A)〉

A
[in agreement w. what we said for QED].
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Linear and quadratic responses of the chiral current

eW (A,A5) =

∫
P(dψ) e−λV0(ψ)−νN3(ψ)+B(A,ψ)+(A5

µ, j
5
µ(A)),

We let 〈̂5
µ,p(A)〉A = ∂W (A,0)

∂Â5
µ,p

.

That is,

pµ〈̂5
p(A)〉A =

∑
n≥1

1

n!
pµΓ5

µ,µ1,...,µn
(p1, . . . ,pn)Âµ1,p1 · · · Âµn,pn

as a formal power series: the coefficients define the linear,
quadratic, etc., response coefficients [in the same sense as Kubo].

Γ5
µ,µ1,...,µn

(p1, . . . ,pn) =
∂n+1W (0, 0)

∂Â5
µ,p∂Âµ1,p1 · · · ∂Âµn,pn

, p = p1+· · ·+pn

Non-linear coupling with A ⇒ Schwinger terms.
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as a formal power series: the coefficients define the linear,
quadratic, etc., response coefficients [in the same sense as Kubo].

Γ5
µ,µ1,...,µn

(p1, . . . ,pn) =
∂n+1W (0, 0)

∂Â5
µ,p∂Âµ1,p1 · · · ∂Âµn,pn
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Main result

Theorem (G., Mastropietro, Porta 2019.)

For |λ| small enough, there exists ν(λ) = O(λ) such that the
interacting two point function behaves like

〈ψ̂−k+pωF
ψ̂+
k+pωF
〉 =

(
−ik0 + v3ωk3 v1k1 + iv 0

2 k2

v1k1 − iv2k2) −ik0 − v3ωk3

)
(1 + O(k)),

for suitable vj = vj(λ) = v 0
j + O(λ). Moreover, there exists

Z 5
µ = Z 5

µ(λ) such that (**) holds; once Z 5
µ are fixed in this

way, the linear and quadratic chiral response coefficients satisfy

pµΓ5
µ,ν(p) = O(p3),

pµΓ5
µ,ν,σ(p1,p2) =

1

2π2
p1,αp2,βεαβνσ + O((p3

1,p
3
2)).
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Remarks

The interaction dresses the physical parameters, ν, vj ,Z
5
µ ,

which are analytic functions of λ. However, the quadratic
response coefficient of the chiral current is universal.
Analogous earlier results for graphene’s optical conductivity and Hall

conductivity of Haldane [Giuliani-Mastropietro-Porta 2011,2017].

The result can be restated as

pµ〈̂5
µ,p〉A =

1

2π2
p1,αp2,βεαβνσÂν,p1Âσ,p2 + ...

where the dots indicate higher order terms in p1,p2,A.
Taking a field A corresponding to constant E ‖ B , i.e.,
A0 = A1 ≡ 0, A2(x) = Bx1, A3(x) = −Et, we get

∂t〈N5
t (A)〉A =

1

2π2
EB + ...

Same as Nielsen-Ninomiya, but in the interacting case!

Prediction can potentially be verified experimentally.
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The result can be restated as

pµ〈̂5
µ,p〉A =

1

2π2
p1,αp2,βεαβνσÂν,p1Âσ,p2 + ...

where the dots indicate higher order terms in p1,p2,A.
Taking a field A corresponding to constant E ‖ B , i.e.,
A0 = A1 ≡ 0, A2(x) = Bx1, A3(x) = −Et, we get

∂t〈N5
t (A)〉A =

1

2π2
EB + ...

Same as Nielsen-Ninomiya, but in the interacting case!

Prediction can potentially be verified experimentally.
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Constructive RG

We compute

eW (A,A5) =

∫
P(dψ) e−λV0(ψ)−νN3(ψ)+B(A,ψ)+(A5

µ, j
5
µ(A))

via a multiscale procedure.

We decompose ψ̂±k =
∑ω=±

h≤0 ψ̂
±(h)
ω,k

and, after having integrated the fields with h < h′ ≤ 0, we get

eW (A,A5) =

∫
P≤h(dψ)eV

(h)(A,A5,
√
Zhψ).

Here: P≤h has propagator g
(≤h)
ω (k) with dressed parameters

Zh, v
h
µ and an UV cutoff s.t. |k| ≤ 2h; and V (h)(A,A5, ψ) =

=
∑
ω=±

∫
dk

(2π)4

[
2hνhψ̂

+
ω,kσ3ψ̂

−
ω,k+Z h

µ Âµ,k ̂µ,ω,k+Z 5,h
µ Â5

µ,k ̂
5
µ,ω,k

]
+RV (h).
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µ Â5

µ,k ̂
5
µ,ω,k

]
+RV (h).



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

Constructive RG

We compute

eW (A,A5) =

∫
P(dψ) e−λV0(ψ)−νN3(ψ)+B(A,ψ)+(A5

µ, j
5
µ(A))

via a multiscale procedure. We decompose ψ̂±k =
∑ω=±

h≤0 ψ̂
±(h)
ω,k

and, after having integrated the fields with h < h′ ≤ 0, we get

eW (A,A5) =

∫
P≤h(dψ)eV

(h)(A,A5,
√
Zhψ).

Here: P≤h has propagator g
(≤h)
ω (k) with dressed parameters

Zh, v
h
µ and an UV cutoff s.t. |k| ≤ 2h;

and V (h)(A,A5, ψ) =

=
∑
ω=±

∫
dk

(2π)4

[
2hνhψ̂

+
ω,kσ3ψ̂

−
ω,k+Z h
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Scaling dimensions, irrelevance of the interaction

The scaling dimension of the kernels with n,m fields of type
ψ,A is D = 4− 3

2
n −m.

I.e., if we symbolically write

RV (h) =
∑
m,n

∫
dx dyW (h)

n,m(x, y)ψx1 · · ·ψxnAy1 · · ·Aym ,

then the kernels W
(h)
n,m are analytic in λ, νh,Z

h
µ ,Z

5,h
µ and∫ ∗

dx dy |W (h)
n,m(x, y)| ec

√
2hd(x,y) ≤ Cn,m2(4− 3

2
n−m)h

Even better: the contributions to W
(h)
n,m explicitly depending on

λ admit an improved bound by a factor 2(1−δ)h, for any δ > 0.



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

Scaling dimensions, irrelevance of the interaction

The scaling dimension of the kernels with n,m fields of type
ψ,A is D = 4− 3

2
n −m. I.e., if we symbolically write

RV (h) =
∑
m,n

∫
dx dyW (h)

n,m(x, y)ψx1 · · ·ψxnAy1 · · ·Aym ,

then the kernels W
(h)
n,m are analytic in λ, νh,Z

h
µ ,Z

5,h
µ and∫ ∗

dx dy |W (h)
n,m(x, y)| ec

√
2hd(x,y) ≤ Cn,m2(4− 3

2
n−m)h

Even better: the contributions to W
(h)
n,m explicitly depending on

λ admit an improved bound by a factor 2(1−δ)h, for any δ > 0.



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

Scaling dimensions, irrelevance of the interaction

The scaling dimension of the kernels with n,m fields of type
ψ,A is D = 4− 3

2
n −m. I.e., if we symbolically write

RV (h) =
∑
m,n

∫
dx dyW (h)

n,m(x, y)ψx1 · · ·ψxnAy1 · · ·Aym ,

then the kernels W
(h)
n,m are analytic in λ, νh,Z

h
µ ,Z

5,h
µ and∫ ∗

dx dy |W (h)
n,m(x, y)| ec

√
2hd(x,y) ≤ Cn,m2(4− 3

2
n−m)h

Even better: the contributions to W
(h)
n,m explicitly depending on

λ admit an improved bound by a factor 2(1−δ)h, for any δ > 0.



Overview The chiral anomaly Lattice Weyl semimetals Sketch of the proof

Flow of the running coupling constants, IR fixed point

The running coupling constants νh,Zh, v
h
µ ,Z

h
µ ,Z

5,h
µ satisfy

recursive equations, controlled by a beta function that is itself
analytic in λ, νh,Zh.

By properly fixing ν,Z 5
µ at the initial

step, we obtain a bounded IR flow s.t.

νh → 0, Zh → Z̄ , vh
µ → vµ, Z h

µ ,Z
5,h
µ → Zµ,

as h→ −∞, exponentially fast.

Moreover, using the exact lattice Ward Identities,

Zµ = vµZ̄ .

Exponentially fast convergence to the IR fixed point: the
correlation functions are the same as the free ones with
dressed parameters, plus corrections decaying faster to zero
at large distances (faster by additional 1/(dist.)1−δ).
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Quadratic response, relativistic and Schwinger terms

In conclusion,

Γ5
µ,ν,σ(p1,p2) = Γ5,rel

µ,ν,σ(p1,p2) + H5
µ,ν,σ(p1,p2).

Here: H5
µ,ν,σ includes the subdominant contributions to chiral

triangle graph and Schwinger terms (C 1+δ in p1,p2),

Γ5,rel
µ,ν,σ(p1,p2) =

ZµZνZσ

Z̄ 3v1v2v3

Iµ,ν,σ(p̄1, p̄2),

where p̄ = (p0, v1p1, v2p2, v3p3) and, after rescaling k̄→ k,

Iµ,ν,σ(p1,p2) =

∫
dk

(2π)4
Tr
{χ(k)

/k
γµγ5

χ(k + p1)

/k + /p1

γν
χ(k + p2)

/k + /p2

γσ

}
+

+ [(ν,p1)↔ (σ,p2)].
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The relativistic triangle graph

We now use Zµ = vµZ̄ to rewrite ZµZνZσ
Z̄3v1v2v3

as vµvνvσ
v1v2v3

.

Moreover, the relativistic triangle graph, Iµ,ν,σ(p1,p2), can be
computed explicitly and gives:
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Lattice Ward identities

We now use p1,νΓ5
µ,ν,σ(p1,p2) = 0, which implies, together

with Γ5
µ,ν,σ = Γ5,rel

µ,ν,σ + H5
µ,ν,σ and the differentiability of Hµ,ν,σ:

p1,αp2,βεαβµσ
6π2

+p1,ν

(
Hµ,ν,σ(0, 0)+

∑
j=1,2

pj ,α
∂Hµ,ν,σ
∂pj ,α

(0, 0)
)

= O(p3
j ).

From this: Hµ,ν,σ(0, 0) = 0 and

∂Hµ,ν,σ
∂p2,β

(0, 0) = − 1

6π2
ενβµ∗σ,

∂Hµ,ν,σ
∂p1,α

(0, 0) = − 1

6π2
εσαµ∗ν (∗∗∗)

We now contract pµ with Γ5
µ,ν,σ(p1,p2):

pµΓ5
µ,ν,σ(p) = pµΓ5,rel

µ,ν,σ(p1,p2) + pµHµ,ν,σ(p1,p2).

First term: we computed it explicitly. Second term: use (***).
Combining things together,

pµΓ5
µ,ν,σ(p1,p2) =

1

2π2
p1,αp2,βεαβνσ + O

(
(p1,p2)3

)
.
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Conclusions

– The chiral anomaly of QED4 has a cond-mat counterpart in
Weyl semimetals. We proved the nonperturbative analogue of
the Adler-Bardeen thm for interacting lattice Weyl fermions:
non-renormalization of the anomaly.

– Proof based on constructive RG methods combined with
lattice Ward Identities + bounds on regularity of correlations
and of the Schwinger terms.

– Open problems:
1 Effects of disorder?
2 Coupling to a dynamical e.m. field: rigorous construction

of infrared QED4 [at least perturbatively at all orders]?
Renormalizability [without photon mass counterterms]?
Dynamical restoration of Lorentz invariance in the IR?
Non-renormalization of the chiral anomaly?
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non-renormalization of the anomaly.

– Proof based on constructive RG methods combined with
lattice Ward Identities + bounds on regularity of correlations
and of the Schwinger terms.

– Open problems:
1 Effects of disorder?
2 Coupling to a dynamical e.m. field: rigorous construction

of infrared QED4 [at least perturbatively at all orders]?
Renormalizability [without photon mass counterterms]?
Dynamical restoration of Lorentz invariance in the IR?
Non-renormalization of the chiral anomaly?
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Thank you!
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