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The γ-LQG metric

Liouville quantum gravity

Let γ ∈ (0, 2) and let U ⊂ C.

A γ-Liouville quantum gravity (LQG)
surface is the surface with Riemannian
metric “eγh(z) (dx2 + dy2)”, where h is a
variant of the Gaussian free field on U.

Definition does not make literal sense
since h is a distribution, not a function.

“Canonical random Riemannian metric”.

Scaling limit of random planar maps.

γ =
√

8/3 for uniform random planar
maps (“pure gravity”).
γ =
√

2 for spanning-tree weighted
maps.
γ =
√

3 for Ising-weighted maps.
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The γ-LQG metric

Outline of the talk

Simulation for γ = 0.6 (Miller)

Definition / axiomatic characterization of the
γ-LQG metric.

Basic properties of the metric.

Conformal coordinate change.
KPZ formula.
Confluence of geodesics.

Open problems.

Proofs are elementary: use only basic
properties of the GFF.
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The γ-LQG metric

Liouville first passage percolation

Ding-Gwynne: ∃dγ > 2 (the “Hausdorff dimension of γ-LQG”).
e.g., ball volume exponent for random planar maps.
Not known explicitly except that d√

8/3
= 4.

Let ξ := γ/dγ . Let hε = h ∗ (heat kernel). ε-LFPP metric:

Dε
h(z ,w) = inf

P:z→w

∫ 1

0
eξhε(P(t))|P ′(t)| dt,

where the inf is over piecewise C 1 paths from z to w .

ξ = γ/dγ because scaling areas by C (adding γ−1 logC to h)
corresponds to scaling distances by C 1/dγ .

Theorem (Ding-Dubédat-Dunlap-Falconet, 2019): The ε-LFPP
metrics, re-scaled appropriately, are tight w.r.t. local uniform topology on
C×C. Every subsequential limit induces Euclidean topology.

Theorem (Gwynne Miller, 2019): ε-LFPP converges in probability to a
conformally covariant metric Dh, the γ-LQG metric.
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The γ-LQG metric

Characterization of the γ-LQG metric

A (strong) γ-LQG metric is a function h 7→ Dh from distributions to
metrics on C which induce Eucl. topology satisfying the following.

1 Length space. The Dh-distance between two points is the infimum
of the Dh-lengths of continuous paths between them.

2 Locality. Let U ⊂ C be open. The Dh-internal metric on U
determined by h|U .

3 Weyl scaling. Let ξ = γ/dγ . A.s., ∀ continuous f : C→ R,

Dh+f (z ,w) = inf
P:z→w

∫ len(P;Dh)

0
eξf (P(t)) dt,

where the inf is over continuous paths parametrized by Dh-length.
4 Coordinate change for complex affine maps. Let Q = 2/γ + γ/2.

For each fixed a ∈ C \ {0} and b ∈ C, a.s.

Dh(a ·+b, a ·+b) = Dh(a·+b)+Q log |a|(·, ·).
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The γ-LQG metric

Characterization of the γ-LQG metric

Simulation for γ = 0.9 (Miller)

Theorem (Gwynne-Miller, 2019): The limit of
the ε-LFPP metrics is a γ-LQG metric.

Moreover,
if Dh and D̃h are two γ-LQG metrics, then there is
a deterministic C > 0 such that a.s. D̃h = CDh.

Hence, we can refer to the γ-LQG metric.

Recall: Miller and Sheffield (2016)
constructed a

√
8/3-LQG metric using QLE.√

8/3-LQG surface = Brownian map =
scaling limit of uniform random planar maps
w.r.t. Gromov-Hausdorff distance.

Corollary: The Miller-Sheffield
√

8/3-LQG metric
agrees with the limit of

√
8/3-LFPP.

Conjecture: For general γ ∈ (0, 2), the γ-LQG
metric is the scaling limit of weighted random
planar maps w.r.t. the Gromov-Hausdorff topology.
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The γ-LQG metric

Metrics on other domains

If U ⊂ C and h is a GFF on U, can define Dh by local absolute
continuity.

Coordinate change (Gwynne-Miller, 2019): If φ : Ũ → U is a
conformal map and

h̃ = h ◦ φ+ Q log |φ′| for Q =
2

γ
+
γ

2
,

then a.s. D
h̃
(z ,w) = Dh(φ(z), φ(w)).

h ◦ φ +Q log |φ′| h

φ

Ũ U
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KPZ formula

Knizhnik-Polyakov-Zamolodchikov (KPZ) formula

Simulation for γ = 2 (Miller)

For X ⊂ C, let dim0
H X and dimγ

H X be the
Hausdorff dimension of X w.r.t. the Euclidean
and γ-LQG metrics, resp.

KPZ formula (Gwynne-Pfeffer, 2019): If X is a
random Borel set independent from h, then a.s.

dim0
H X =

γ

dγ
Q dimγ

H X − γ2

2d2
γ

(dimγ
H X )2.

Agrees with other versions of KPZ (e.g.,
Duplantier-Sheffield) if we use the re-scaled
dimension 1

dγ
(dimγ

H X ).

Corollary: dimγ
HC = dγ .
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KPZ formula

“Worst case” KPZ formula

Worst-case KPZ formula (Gwynne-Pfeffer, 2019): Almost surely, for
all Borel sets X ⊂ C simultaneously,

dimγ
H X ≤


dim0

H X

γ
dγ

(
Q−

√
4−2 dim0

H X
) , if dim0

H X < 2− γ2

2

dγ , if dim0
H X ≥ 2− γ2

2

dim0
H X

≤


γ
dγ

dimγ
H X

(
Q − γ

dγ
dimγ
H X +

√
4− 2γQ

dγ
dimγ
H X + γ2

d2
γ

(dimγ
H X )2

)
, if dimγ

H X <
2dγ
γQ

2, if dimγ
H X ≥ 2dγ

γQ

Best possible bounds w/o additional assumptions on X .
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KPZ formula

“Worst case” KPZ formula

Idea of proof: assume that the 2−n × 2−n squares
which intersect X are the ones with the largest
Dh-diameters. Do the reverse for squares with
“quantum size” 2−m.

Upper bound for dim0
H X is closest to optimal

when h is “small” on X .

A Dh-geodesic has Dh-dimension 1.

Corollary: A.s., every Dh-geodesic has Eucl. dimension
at most

γ

dγ

(
Q − γ

dγ
+

√
4− 2γQ

dγ
+

γ2

d2
γ

)

Equals 4+
√

15
6 ≈ 1.312 for γ =

√
8/3.
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Confluence of geodesics

Confluence of geodesics

z

Bt(z;Dh)

Bs(z;Dh)

B•
t (z;Dh)

B•
s(z;Dh)

z

Theorem (Gwynne-Miller, 2019): For every
s > 0, ∃t ∈ (0, s) such that all Dh-geodesics from
0 to points outside Bs(z ;Dh) coincide on [0, t].

Very different from behavior of geodesics for
a smooth Riemannian metric.

Proven by Le Gall (2010) for the Brownian
map (using very different methods).

Key tool in the proof of uniqueness of the
metric.

Let B•s (z ;Dh) be the union of Bs(z ;Dh) and
the “holes” which it disconnects from ∞.

Theorem (Gwynne-Miller, 2019): For any
0 < t < s <∞, there are only finitely many
possibilities for P|[0,t], where P is a leftmost
Dh-geodesic from 0 to ∂B•s (z ;Dh).
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Confluence of geodesics

Step 1: Partition ∂Bt into small arcs

B•t

0

E. Gwynne (Cambridge) The LQG metric 15 / 25



Confluence of geodesics

Step 2: each arc is “killed off” with positive probability

B•t

0

P
Dh-around
green

Dh-across
yellow

< > 0
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Confluence of geodesics

Step 2: each arc is “killed off” with positive probability

P
Dh-around
green

Dh-across
yellow

< > 0

B•t

0
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Confluence of geodesics

Step 2: each arc is “killed off” with positive probability

P
Dh-around
green

Dh-across
yellow

< > 0

B•t

0
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Confluence of geodesics

Step 3: increasing radius “kills off” positive fraction of arcs

B•t

0
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Confluence of geodesics

Step 4: iterate logarithmically many times

B•t

0
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Confluence of geodesics

Confluence implies independence along a geodesic

Bε(P (s))

P (s− εβ)

P (s)

z

w A Dh-geodesic P is not a local set for h.

Should still have long-range independence for
behavior of h near different points of P.

For a typical time s ∈ [0,Dh(z ,w)], all
Dh-geodesics from ∂Bε(P(t)) to z agree on
[0, s − εβ].

If we make a small change to h|Bε(P(s)), we
do not change P|[0,s−εβ ].

Hence, conditional law of h|Bε(P(s)) given
P|[0,s−εβ ] is not much different from its
marginal law.
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Summary / Open problems

Summary

γ-LQG metric for each γ ∈ (0, 2) constructed as the limit (in
probability) of LFPP:

Dε
h(z ,w) = min

P:z→w

∫ 1

0
eξhε(P(t))|P ′(t)| dt, ξ =

γ

dγ
.

Uniquely characterized by

Length space.
Locality.
Weyl scaling (behavior when adding a function to h).
Coordinate change (behavior when scaling/translating space).

Properties:

Conformal coordinate change.
KPZ formula.
Confluence of geodesics.
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Summary / Open problems

Open problems

0.0 0.5 1.0 1.5 2.0
0
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4

5

1.5 1.6 1.7 1.8 1.9 2.0

3.8

4.0

4.2

4.4

4.6

4.8

Compute the Hausdorff
dimension dγ for γ 6=

√
8/3.

Compute the Euclidean
dimension of LQG geodesics,
outer boundaries of LQG
metric balls, etc.

Show that the γ-LQG metric is
the scaling limit of random
planar maps for general
γ ∈ (0, 2) (w.r.t.
Gromov-Hausdorff).
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Summary / Open problems

Open problems

Construct the metric in the critical case γ = 2, or more generally for
ξ > 2/d2 (“central charge > 1”; see Gwynne-Holden-Pfeffer-Remy,
2019).

Can we see that γ =
√

8/3 is special just from the axioms?

Are there any exact formulas for LQG distances, analogous to exact
formulas for correlation functions / LQG areas by
Kupiannen-Rhodes-Vargas, Remy, et. al. or exact formulas for
Brownian surfaces?

Is there a general theory of random metrics obtained by
exponentiating the GFF analogous to Gaussian multiplicative chaos?
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