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v-LQG metric.
@ Basic properties of the metric.

o Conformal coordinate change.
o KPZ formula.
e Confluence of geodesics.

@ Open problems.

@ Proofs are elementary: use only basic
properties of the GFF.
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Theorem (Ding-Dubédat-Dunlap-Falconet, 2019): The e-LFPP
metrics, re-scaled appropriately, are tight w.r.t. local uniform topology on
C x C. Every subsequential limit induces Euclidean topology.

Theorem (Gwynne Miller, 2019): -LFPP converges in probability to a
conformally covariant metric Dy, the v-LQG metric.
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metrics on € which induce Eucl. topology satisfying the following.
© Length space. The Dj-distance between two points is the infimum
of the Dp-lengths of continuous paths between them.
@ Locality. Let U C C be open. The Dg-internal metric on U
determined by h|y.
© Weyl scaling. Let { =v/d,. Ass., V continuous f : C — R,

P:z—w

len(P;Dp)
Dhpr(z, w) = inf / 1P gt
0

where the inf is over continuous paths parametrized by Dp-length.

O Coordinate change for complex affine maps. Let Q =2/v + /2.
For each fixed a€ C\ {0} and b€ C, ass.

Dp(a-+b,a-+b) = Dh(ayb)+Qlog|al (> )-
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Theorem (Gwynne-Miller, 2019): The limit of
the E—LFPP~ metrics is a 7-LQG metric. Moreover,
if Dy and Dy, are two v-LQG metrics, then there is
a deterministic C > 0 such that a.s. 5;, = CDy,.

@ Hence, we can refer to the 7-LQG metric.

@ Recall: Miller and Sheffield (2016)
constructed a 1/8/3-LQG metric using QLE.

e /8/3-LQG surface = Brownian map =
scaling limit of uniform random planar maps
w.r.t. Gromov-Hausdorff distance.

Corollary: The Miller-Sheffield 1/8/3-LQG metric
agrees with the limit of /8/3-LFPP.

Conjecture: For general v € (0,2), the 7-LQG
metric is the scaling limit of weighted random
planar maps w.r.t. the Gromov-Hausdorff topology.
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Metrics on other domains
o If UC C and his a GFF on U, can define Dy, by local absolute
continuity.
Coordinate change (Gwynne-Miller, 2019): If ¢ : U— Uis a

conformal map and

E:hOQZ)—i—ng‘d)/’ for Q=—+

20N
N2

then a.s. Di(z, w) = Dp(é(2), p(w)).
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Knizhnik-Polyakov-Zamolodchikov (KPZ) formula

e For X C ©, let dim9, X and dim}, X be the
Hausdorff dimension of X w.r.t. the Euclidean
and v-LQG metrics, resp.

Simulation for v = 2 (Miller)

E. Gwynne (Cambridge) The LQG metric 10 / 25



Knizhnik-Polyakov-Zamolodchikov (KPZ) formula

e For X C ©, let dim9, X and dim}, X be the
Hausdorff dimension of X w.r.t. the Euclidean
and v-LQG metrics, resp.

KPZ formula (Gwynne-Pfeffer, 2019): If X is a
random Borel set independent from h, then a.s.

2

2d2 (dim}, X)2.

dlmH —lemH

Simulation for v = 2 (Miller)

E. Gwynne (Cambridge) The LQG metric 10 / 25



Knizhnik-Polyakov-Zamolodchikov (KPZ) formula

Simulation for v = 2 (Miller)

E. Gwynne (Cambridge)

e For X C ©, let dim9, X and dim}, X be the
Hausdorff dimension of X w.r.t. the Euclidean
and v-LQG metrics, resp.

KPZ formula (Gwynne-Pfeffer, 2019): If X is a
random Borel set independent from h, then a.s.

,YZ

aiTA (dim}, X)2.

dlmH —lemH

@ Agrees with other versions of KPZ (e.g.,
Duplantier-Sheffield) if we use the re-scaled
dimension - (dim}, X).

al

The LQG metric 10 / 25



Knizhnik-Polyakov-Zamolodchikov (KPZ) formula

Simulation for v = 2 (Miller)

E. Gwynne (Cambridge)
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Corollary: dim], C = d,.
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Worst-case KPZ formula (Gwynne-Pfeffer, 2019): Almost surely, for
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o dmi X dimd, X <2 - 2
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@ Best possible bounds w/o additional assumptions on X.
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o Idea of proof: assume that the 277 x 27" squares
which intersect X are the ones with the largest
Dp-diameters. Do the reverse for squares with
“quantum size” 277,

@ Upper bound for dimg_[X is closest to optimal
when h is “small” on X.
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KPZ formula

“Worst case” KPZ formula

o Idea of proof: assume that the 277 x 27" squares
which intersect X are the ones with the largest
Dp-diameters. Do the reverse for squares with
“quantum size” 277,

@ Upper bound for dimg_[X is closest to optimal
when h is “small” on X.

@ A Dy-geodesic has Dy-dimension 1.

Corollary: A.s., every Dy-geodesic has Eucl. dimension

at most
2

7<Q_7+ s_Q 2

d"/ dW d’Y d’%

e Equals % ~ 1.312 for v = /8/3.
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Confluence of geodesics

Theorem (Gwynne-Miller, 2019): For every
s >0, 3t € (0, s) such that all Dy-geodesics from
0 to points outside Bs(z; Dp) coincide on [0, t].

@ Very different from behavior of geodesics for
a smooth Riemannian metric.

@ Proven by Le Gall (2010) for the Brownian
map (using very different methods).

@ Key tool in the proof of uniqueness of the
metric.

o Let B2(z; Dp) be the union of Bs(z; Dy) and
the “holes” which it disconnects from oo.
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Confluence of geodesics

Theorem (Gwynne-Miller, 2019): For every
s >0, 3t € (0, s) such that all Dy-geodesics from
0 to points outside Bs(z; Dp) coincide on [0, t].

@ Very different from behavior of geodesics for
a smooth Riemannian metric.

@ Proven by Le Gall (2010) for the Brownian
map (using very different methods).

@ Key tool in the proof of uniqueness of the
metric.

o Let B2(z; Dp) be the union of Bs(z; Dy) and
the “holes” which it disconnects from oco.

Theorem (Gwynne-Miller, 2019): For any

0 <t <s < oo, there are only finitely many

possibilities for P|(g 4, where P is a leftmost

Dp-geodesic from 0 to 0B2(z; Dp).
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Confluence of geodesics

Step 3: increasing radius “kills off" positive fraction of arcs
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Step 4: iterate logarithmically many times




Confluence of geodesics

Confluence implies independence along a geodesic

@ A Dp-geodesic P is not a local set for h.
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Confluence of geodesics

Confluence implies independence along a geodesic

E. Gwynne (Cambridge)

A Dp-geodesic P is not a local set for h.

Should still have long-range independence for
behavior of h near different points of P.

For a typical time s € [0, Dy(z, w)], all
Dp-geodesics from 0B:(P(t)) to z agree on
[0,s — 7).

If we make a small change to h|g_ (p(s)), We
do not change Plj s_.s]-

Hence, conditional law of h|g_(p(s)) given
Pljo,s—c#] is not much dlfFerent from its
marginal law.
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Outline

@ Summary / Open problems
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@ 7-LQG metric for each v € (0,2) constructed as the limit (in
probability) of LFPP:

P:z—w Jg d

1
Di(z,w) = min / (PO | P/(1)| dt, €= .
vy

@ Uniquely characterized by

Length space.

Locality.

Weyl scaling (behavior when adding a function to h).
Coordinate change (behavior when scaling/translating space).

@ Properties:

o Conformal coordinate change.
o KPZ formula.
e Confluence of geodesics.
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Open problems

5

o Compute the Hausdorff
dimension d, for v # /8/3.

@ Compute the Euclidean

1 dimension of LQG geodesics,
outer boundaries of LQG
metric balls, etc.

@ Show that the 7-LQG metric is
the scaling limit of random
planar maps for general
v € (0,2) (w.r.t.
Gromov-Hausdorff).

. . . . . .
>R 16 17 18 19 20
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@ Are there any exact formulas for LQG distances, analogous to exact
formulas for correlation functions / LQG areas by
Kupiannen-Rhodes-Vargas, Remy, et. al. or exact formulas for
Brownian surfaces?

@ Is there a general theory of random metrics obtained by
exponentiating the GFF analogous to Gaussian multiplicative chaos?
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