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Liouville quantum gravity

D ⊂ C a domain, h a Gaussian free field (GFF), and γ ∈ (0, 2)

Riemannian manifold eγh(dx2 + dy2)

Area measure µh = eγhd2z

Boundary measure νh = eγh/2dz

Metric dist(w1,w2) = inf
P:w1→w2

∫
P
eγh/d dz , d = dimension

Holden (ETH Zürich) June 21, 2019 2 / 21



Definition of an LQG surface

Definition 1 (Sheffield’10)

Let γ ∈ (0, 2] and Q = 2/γ + γ/2. A γ-LQG surface is an equivalence
class of pairs (D, h), where D ⊂ C, h is a distribution on D, and

(D, h) ∼ (D̃, h̃) iff ∃φ : D̃ → D conformal s.t. h̃ = h ◦ φ+ Q log |φ′|.

D̃
D

h̃ = h ◦ φ+Q log |φ′|

φ

h

Aφ−1(A)

µh̃(φ
−1(A)) = µh(A)
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Definition of an LQG surface

Coupling constant γ γ ∈ (0, 2]
Background charge Q = 2/γ + γ/2 Q ≥ 2

Central charge c = 25− 6Q2 c ≤ 1
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Definition of an LQG surface

Coupling constant γ γ ∈ (0, 2] |γ| = 2
Background charge Q = 2/γ + γ/2 Q ≥ 2 Q ∈ (0, 2)

Central charge c = 25− 6Q2 c ≤ 1 c ∈ (1, 25)

Definition 2 (Gwynne-H.-Pfeffer-Remy’19)

Let c < 25. A c-LQG surface is an equivalence class of pairs (D, h), where
D ⊂ C, h is a distribution on D, and

(D, h) ∼ (D̃, h̃) iff ∃φ : D̃ → D conformal s.t. h̃ = h ◦ φ+ Q log |φ′|.
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The square subdivision model

Let µh = eγhd2z be the c-LQG area measure in [0, 1]2 for c < 1.

Fix ε > 0. Divide a square S iff µh(S) > ε.
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Holden (ETH Zürich) June 21, 2019 5 / 21



The square subdivision model

Let µh = eγhd2z be the c-LQG area measure in [0, 1]2 for c < 1.

Fix ε > 0. Divide a square S iff µh(S) > ε.
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Illustration of LQG area measure

Area measure µh = eγhd2z , γ = 1.5

(simulation by Miller and Sheffield)
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Illustration of LQG area measure

γ = 1 γ = 1.5 γ = 1.75

Area measure µh = eγhd2z

(simulation by Miller and Sheffield)
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Approximate LQG area measure via GFF circle average

GFF circle average: Let hr (z) denote the average of h on ∂Br (z).
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Approximate LQG area measure via GFF circle average

GFF circle average: Let hr (z) denote the average of h on ∂Br (z).

Define µh = eγhd2z via regularization: µh = limr→0 r
γ2/2eγhrd2z .

Therefore µh(S) ≈ |S |2+γ2/2eγh|S|/2(zS ).

S

zS

∂B|S|/2(zS)

|S|
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Approximate LQG area measure via GFF circle average

GFF circle average: Let hr (z) denote the average of h on ∂Br (z).

Define µh = eγhd2z via regularization: µh = limr→0 r
γ2/2eγhrd2z .

Therefore µh(S) ≈ |S |2+γ2/2eγh|S|/2(zS ).
Further, we get µh(S)1/γ ≈ Mc

h(S) := |S |Qeh|S|/2(zS ).

S

zS

∂B|S|/2(zS)

|S|
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The square subdivision model with GFF circle averages

Fix ε > 0. Divide a square S iff Mc
h(S) := |S |Qeh|S|/2(zS ) > ε.

Let Sεh denote the final collection of squares.

Note! This model makes sense also for c ∈ (1, 25).
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The square subdivision as a random planar maps

Let h be a whole-plane GFF and let BS
1
h

r (0)
denote the graph metric ball of radius r in S1

h

centered at 0. For c < 1, by methods of
Ding-Zeitouni-Zhang’18 and Ding-Gwynne’18,

#BS
1
h

r (0) = rdc+o(1),

where dc > 2 is the Hausdorff dimension of
c-LQG (Gwynne-Pfeffer’19).

Holden (ETH Zürich) June 21, 2019 9 / 21



The square subdivision as a random planar maps

Let h be a whole-plane GFF and let BS
1
h

r (0)
denote the graph metric ball of radius r in S1

h

centered at 0. For c < 1, by methods of
Ding-Zeitouni-Zhang’18 and Ding-Gwynne’18,

#BS
1
h

r (0) = rdc+o(1),

where dc > 2 is the Hausdorff dimension of
c-LQG (Gwynne-Pfeffer’19).

BS1
h

2 (0)
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1
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where dc > 2 is the Hausdorff dimension of
c-LQG (Gwynne-Pfeffer’19).

Gwynne-Miller-Sheffield’17 proved that a related
discretization of c-LQG converges to LQG for
c < 1 under the Tutte embedding.
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1
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denote the graph metric ball of radius r in S1

h

centered at 0. For c < 1, by methods of
Ding-Zeitouni-Zhang’18 and Ding-Gwynne’18,

#BS
1
h

r (0) = rdc+o(1),

where dc > 2 is the Hausdorff dimension of
c-LQG (Gwynne-Pfeffer’19).

Gwynne-Miller-Sheffield’17 proved that a related
discretization of c-LQG converges to LQG for
c < 1 under the Tutte embedding.

These results suggest that for c < 1, Sεh is in the
c-universality class of planar maps.
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Phase transition at c = 1: Infinite-volume surface

Assume c ∈ (1, 25) (equivalently, Q ∈ (0, 2)).
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Assume c ∈ (1, 25) (equivalently, Q ∈ (0, 2)).

For α ∈ (Q, 2), let z be a α-thick point, i.e.,

hr (z) ≈ Blog r−1 + α log r−1

for (Bt)t≥0 a standard Brownian motion.
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Assume c ∈ (1, 25) (equivalently, Q ∈ (0, 2)).

For α ∈ (Q, 2), let z be a α-thick point, i.e.,

hr (z) ≈ Blog r−1 + α log r−1

for (Bt)t≥0 a standard Brownian motion.

We stop subdividing when the following is < ε
(with z ∈ S , |S | = 2r)

Mc
h(S) = (2r)Q exp(hr (zS)) ≈ (2r)Q exp(hr (z))

≈ 2Q exp(Blog r−1 + (α− Q) log r−1).

When ε→ 0 the probability that we ever stop subdividing converges to 0.
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Phase transition at c = 1: Infinite-volume surface

Assume c ∈ (1, 25) (equivalently, Q ∈ (0, 2)).

For α ∈ (Q, 2), let z be a α-thick point, i.e.,

hr (z) ≈ Blog r−1 + α log r−1

for (Bt)t≥0 a standard Brownian motion.

We stop subdividing when the following is < ε
(with z ∈ S , |S | = 2r)

Mc
h(S) = (2r)Q exp(hr (zS)) ≈ (2r)Q exp(hr (z))

≈ 2Q exp(Blog r−1 + (α− Q) log r−1).

When ε→ 0 the probability that we ever stop subdividing converges to 0.

Dense set of “infinite mass” points (dim= 2− Q2/2, Hu-Miller-Peres’10).
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Measures on c-LQG surfaces

Let A ⊂ D have d-dim. Minkowski content defining a measure m.
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Measures on c-LQG surfaces

Let A ⊂ D have d-dim. Minkowski content defining a measure m.

d < Q2/2, so A does not intersect “infinite mass” (Q-thick) points.

If γ̃ <
√

2d define νh,A = e γ̃hdm by regularization (e.g. Berestycki’17)

νh,A = lim
r→0

r γ̃
2/2e γ̃hr dm.

Holden (ETH Zürich) June 21, 2019 11 / 21



Measures on c-LQG surfaces

Let A ⊂ D have d-dim. Minkowski content defining a measure m.

d < Q2/2, so A does not intersect “infinite mass” (Q-thick) points.

If γ̃ <
√

2d define νh,A = e γ̃hdm by regularization (e.g. Berestycki’17)

νh,A = lim
r→0

r γ̃
2/2e γ̃hr dm.

Choose γ̃ s.t. Q = d/γ̃+ γ̃/2; then νh,A invariant under coord. change

D̃
D

h̃ = h ◦ φ+Q log |φ′|

φ

h

φ−1(A)

ν
h̃,φ−1(A)

(D̃) = νh,A(D)

A
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Measures on c-LQG surfaces

Let A ⊂ D have d-dim. Minkowski content defining a measure m.

d < Q2/2, so A does not intersect “infinite mass” (Q-thick) points.

If γ̃ <
√

2d define νh,A = e γ̃hdm by regularization (e.g. Berestycki’17)

νh,A = lim
r→0

r γ̃
2/2e γ̃hr dm.

Choose γ̃ s.t. Q = d/γ̃+ γ̃/2; then νh,A invariant under coord. change

Example: Liouville dynamical percolation on c-LQG, c < 16; pivotal
points (d = 3/4) govern dynamics (Garban-H.-Sepulveda-Sun’19).

D̃
D

h̃ = h ◦ φ+Q log |φ′|

φ

h

φ−1(A)

ν
h̃,φ−1(A)

(D̃) = νh,A(D)

A
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Hausdorff dimension of c-LQG for c < 1

dc = 2

dc = 5

γ = 2
(c = 1)

γ = 0
(c = −∞)

Gwynne-Pfeffer’19: A c-LQG surface has Hausdorff dimension dc.

Bounds for dc: Gwynne-Pfeffer’19, Ding-Gwynne’18, Ding-Zeitouni-Zhang’18,
...................... Gwynne-H.-Sun’16

Holden (ETH Zürich) June 21, 2019 12 / 21



Superpolynomial ball volume growth

Theorem 1 (Gwynne-H.-Pfeffer-Remy’19, Infinite dimension)

Let c ∈ (1, 25). Almost surely, lim
r→∞

log #BS
1
h

r (0)

log r
=∞.

BS1
h

2 (0)

0
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Point-to-point distances grow polynomially

Proposition 2 (Gwynne-H.-Pfeffer-Remy’19)

For c < 25, there exists ξ, ξ > 0 s.t. for fixed z ,w ∈ C, a.s.

ε−ξ+o(1) ≤ Dε
h(z ,w) ≤ ε−ξ−o(1) as ε→ 0.

For c < 1, Dε
h(z ,w) = ε−γc/dc+o(1).

Although γc, dc ∈ C for c > 1, the
ratio γc/dc may be real.

We expect that
Dε
h(z ,w) = ε−ξc+o(1) for c > 1,

where ξc is the analytic
continuation of γc/dc.

z

w
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KPZ (Knizhnik-Polyakov-Zamolodchikov) formula

Let X be a fractal independent of the Gaussian free field h.
Let Nε

0(X ) and Nε
h(X ) denote the number of squares intersecting X .

Let d (resp. dc) denote the Euclidean (resp. c-LQG) dimension of X .
KPZ formula: d = Qdc − 0.5d2

c

KPZ formula used in physics to predict exponents and dimensions.

N ε
0(X) = ε−d+o(1) N ε

h(X) = ε−dc+o(1)

X X

ε
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KPZ (Knizhnik-Polyakov-Zamolodchikov) formula

Theorem 3 (Gwynne-H.-Pfeffer-Remy’19; KPZ formula for c < 25)

If dimHaus(X ) = dimMink(X ) = d then a.s. for sufficiently small ε > 0,

Nε
h(X ) =

{
ε−(Q−

√
Q2−2d)+oε(1) if d < Q2/2,

∞ if d > Q2/2.

Furthermore, E[Nε
h(X )] = ε−(Q−

√
Q2−2d)+oε(1) for d < Q2/2.

X intersects “infinite mass” points ⇔ d > Q2/2 ⇔ exponent complex

Duplantier-Sheffield’11 proved KPZ formula in expectation for square
subdivision with LQG area and c < 1.

Other variants for c ≤ 1: Benjamini-Schramm’09, Rhodes-Vargas’11,
Barral-Jin-Rhodes-Vargas’13, Aru’15, Gwynne-H.-Miller’15,
Berestycki-Garban-Rhodes-Vargas’16, Gwynne-Pfeffer’19, etc.
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Planar maps reweighted by the Laplacian determinant

∆M = linear operator derived from adj. matrix of M

det ∆M = # spanning trees on M

Mn = rand. planar map with n vert. s.t. P[Mn = m] ∝ (det ∆m)−c/2

Conjecture 1

For c < 1, Mn converges to c-LQG.
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∆M = linear operator derived from adj. matrix of M

det ∆M = # spanning trees on M

Mn = rand. planar map with n vert. s.t. P[Mn = m] ∝ (det ∆m)−c/2

Conjecture 1

For c < 1, Mn converges to c-LQG.

c = 0:

planar map

Brownian map 0-LQG
Miller-Sheffield’15

Le Gall’13
Miermont’13

conformalmetric
measure

...
H.-Sun’19

random

c 6= 0: peanosphere topology; dimensions agree
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Planar maps reweighted by the Laplacian determinant

∆M = linear operator derived from adj. matrix of M

det ∆M = # spanning trees on M

Mn = rand. planar map with n vert. s.t. P[Mn = m] ∝ (det ∆m)−c/2

Conjecture 1

For c < 1, Mn converges to c-LQG.

Conjecture 2

For c > 1 (or c ≥ 12), Mn ⇒ CRT (continuum random tree) for the
Gromov-Hausdorff metric.

Is this conjecture consistent with our model, which describes c-LQG for
c > 1 as a surface with non-trivial geometry?
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Relating S εh for different c via Laplacian determinants

Upcoming work Ang-Park-Pfeffer-Sheffield:

Fix c, c′ ∈ R, ε > 0, and n ∈ N.

Sεh
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Fix c, c′ ∈ R, ε > 0, and n ∈ N.

Consider Sεh for central charge c,
conditioned on #Sεh = n.

Reweight the prob. meas. by Laplacian
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h and Polyakov-Alvarez) to the power
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For the resulting probability measure, Sεh
has the law associated with central charge
c + c′, conditioned on #Sεh = n.

Sεh
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Relating S εh for different c via Laplacian determinants

Upcoming work Ang-Park-Pfeffer-Sheffield:

Fix c, c′ ∈ R, ε > 0, and n ∈ N.

Consider Sεh for central charge c,
conditioned on #Sεh = n.

Reweight the prob. meas. by Laplacian
determinant (defined via smooth approx. to
h and Polyakov-Alvarez) to the power
−c′/2.

For the resulting probability measure, Sεh
has the law associated with central charge
c + c′, conditioned on #Sεh = n.

Note! Conditioning on #Sεh = n changes
drastically the law of Sεh for c > 1.

Sεh
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Superpolynomial ball volume growth

Theorem 3 (Gwynne-H.-Pfeffer-Remy’19, Infinite dimension)

Let c ∈ (1, 25). Almost surely, lim
r→∞

log #BS
1
h

r (0)

log r
=∞.

big square small square

< εK

> ε1/Q
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Superpolynomial ball volume growth

Theorem 3 (Gwynne-H.-Pfeffer-Remy’19, Infinite dimension)

Let c ∈ (1, 25). Almost surely, lim
r→∞

log #BS
1
h

r (0)

log r
=∞.

1 Large squares well connected: Any two big squares (side length
> ε1/Q) have distance < ε−C .

GFF level lines (SLE4-type curves)
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Superpolynomial ball volume growth

Theorem 3 (Gwynne-H.-Pfeffer-Remy’19, Infinite dimension)

Let c ∈ (1, 25). Almost surely, lim
r→∞

log #BS
1
h

r (0)

log r
=∞.

1 Large squares well connected: Any two big squares (side length
> ε1/Q) have distance < ε−C .

2 Many small squares close to a big square: For any K > 0 there
are > ε−cK squares of side length < εK with distance < ε−C from a
big square (C and K independent).

Q+ 1/K-thick point< ε−C
> ε1/Q

< εK
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Superpolynomial ball volume growth

Theorem 3 (Gwynne-H.-Pfeffer-Remy’19, Infinite dimension)
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2 Many small squares close to a big square: For any K > 0 there
are > ε−cK squares of side length < εK with distance < ε−C from a
big square (C and K independent).

3 Origin close to a big square: The origin has distance < ε−C to a
big square.
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Superpolynomial ball volume growth

Theorem 3 (Gwynne-H.-Pfeffer-Remy’19, Infinite dimension)

Let c ∈ (1, 25). Almost surely, lim
r→∞

log #BS
1
h

r (0)

log r
=∞.

1 Large squares well connected: Any two big squares (side length
> ε1/Q) have distance < ε−C .

2 Many small squares close to a big square: For any K > 0 there
are > ε−cK squares of side length < εK with distance < ε−C from a
big square (C and K independent).

3 Origin close to a big square: The origin has distance < ε−C to a
big square.

By the triangle inequality and the above, #BS
1
h

r (0) > ε−cK for r = 3ε−C .
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Open problems

Does Sεh converge as a metric measure space?

Le Gall’13, Miermont’13, and others: Uniform planar maps (c = 0) ⇒
Brownian map for the Gromov-Hausdorff-Prokhorov topology.
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Is Sεh related to complex Gaussian multiplicative chaos eγh, γ ∈ C?

Complex GMC studied by Lacoin-Rhodes-Vargas’13&’19 and
Junnila-Saksman-Webb’18, but not for |γ| = 2.
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Le Gall’13, Miermont’13, and others: Uniform planar maps (c = 0) ⇒
Brownian map for the Gromov-Hausdorff-Prokhorov topology.

Is Sεh related to complex Gaussian multiplicative chaos eγh, γ ∈ C?

Complex GMC studied by Lacoin-Rhodes-Vargas’13&’19 and
Junnila-Saksman-Webb’18, but not for |γ| = 2.

Path integral approach e−SL(ϕ)Dϕ to c > 1, where

SL(ϕ) :=
1

4π

∫
(|∇gϕ(z)|2 + Rg (z)Qϕ(z) + 4πµeγϕ(z))g(z) d2z .

Quantum disk/sphere/wedge/cone.
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Open problems

Does Sεh converge as a metric measure space?

Le Gall’13, Miermont’13, and others: Uniform planar maps (c = 0) ⇒
Brownian map for the Gromov-Hausdorff-Prokhorov topology.

Is Sεh related to complex Gaussian multiplicative chaos eγh, γ ∈ C?

Complex GMC studied by Lacoin-Rhodes-Vargas’13&’19 and
Junnila-Saksman-Webb’18, but not for |γ| = 2.

Path integral approach e−SL(ϕ)Dϕ to c > 1, where

SL(ϕ) :=
1

4π

∫
(|∇gϕ(z)|2 + Rg (z)Qϕ(z) + 4πµeγϕ(z))g(z) d2z .

Quantum disk/sphere/wedge/cone.

Schramm-Loewner evolution for c > 1. SLE and LQG couplings
(mating of trees, quantum zipper, etc.)

Kozdron-Lawler’07: λ-self avoiding walk for λ = −c/2.
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Le Gall’13, Miermont’13, and others: Uniform planar maps (c = 0) ⇒
Brownian map for the Gromov-Hausdorff-Prokhorov topology.

Is Sεh related to complex Gaussian multiplicative chaos eγh, γ ∈ C?

Complex GMC studied by Lacoin-Rhodes-Vargas’13&’19 and
Junnila-Saksman-Webb’18, but not for |γ| = 2.

Path integral approach e−SL(ϕ)Dϕ to c > 1, where

SL(ϕ) :=
1

4π

∫
(|∇gϕ(z)|2 + Rg (z)Qϕ(z) + 4πµeγϕ(z))g(z) d2z .

Quantum disk/sphere/wedge/cone.

Schramm-Loewner evolution for c > 1. SLE and LQG couplings
(mating of trees, quantum zipper, etc.)

Kozdron-Lawler’07: λ-self avoiding walk for λ = −c/2.

Combinatorial RPM model for c ∈ (1, 25).
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Interpretations of complex dimensions, for example in the KPZ
formula dc = Q −

√
Q2 − 2d for d > Q2/2.
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Thanks!
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