Basic properties of the Liouville quantum gravity metric for $\gamma \in (0, 2)$

Ewain Gwynne Based on 4 joint papers with J. Miller, 1 joint paper with J. Dubédat, H. Falconet, J. Pfeffer, and X. Sun, and 1 joint paper with J. Pfeffer

University of Cambridge

Outline

2 KPZ formula

• Let $\gamma \in (0,2)$ and let $U \subset \mathbb{C}$.

- Let $\gamma \in (0,2)$ and let $U \subset \mathbb{C}$.
- A γ -Liouville quantum gravity (LQG) surface is the surface with Riemannian metric " $e^{\gamma h(z)} (dx^2 + dy^2)$ ", where h is a variant of the Gaussian free field on U.

- Let $\gamma \in (0,2)$ and let $U \subset \mathbb{C}$.
- A γ -Liouville quantum gravity (LQG) surface is the surface with Riemannian metric " $e^{\gamma h(z)} (dx^2 + dy^2)$ ", where h is a variant of the Gaussian free field on U.
- Definition does not make literal sense since *h* is a distribution, not a function.

- Let $\gamma \in (0,2)$ and let $U \subset \mathbb{C}$.
- A γ -Liouville quantum gravity (LQG) surface is the surface with Riemannian metric " $e^{\gamma h(z)} (dx^2 + dy^2)$ ", where h is a variant of the Gaussian free field on U.
- Definition does not make literal sense since *h* is a distribution, not a function.
- "Canonical random Riemannian metric".

- Let $\gamma \in (0,2)$ and let $U \subset \mathbb{C}$.
- A γ -Liouville quantum gravity (LQG) surface is the surface with Riemannian metric " $e^{\gamma h(z)} (dx^2 + dy^2)$ ", where h is a variant of the Gaussian free field on U.
- Definition does not make literal sense since *h* is a distribution, not a function.
- "Canonical random Riemannian metric".
- Scaling limit of random planar maps.

- Let $\gamma \in (0,2)$ and let $U \subset \mathbb{C}$.
- A γ -Liouville quantum gravity (LQG) surface is the surface with Riemannian metric " $e^{\gamma h(z)} (dx^2 + dy^2)$ ", where h is a variant of the Gaussian free field on U.
- Definition does not make literal sense since *h* is a distribution, not a function.
- "Canonical random Riemannian metric".
- Scaling limit of random planar maps.
 - $\gamma = \sqrt{8/3}$ for uniform random planar maps ("pure gravity").

- Let $\gamma \in (0,2)$ and let $U \subset \mathbb{C}$.
- A γ -Liouville quantum gravity (LQG) surface is the surface with Riemannian metric " $e^{\gamma h(z)} (dx^2 + dy^2)$ ", where h is a variant of the Gaussian free field on U.
- Definition does not make literal sense since *h* is a distribution, not a function.
- "Canonical random Riemannian metric".
- Scaling limit of random planar maps.
 - $\gamma = \sqrt{8/3}$ for uniform random planar maps ("pure gravity").
 - $\gamma = \sqrt{2}$ for spanning-tree weighted maps.

- Let $\gamma \in (0,2)$ and let $U \subset \mathbb{C}$.
- A γ -Liouville quantum gravity (LQG) surface is the surface with Riemannian metric " $e^{\gamma h(z)} (dx^2 + dy^2)$ ", where h is a variant of the Gaussian free field on U.
- Definition does not make literal sense since *h* is a distribution, not a function.
- "Canonical random Riemannian metric".
- Scaling limit of random planar maps.
 - $\gamma = \sqrt{8/3}$ for uniform random planar maps ("pure gravity").
 - $\gamma = \sqrt{2}$ for spanning-tree weighted maps.
 - $\gamma = \sqrt{3}$ for Ising-weighted maps.

Simulation for $\gamma = 0.6$ (Miller)

Simulation for $\gamma = 0.6$ (Miller)

• Definition / axiomatic characterization of the γ -LQG metric.

Simulation for $\gamma = 0.6$ (Miller)

- Definition / axiomatic characterization of the $\gamma\text{-LQG}$ metric.
- Basic properties of the metric.

Simulation for $\gamma = 0.6$ (Miller)

- Definition / axiomatic characterization of the $\gamma\text{-LQG}$ metric.
- Basic properties of the metric.
 - Conformal coordinate change.

Simulation for $\gamma = 0.6$ (Miller)

- Definition / axiomatic characterization of the $\gamma\text{-LQG}$ metric.
- Basic properties of the metric.
 - Conformal coordinate change.
 - KPZ formula.

Simulation for $\gamma = 0.6$ (Miller)

- Definition / axiomatic characterization of the γ -LQG metric.
- Basic properties of the metric.
 - Conformal coordinate change.
 - KPZ formula.
 - Confluence of geodesics.

Simulation for $\gamma = 0.6$ (Miller)

- Definition / axiomatic characterization of the γ -LQG metric.
- Basic properties of the metric.
 - Conformal coordinate change.
 - KPZ formula.
 - Confluence of geodesics.
- Open problems.

Simulation for $\gamma = 0.6$ (Miller)

- Definition / axiomatic characterization of the γ -LQG metric.
- Basic properties of the metric.
 - Conformal coordinate change.
 - KPZ formula.
 - Confluence of geodesics.
- Open problems.
- Proofs are elementary: use only basic properties of the GFF.

• **Ding-Gwynne:** $\exists d_{\gamma} > 2$ (the "Hausdorff dimension of γ -LQG").

- **Ding-Gwynne:** $\exists d_{\gamma} > 2$ (the "Hausdorff dimension of γ -LQG").
 - e.g., ball volume exponent for random planar maps.

- **Ding-Gwynne:** $\exists d_{\gamma} > 2$ (the "Hausdorff dimension of γ -LQG").
 - e.g., ball volume exponent for random planar maps.
 - Not known explicitly except that $d_{\sqrt{8/3}} = 4$.

• **Ding-Gwynne:** $\exists d_{\gamma} > 2$ (the "Hausdorff dimension of γ -LQG").

- e.g., ball volume exponent for random planar maps.
- Not known explicitly except that $d_{\sqrt{8/3}} = 4$.

• Let $\xi := \gamma/d_{\gamma}$. Let $h_{\varepsilon} = h *$ (heat kernel). ε -LFPP metric:

$$D_h^{\varepsilon}(z,w) = \inf_{P:z \to w} \int_0^1 e^{\xi h_{\varepsilon}(P(t))} |P'(t)| dt,$$

where the inf is over piecewise C^1 paths from z to w.

• **Ding-Gwynne:** $\exists d_{\gamma} > 2$ (the "Hausdorff dimension of γ -LQG").

- e.g., ball volume exponent for random planar maps.
- Not known explicitly except that $d_{\sqrt{8/3}} = 4$.

• Let $\xi := \gamma/d_{\gamma}$. Let $h_{\varepsilon} = h *$ (heat kernel). ε -LFPP metric:

$$D_h^{\varepsilon}(z,w) = \inf_{P:z \to w} \int_0^1 e^{\xi h_{\varepsilon}(P(t))} |P'(t)| dt,$$

where the inf is over piecewise C^1 paths from z to w.

ξ = γ/d_γ because scaling areas by C (adding γ⁻¹ log C to h) corresponds to scaling distances by C^{1/d_γ}.

• **Ding-Gwynne:** $\exists d_{\gamma} > 2$ (the "Hausdorff dimension of γ -LQG").

- e.g., ball volume exponent for random planar maps.
- Not known explicitly except that $d_{\sqrt{8/3}} = 4$.

• Let $\xi := \gamma/d_{\gamma}$. Let $h_{\varepsilon} = h *$ (heat kernel). ε -LFPP metric:

$$D_h^{\varepsilon}(z,w) = \inf_{P:z \to w} \int_0^1 e^{\xi h_{\varepsilon}(P(t))} |P'(t)| dt,$$

where the inf is over piecewise C^1 paths from z to w.

ξ = γ/d_γ because scaling areas by C (adding γ⁻¹ log C to h) corresponds to scaling distances by C^{1/d_γ}.

Theorem (Ding-Dubédat-Dunlap-Falconet, 2019): The ε -LFPP metrics, re-scaled appropriately, are tight w.r.t. local uniform topology on $\mathbb{C} \times \mathbb{C}$. Every subsequential limit induces Euclidean topology.

• **Ding-Gwynne:** $\exists d_{\gamma} > 2$ (the "Hausdorff dimension of γ -LQG").

- e.g., ball volume exponent for random planar maps.
- Not known explicitly except that $d_{\sqrt{8/3}} = 4$.

• Let $\xi := \gamma/d_{\gamma}$. Let $h_{\varepsilon} = h *$ (heat kernel). ε -LFPP metric:

$$D_h^{\varepsilon}(z,w) = \inf_{P:z \to w} \int_0^1 e^{\xi h_{\varepsilon}(P(t))} |P'(t)| dt,$$

where the inf is over piecewise C^1 paths from z to w.

ξ = γ/d_γ because scaling areas by C (adding γ⁻¹ log C to h) corresponds to scaling distances by C^{1/d_γ}.

Theorem (Ding-Dubédat-Dunlap-Falconet, 2019): The ε -LFPP metrics, re-scaled appropriately, are tight w.r.t. local uniform topology on $\mathbb{C} \times \mathbb{C}$. Every subsequential limit induces Euclidean topology.

Theorem (Gwynne Miller, 2019): ε -LFPP converges in probability to a conformally covariant metric D_h , the γ -LQG metric.

E. Gwynne (Cambridge)

A (strong) γ -LQG metric is a function $h \mapsto D_h$ from distributions to metrics on \mathbb{C} which induce Eucl. topology satisfying the following.

A (strong) γ -LQG metric is a function $h \mapsto D_h$ from distributions to metrics on \mathbb{C} which induce Eucl. topology satisfying the following.

• Length space. The D_h -distance between two points is the infimum of the D_h -lengths of continuous paths between them.

A (strong) γ -LQG metric is a function $h \mapsto D_h$ from distributions to metrics on \mathbb{C} which induce Eucl. topology satisfying the following.

- Length space. The D_h-distance between two points is the infimum of the D_h-lengths of continuous paths between them.
- ② Locality. Let U ⊂ C be open. The D_h-internal metric on U determined by h|_U.

A (strong) γ -LQG metric is a function $h \mapsto D_h$ from distributions to metrics on \mathbb{C} which induce Eucl. topology satisfying the following.

- Length space. The D_h-distance between two points is the infimum of the D_h-lengths of continuous paths between them.
- ② Locality. Let U ⊂ C be open. The D_h-internal metric on U determined by h|_U.
- **(3) Weyl scaling.** Let $\xi = \gamma/d_{\gamma}$. A.s., \forall continuous $f : \mathbb{C} \to \mathbb{R}$,

$$D_{h+f}(z,w) = \inf_{P:z\to w} \int_0^{\operatorname{len}(P;D_h)} e^{\xi f(P(t))} dt,$$

where the inf is over continuous paths parametrized by D_h -length.

A (strong) γ -LQG metric is a function $h \mapsto D_h$ from distributions to metrics on \mathbb{C} which induce Eucl. topology satisfying the following.

- Length space. The D_h-distance between two points is the infimum of the D_h-lengths of continuous paths between them.
- ② Locality. Let U ⊂ C be open. The D_h-internal metric on U determined by h|_U.
- **(3) Weyl scaling.** Let $\xi = \gamma/d_{\gamma}$. A.s., \forall continuous $f : \mathbb{C} \to \mathbb{R}$,

$$D_{h+f}(z,w) = \inf_{P:z\to w} \int_0^{\operatorname{len}(P;D_h)} e^{\xi f(P(t))} dt,$$

where the inf is over continuous paths parametrized by D_h -length.

 Goordinate change for complex affine maps. Let Q = 2/γ + γ/2. For each fixed a ∈ C \ {0} and b ∈ C, a.s.

$$D_h(a \cdot +b, a \cdot +b) = D_{h(a \cdot +b)+Q \log |a|}(\cdot, \cdot).$$

Characterization of the γ -LQG metric

Theorem (Gwynne-Miller, 2019): The limit of the ε -LFPP metrics is a γ -LQG metric.

Simulation for $\gamma = 0.9$ (Miller)

Characterization of the γ -LQG metric

Theorem (Gwynne-Miller, 2019): The limit of the ε -LFPP metrics is a γ -LQG metric. Moreover, if D_h and \widetilde{D}_h are two γ -LQG metrics, then there is a deterministic C > 0 such that a.s. $\widetilde{D}_h = CD_h$.

Simulation for $\gamma = 0.9$ (Miller)

Simulation for $\gamma = 0.9$ (Miller)

Theorem (Gwynne-Miller, 2019): The limit of the ε -LFPP metrics is a γ -LQG metric. Moreover, if D_h and \widetilde{D}_h are two γ -LQG metrics, then there is a deterministic C > 0 such that a.s. $\widetilde{D}_h = CD_h$.

• Hence, we can refer to the γ -LQG metric.

Simulation for $\gamma = 0.9$ (Miller)

Theorem (Gwynne-Miller, 2019): The limit of the ε -LFPP metrics is a γ -LQG metric. Moreover, if D_h and \widetilde{D}_h are two γ -LQG metrics, then there is a deterministic C > 0 such that a.s. $\widetilde{D}_h = CD_h$.

- Hence, we can refer to the $\gamma\text{-}\mathsf{LQG}$ metric.
- Recall: Miller and Sheffield (2016) constructed a $\sqrt{8/3}$ -LQG metric using QLE.

Simulation for $\gamma = 0.9$ (Miller)

Theorem (Gwynne-Miller, 2019): The limit of the ε -LFPP metrics is a γ -LQG metric. Moreover, if D_h and \widetilde{D}_h are two γ -LQG metrics, then there is a deterministic C > 0 such that a.s. $\widetilde{D}_h = CD_h$.

- Hence, we can refer to the $\gamma\text{-}\mathsf{LQG}$ metric.
- Recall: Miller and Sheffield (2016) constructed a $\sqrt{8/3}$ -LQG metric using QLE.
- $\sqrt{8/3}$ -LQG surface = Brownian map = scaling limit of uniform random planar maps w.r.t. Gromov-Hausdorff distance.
Characterization of the $\gamma\text{-}\text{LQG}$ metric

Simulation for $\gamma = 0.9$ (Miller)

Theorem (Gwynne-Miller, 2019): The limit of the ε -LFPP metrics is a γ -LQG metric. Moreover, if D_h and \widetilde{D}_h are two γ -LQG metrics, then there is a deterministic C > 0 such that a.s. $\widetilde{D}_h = CD_h$.

- Hence, we can refer to the $\gamma\text{-}\mathsf{LQG}$ metric.
- Recall: Miller and Sheffield (2016) constructed a $\sqrt{8/3}$ -LQG metric using QLE.
- $\sqrt{8/3}$ -LQG surface = Brownian map = scaling limit of uniform random planar maps w.r.t. Gromov-Hausdorff distance.

Corollary: The Miller-Sheffield $\sqrt{8/3}$ -LQG metric agrees with the limit of $\sqrt{8/3}$ -LFPP.

Characterization of the γ -LQG metric

Simulation for $\gamma = 0.9$ (Miller)

Theorem (Gwynne-Miller, 2019): The limit of the ε -LFPP metrics is a γ -LQG metric. Moreover, if D_h and \widetilde{D}_h are two γ -LQG metrics, then there is a deterministic C > 0 such that a.s. $\widetilde{D}_h = CD_h$.

- Hence, we can refer to the γ -LQG metric.
- Recall: Miller and Sheffield (2016) constructed a $\sqrt{8/3}$ -LQG metric using QLE.
- $\sqrt{8/3}$ -LQG surface = Brownian map = scaling limit of uniform random planar maps w.r.t. Gromov-Hausdorff distance.

Corollary: The Miller-Sheffield $\sqrt{8/3}$ -LQG metric agrees with the limit of $\sqrt{8/3}$ -LFPP. **Conjecture:** For general $\gamma \in (0, 2)$, the γ -LQG metric is the scaling limit of weighted random planar maps w.r.t. the Gromov-Hausdorff topology.

Metrics on other domains

If U ⊂ C and h is a GFF on U, can define D_h by local absolute continuity.

Metrics on other domains

If U ⊂ C and h is a GFF on U, can define D_h by local absolute continuity.

Coordinate change (Gwynne-Miller, 2019): If $\phi: \widetilde{U} \to U$ is a conformal map and

$$\widetilde{h} = h \circ \phi + Q \log |\phi'| \quad ext{for} \quad Q = rac{2}{\gamma} + rac{\gamma}{2},$$

then a.s. $D_{\widetilde{h}}(z,w) = D_h(\phi(z),\phi(w)).$

Outline

1) The γ -LQG metric

• For $X \subset \mathbb{C}$, let dim⁰_H X and dim^{γ}_H X be the Hausdorff dimension of X w.r.t. the Euclidean and γ -LQG metrics, resp.

Simulation for $\gamma = 2$ (Miller)

 For X ⊂ C, let dim⁰_H X and dim^γ_H X be the Hausdorff dimension of X w.r.t. the Euclidean and γ-LQG metrics, resp.

Simulation for $\gamma = 2$ (Miller)

KPZ formula (Gwynne-Pfeffer, 2019): If X is a random Borel set independent from h, then a.s.

$$\dim^0_{\mathcal{H}} X = rac{\gamma}{d_\gamma} Q \dim^\gamma_{\mathcal{H}} X - rac{\gamma^2}{2d_\gamma^2} (\dim^\gamma_{\mathcal{H}} X)^2.$$

 For X ⊂ C, let dim⁰_H X and dim^γ_H X be the Hausdorff dimension of X w.r.t. the Euclidean and γ-LQG metrics, resp.

Simulation for $\gamma = 2$ (Miller)

KPZ formula (Gwynne-Pfeffer, 2019): If X is a random Borel set independent from h, then a.s.

$$\dim_{\mathcal{H}}^{0} X = \frac{\gamma}{d_{\gamma}} Q \dim_{\mathcal{H}}^{\gamma} X - \frac{\gamma^{2}}{2d_{\gamma}^{2}} (\dim_{\mathcal{H}}^{\gamma} X)^{2}.$$

• Agrees with other versions of KPZ (e.g., Duplantier-Sheffield) if we use the re-scaled dimension $\frac{1}{d_{\gamma}}(\dim_{\mathcal{H}}^{\gamma}X)$.

 For X ⊂ C, let dim⁰_H X and dim^γ_H X be the Hausdorff dimension of X w.r.t. the Euclidean and γ-LQG metrics, resp.

Simulation for $\gamma = 2$ (Miller)

KPZ formula (Gwynne-Pfeffer, 2019): If X is a random Borel set independent from h, then a.s.

$$\dim_{\mathcal{H}}^{0} X = \frac{\gamma}{d_{\gamma}} Q \dim_{\mathcal{H}}^{\gamma} X - \frac{\gamma^{2}}{2d_{\gamma}^{2}} (\dim_{\mathcal{H}}^{\gamma} X)^{2}.$$

• Agrees with other versions of KPZ (e.g., Duplantier-Sheffield) if we use the re-scaled dimension $\frac{1}{d_{\gamma}}(\dim_{\mathcal{H}}^{\gamma}X)$.

Corollary: dim $_{\mathcal{H}}^{\gamma} \mathbb{C} = d_{\gamma}$.

$$\dim_{\mathcal{H}}^{\gamma} X \leq \begin{cases} \frac{\dim_{\mathcal{H}}^{0} X}{\frac{\gamma}{d_{\gamma}} \left(Q - \sqrt{4 - 2 \dim_{\mathcal{H}}^{0} X} \right)}, & \text{if } \dim_{\mathcal{H}}^{0} X < 2 - \frac{\gamma}{2} \\ d_{\gamma}, & \text{if } \dim_{\mathcal{H}}^{0} X \geq 2 - \frac{\gamma}{2} \end{cases}$$

$$\dim_{\mathcal{H}}^{\gamma} X \leq \begin{cases} \frac{\dim_{\mathcal{H}}^{0} X}{\frac{\gamma}{d_{\gamma}} \left(Q - \sqrt{4 - 2 \dim_{\mathcal{H}}^{0} X} \right)}, & \text{ if } \dim_{\mathcal{H}}^{0} X < 2 - \frac{\gamma^{2}}{2} \\ d_{\gamma}, & \text{ if } \dim_{\mathcal{H}}^{0} X \geq 2 - \frac{\gamma^{2}}{2} \end{cases}$$

$$\begin{split} \dim_{\mathcal{H}}^{0} X \\ &\leq \begin{cases} \frac{\gamma}{d_{\gamma}} \dim_{\mathcal{H}}^{\gamma} X \Big(Q - \frac{\gamma}{d_{\gamma}} \dim_{\mathcal{H}}^{\gamma} X + \sqrt{4 - \frac{2\gamma Q}{d_{\gamma}} \dim_{\mathcal{H}}^{\gamma} X + \frac{\gamma^{2}}{d_{\gamma}^{2}} (\dim_{\mathcal{H}}^{\gamma} X)^{2}} \Big), & \text{if } \dim_{\mathcal{H}}^{\gamma} X < \frac{2d_{\gamma}}{\gamma Q} \\ 2, & \text{if } \dim_{\mathcal{H}}^{\gamma} X \geq \frac{2d_{\gamma}}{\gamma Q} \end{cases} \end{split}$$

$$\dim_{\mathcal{H}}^{\gamma} X \leq \begin{cases} \frac{\dim_{\mathcal{H}}^{0} X}{\frac{\gamma}{d_{\gamma}} \left(Q - \sqrt{4 - 2 \dim_{\mathcal{H}}^{0} X} \right)}, & \text{ if } \dim_{\mathcal{H}}^{0} X < 2 - \frac{\gamma^{2}}{2} \\ d_{\gamma}, & \text{ if } \dim_{\mathcal{H}}^{0} X \geq 2 - \frac{\gamma^{2}}{2} \end{cases}$$

$$\dim_{\mathcal{H}}^{\gamma} X \leq \begin{cases} \frac{\dim_{\mathcal{H}}^{0} X}{\frac{\gamma}{d_{\gamma}} \left(Q - \sqrt{4 - 2 \dim_{\mathcal{H}}^{0} X} \right)}, & \text{ if } \dim_{\mathcal{H}}^{0} X < 2 - \frac{\gamma^{2}}{2} \\ d_{\gamma}, & \text{ if } \dim_{\mathcal{H}}^{0} X \geq 2 - \frac{\gamma^{2}}{2} \end{cases}$$

• Idea of proof: assume that the $2^{-n} \times 2^{-n}$ squares which intersect X are the ones with the largest D_h -diameters. Do the reverse for squares with "quantum size" 2^{-m} .

• Idea of proof: assume that the $2^{-n} \times 2^{-n}$ squares which intersect X are the ones with the largest D_h -diameters. Do the reverse for squares with "quantum size" 2^{-m} .

• Upper bound for dim $^{0}_{\mathcal{H}}X$ is closest to optimal when *h* is "small" on *X*.

• Idea of proof: assume that the $2^{-n} \times 2^{-n}$ squares which intersect X are the ones with the largest D_h -diameters. Do the reverse for squares with "quantum size" 2^{-m} .

• Upper bound for dim $_{\mathcal{H}}^0 X$ is closest to optimal when *h* is "small" on *X*.

• A D_h -geodesic has D_h -dimension 1.

• Idea of proof: assume that the $2^{-n} \times 2^{-n}$ squares which intersect X are the ones with the largest D_h -diameters. Do the reverse for squares with "quantum size" 2^{-m} .

• Upper bound for dim $_{\mathcal{H}}^0 X$ is closest to optimal when *h* is "small" on *X*.

• A D_h -geodesic has D_h -dimension 1. **Corollary:** A.s., every D_h -geodesic has Eucl. dimension at most

$$rac{\gamma}{d_\gamma}igg(Q-rac{\gamma}{d_\gamma}+\sqrt{4-rac{2\gamma Q}{d_\gamma}+rac{\gamma^2}{d_\gamma^2}}igg)$$

• Idea of proof: assume that the $2^{-n} \times 2^{-n}$ squares which intersect X are the ones with the largest D_h -diameters. Do the reverse for squares with "quantum size" 2^{-m} .

• Upper bound for dim $_{\mathcal{H}}^0 X$ is closest to optimal when *h* is "small" on *X*.

• A D_h -geodesic has D_h -dimension 1. **Corollary:** A.s., every D_h -geodesic has Eucl. dimension at most

$$rac{\gamma}{d_{\gamma}}\left(\mathcal{Q} - rac{\gamma}{d_{\gamma}} + \sqrt{4 - rac{2\gamma\mathcal{Q}}{d_{\gamma}} + rac{\gamma^2}{d_{\gamma}^2}}
ight)$$

• Equals $\frac{4+\sqrt{15}}{6} \approx 1.312$ for $\gamma = \sqrt{8/3}$.

Outline

1) The γ -LQG metric

Theorem (Gwynne-Miller, 2019): For every s > 0, $\exists t \in (0, s)$ such that all D_h -geodesics from 0 to points outside $\mathcal{B}_s(z; D_h)$ coincide on [0, t].

 $\mathcal{B}^{\bullet}_{s}(z; D_{h}$

 $\tilde{B}_{1}(z; D_{h})$

Theorem (Gwynne-Miller, 2019): For every s > 0, $\exists t \in (0, s)$ such that all D_h -geodesics from 0 to points outside $\mathcal{B}_s(z; D_h)$ coincide on [0, t].

• Very different from behavior of geodesics for a smooth Riemannian metric.

Theorem (Gwynne-Miller, 2019): For every s > 0, $\exists t \in (0, s)$ such that all D_h -geodesics from 0 to points outside $\mathcal{B}_s(z; D_h)$ coincide on [0, t].

- Very different from behavior of geodesics for a smooth Riemannian metric.
- Proven by Le Gall (2010) for the Brownian map (using very different methods).

Theorem (Gwynne-Miller, 2019): For every s > 0, $\exists t \in (0, s)$ such that all D_h -geodesics from 0 to points outside $\mathcal{B}_s(z; D_h)$ coincide on [0, t].

- Very different from behavior of geodesics for a smooth Riemannian metric.
- Proven by Le Gall (2010) for the Brownian map (using very different methods).
- Key tool in the proof of uniqueness of the metric.

Theorem (Gwynne-Miller, 2019): For every s > 0, $\exists t \in (0, s)$ such that all D_h -geodesics from 0 to points outside $\mathcal{B}_s(z; D_h)$ coincide on [0, t].

- Very different from behavior of geodesics for a smooth Riemannian metric.
- Proven by Le Gall (2010) for the Brownian map (using very different methods).
- Key tool in the proof of uniqueness of the metric.
- Let $\mathcal{B}_{s}^{\bullet}(z; D_{h})$ be the union of $\mathcal{B}_{s}(z; D_{h})$ and the "holes" which it disconnects from ∞ .

Theorem (Gwynne-Miller, 2019): For every s > 0, $\exists t \in (0, s)$ such that all D_h -geodesics from 0 to points outside $\mathcal{B}_s(z; D_h)$ coincide on [0, t].

- Very different from behavior of geodesics for a smooth Riemannian metric.
- Proven by Le Gall (2010) for the Brownian map (using very different methods).
- Key tool in the proof of uniqueness of the metric.
- Let B[●]_s(z; D_h) be the union of B_s(z; D_h) and the "holes" which it disconnects from ∞.

Theorem (Gwynne-Miller, 2019): For any $0 < t < s < \infty$, there are only finitely many possibilities for $P|_{[0,t]}$, where P is a leftmost D_{h} -geodesic from 0 to $\partial \mathcal{B}_{s}^{\bullet}(z; D_{h})$.

Step 1: Partition ∂B_t into small arcs

Step 2: each arc is "killed off" with positive probability

Step 2: each arc is "killed off" with positive probability

Step 2: each arc is "killed off" with positive probability

Step 3: increasing radius "kills off" positive fraction of arcs

Step 4: iterate logarithmically many times

Confluence implies independence along a geodesic

• A D_h -geodesic P is not a local set for h.

Confluence implies independence along a geodesic

- A D_h -geodesic P is not a local set for h.
- Should still have long-range independence for behavior of *h* near different points of *P*.

Confluence implies independence along a geodesic

- A D_h -geodesic P is not a local set for h.
- Should still have long-range independence for behavior of *h* near different points of *P*.
- For a typical time s ∈ [0, D_h(z, w)], all D_h-geodesics from ∂B_ε(P(t)) to z agree on [0, s − ε^β].
Confluence implies independence along a geodesic

- A D_h -geodesic P is not a local set for h.
- Should still have long-range independence for behavior of *h* near different points of *P*.
- For a typical time s ∈ [0, D_h(z, w)], all D_h-geodesics from ∂B_ε(P(t)) to z agree on [0, s − ε^β].
- If we make a small change to $h|_{B_{\varepsilon}(P(s))}$, we do not change $P|_{[0,s-\varepsilon^{\beta}]}$.

Confluence implies independence along a geodesic

- A D_h -geodesic P is not a local set for h.
- Should still have long-range independence for behavior of *h* near different points of *P*.
- For a typical time s ∈ [0, D_h(z, w)], all D_h-geodesics from ∂B_ε(P(t)) to z agree on [0, s − ε^β].
- If we make a small change to h|_{Bε}(P(s)), we do not change P|_[0,s-εβ].
- Hence, conditional law of h|_{B_ε(P(s))} given P|_[0,s-ε^β] is not much different from its marginal law.

Outline

1) The γ -LQG metric

$$D_h^arepsilon(z,w) = \min_{P:z o w} \int_0^1 e^{\xi h_arepsilon(P(t))} |P'(t)| \, dt, \quad \xi = rac{\gamma}{d_\gamma}.$$

γ-LQG metric for each γ ∈ (0, 2) constructed as the limit (in probability) of LFPP:

$$D_h^arepsilon(z,w) = \min_{P:z
ightarrow w} \int_0^1 e^{\xi h_arepsilon(P(t))} |P'(t)| \, dt, \quad \xi = rac{\gamma}{d_\gamma}.$$

• Uniquely characterized by

$$D_h^arepsilon(z,w) = \min_{P:z o w} \int_0^1 e^{\xi h_arepsilon(P(t))} |P'(t)| \, dt, \quad \xi = rac{\gamma}{d_\gamma}.$$

- Uniquely characterized by
 - Length space.

$$D_h^arepsilon(z,w) = \min_{P:z o w} \int_0^1 e^{\xi h_arepsilon(P(t))} |P'(t)| \, dt, \quad \xi = rac{\gamma}{d_\gamma}.$$

- Uniquely characterized by
 - Length space.
 - Locality.

$$D_h^{\varepsilon}(z,w) = \min_{P:z \to w} \int_0^1 e^{\xi h_{\varepsilon}(P(t))} |P'(t)| dt, \quad \xi = \frac{\gamma}{d_{\gamma}}.$$

- Uniquely characterized by
 - Length space.
 - Locality.
 - Weyl scaling (behavior when adding a function to *h*).

$$D_h^{\varepsilon}(z,w) = \min_{P:z \to w} \int_0^1 e^{\xi h_{\varepsilon}(P(t))} |P'(t)| dt, \quad \xi = \frac{\gamma}{d_{\gamma}}.$$

- Uniquely characterized by
 - Length space.
 - Locality.
 - Weyl scaling (behavior when adding a function to *h*).
 - Coordinate change (behavior when scaling/translating space).

$$D_h^{\varepsilon}(z,w) = \min_{P:z \to w} \int_0^1 e^{\xi h_{\varepsilon}(P(t))} |P'(t)| dt, \quad \xi = \frac{\gamma}{d_{\gamma}}.$$

- Uniquely characterized by
 - Length space.
 - Locality.
 - Weyl scaling (behavior when adding a function to *h*).
 - Coordinate change (behavior when scaling/translating space).
- Properties:

$$D_h^{\varepsilon}(z,w) = \min_{P:z \to w} \int_0^1 e^{\xi h_{\varepsilon}(P(t))} |P'(t)| dt, \quad \xi = \frac{\gamma}{d_{\gamma}}.$$

- Uniquely characterized by
 - Length space.
 - Locality.
 - Weyl scaling (behavior when adding a function to h).
 - Coordinate change (behavior when scaling/translating space).
- Properties:
 - Conformal coordinate change.

$$D_h^{\varepsilon}(z,w) = \min_{P:z \to w} \int_0^1 e^{\xi h_{\varepsilon}(P(t))} |P'(t)| dt, \quad \xi = \frac{\gamma}{d_{\gamma}}.$$

- Uniquely characterized by
 - Length space.
 - Locality.
 - Weyl scaling (behavior when adding a function to h).
 - Coordinate change (behavior when scaling/translating space).
- Properties:
 - Conformal coordinate change.
 - KPZ formula.

γ-LQG metric for each γ ∈ (0, 2) constructed as the limit (in probability) of LFPP:

$$D_h^{\varepsilon}(z,w) = \min_{P:z \to w} \int_0^1 e^{\xi h_{\varepsilon}(P(t))} |P'(t)| dt, \quad \xi = \frac{\gamma}{d_{\gamma}}.$$

- Uniquely characterized by
 - Length space.
 - Locality.
 - Weyl scaling (behavior when adding a function to h).
 - Coordinate change (behavior when scaling/translating space).
- Properties:
 - Conformal coordinate change.
 - KPZ formula.
 - Confluence of geodesics.

The LQG metric

• Compute the Hausdorff dimension d_{γ} for $\gamma \neq \sqrt{8/3}$.

- Compute the Hausdorff dimension d_{γ} for $\gamma \neq \sqrt{8/3}$.
- Compute the Euclidean dimension of LQG geodesics, outer boundaries of LQG metric balls, etc.

- Compute the Hausdorff dimension d_{γ} for $\gamma \neq \sqrt{8/3}$.
- Compute the Euclidean dimension of LQG geodesics, outer boundaries of LQG metric balls, etc.
- Show that the γ-LQG metric is the scaling limit of random planar maps for general γ ∈ (0, 2) (w.r.t. Gromov-Hausdorff).

• Construct the metric in the critical case $\gamma = 2$, or more generally for $\xi > 2/d_2$ ("central charge > 1"; see Gwynne-Holden-Pfeffer-Remy, 2019).

- Construct the metric in the critical case $\gamma = 2$, or more generally for $\xi > 2/d_2$ ("central charge > 1"; see Gwynne-Holden-Pfeffer-Remy, 2019).
- Can we see that $\gamma = \sqrt{8/3}$ is special just from the axioms?

- Construct the metric in the critical case $\gamma = 2$, or more generally for $\xi > 2/d_2$ ("central charge > 1"; see Gwynne-Holden-Pfeffer-Remy, 2019).
- Can we see that $\gamma = \sqrt{8/3}$ is special just from the axioms?
- Are there any exact formulas for LQG distances, analogous to exact formulas for correlation functions / LQG areas by Kupiannen-Rhodes-Vargas, Remy, et. al. or exact formulas for Brownian surfaces?

- Construct the metric in the critical case $\gamma = 2$, or more generally for $\xi > 2/d_2$ ("central charge > 1"; see Gwynne-Holden-Pfeffer-Remy, 2019).
- Can we see that $\gamma = \sqrt{8/3}$ is special just from the axioms?
- Are there any exact formulas for LQG distances, analogous to exact formulas for correlation functions / LQG areas by Kupiannen-Rhodes-Vargas, Remy, et. al. or exact formulas for Brownian surfaces?
- Is there a general theory of random metrics obtained by exponentiating the GFF analogous to Gaussian multiplicative chaos?