Liouville quantum gravity with central charge $\mathbf{c} \in (1,25)$: a probabilistic approach

Nina Holden

ETH Zürich, Institute for Theoretical Studies

Collaboration with Ewain Gwynne, Josh Pfeffer, and Guillaume Remy

June 21, 2019

Holden (ETH Zürich)

1/21

Liouville quantum gravity

- $D \subset \mathbb{C}$ a domain, h a Gaussian free field (GFF), and $\gamma \in (0,2)$
- Riemannian manifold $e^{\gamma h}(dx^2 + dy^2)$
- ullet Area measure $\mu_h=e^{\gamma h}d^2z$
- Boundary measure $\nu_h = e^{\gamma h/2} dz$
- Metric dist $(w_1, w_2) = \inf_{P: w_1 \to w_2} \int_P e^{\gamma h/d} dz$, d = dimension

Definition 1 (Sheffield'10)

Let $\gamma \in (0,2]$ and $Q=2/\gamma+\gamma/2$. A γ -LQG surface is an equivalence class of pairs (D,h), where $D \subset \mathbb{C}$, h is a distribution on D, and

$$(D,h) \sim (\widetilde{D},\widetilde{h})$$
 iff $\exists \phi: \widetilde{D} \rightarrow D$ conformal s.t. $\widetilde{h} = h \circ \phi + Q \log |\phi'|$.

$$\mu_{\widetilde{h}}(\phi^{-1}(A)) = \mu_h(A)$$

<□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Coupling constant	γ	$\gamma \in (0,2]$
Background charge	$Q = 2/\gamma + \gamma/2$	$Q \ge 2$
Central charge	$\mathbf{c} = 25 - 6Q^2$	c ≤ 1

Coupling constant	γ	$\gamma \in (0,2]$	$ \gamma =2$
Background charge	$Q=2/\gamma+\gamma/2$	$Q \ge 2$	$Q \in (0,2)$
Central charge	$\mathbf{c} = 25 - 6Q^2$	c ≤ 1	$c \in (1,25)$

Coupling constant	γ	$\gamma \in (0,2]$	$ \gamma =2$
Background charge	$Q=2/\gamma+\gamma/2$	$Q \ge 2$	$Q \in (0,2)$
Central charge	$\mathbf{c} = 25 - 6Q^2$	c ≤ 1	$c \in (1, 25)$

Definition 2 (Gwynne-H.-Pfeffer-Remy'19)

Let $\mathbf{c} < 25$. A \mathbf{c} -LQG surface is an equivalence class of pairs (D, h), where $D \subset \mathbb{C}$, h is a distribution on D, and

$$(D,h) \sim (\widetilde{D},\widetilde{h}) \quad \text{iff} \quad \exists \phi: \widetilde{D} \to D \text{ conformal s.t. } \widetilde{h} = h \circ \phi + Q \log |\phi'|.$$

Let $\mu_h = e^{\gamma h} d^2 z$ be the **c**-LQG area measure in $[0,1]^2$ for $\mathbf{c} < 1$.

Fix $\epsilon > 0$. Divide a square S iff $\mu_h(S) > \epsilon$.

Let $\mu_h = e^{\gamma h} d^2 z$ be the **c**-LQG area measure in $[0,1]^2$ for **c** < 1.

Fix $\epsilon > 0$. Divide a square S iff $\mu_h(S) > \epsilon$.

Let $\mu_h = e^{\gamma h} d^2 z$ be the **c**-LQG area measure in $[0,1]^2$ for **c** < 1.

Fix $\epsilon > 0$. Divide a square S iff $\mu_h(S) > \epsilon$.

Let $\mu_h = e^{\gamma h} d^2 z$ be the **c**-LQG area measure in $[0,1]^2$ for **c** < 1.

Fix $\epsilon > 0$. Divide a square S iff $\mu_h(S) > \epsilon$.

Let $\mu_h = e^{\gamma h} d^2 z$ be the **c**-LQG area measure in $[0,1]^2$ for **c** < 1.

Fix $\epsilon > 0$. Divide a square S iff $\mu_h(S) > \epsilon$.

Let $\mu_h = e^{\gamma h} d^2 z$ be the **c**-LQG area measure in $[0,1]^2$ for **c** < 1.

Fix $\epsilon > 0$. Divide a square S iff $\mu_h(S) > \epsilon$.

Illustration of LQG area measure

Area measure $\mu_h=e^{\gamma h}d^2z$, $\gamma=1.5$ (simulation by Miller and Sheffield)

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Illustration of LQG area measure

Area measure
$$\mu_h=e^{\gamma h}d^2z$$

(simulation by Miller and Sheffield)

• GFF circle average: Let $h_r(z)$ denote the average of h on $\partial B_r(z)$.

- GFF circle average: Let $h_r(z)$ denote the average of h on $\partial B_r(z)$.
- Define $\mu_h = e^{\gamma h} d^2 z$ via regularization: $\mu_h = \lim_{r \to 0} r^{\gamma^2/2} e^{\gamma h_r} d^2 z$.

- GFF circle average: Let $h_r(z)$ denote the average of h on $\partial B_r(z)$.
- Define $\mu_h = e^{\gamma h} d^2 z$ via regularization: $\mu_h = \lim_{r \to 0} r^{\gamma^2/2} e^{\gamma h_r} d^2 z$.
- Therefore $\mu_h(S) \approx |S|^{2+\gamma^2/2} e^{\gamma h_{|S|/2}(z_S)}$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

- GFF circle average: Let $h_r(z)$ denote the average of h on $\partial B_r(z)$.
- Define $\mu_h = e^{\gamma h} d^2 z$ via regularization: $\mu_h = \lim_{r \to 0} r^{\gamma^2/2} e^{\gamma h_r} d^2 z$.
- Therefore $\mu_h(S) \approx |S|^{2+\gamma^2/2} e^{\gamma h_{|S|/2}(z_S)}$.
- Further, we get $\mu_h(S)^{1/\gamma} \approx M_h^{\mathbf{c}}(S) := |S|^Q e^{h_{|S|/2}(z_S)}$.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

The square subdivision model with GFF circle averages

Fix $\epsilon > 0$. Divide a square S iff $M_h^{\mathbf{c}}(S) := |S|^Q e^{h_{|S|/2}(z_S)} > \epsilon$.

The square subdivision model with GFF circle averages

Fix $\epsilon > 0$. Divide a square S iff $M_h^c(S) := |S|^Q e^{h_{|S|/2}(z_S)} > \epsilon$.

Let S_h^{ϵ} denote the final collection of squares.

|ロト 4回ト 4 差ト 4 差ト | 差 | 夕久()

The square subdivision model with GFF circle averages

Fix $\epsilon > 0$. Divide a square S iff $M_h^c(S) := |S|^Q e^{h_{|S|/2}(z_S)} > \epsilon$.

Let S_h^{ϵ} denote the final collection of squares.

Note! This model makes sense also for $\mathbf{c} \in (1,25)$.

Holden (ETH Zürich) June 21, 2019 8/21

Let h be a whole-plane GFF and let $\mathcal{B}_r^{S_h^1}(0)$ denote the graph metric ball of radius r in S_h^1 centered at 0. For $\mathbf{c} < 1$, by methods of Ding-Zeitouni-Zhang'18 and Ding-Gwynne'18,

$$\#\mathcal{B}_r^{S_h^1}(0) = r^{d_c+o(1)},$$

where $d_c > 2$ is the Hausdorff dimension of c-LQG (Gwynne-Pfeffer'19).

Let h be a whole-plane GFF and let $\mathcal{B}_r^{S_h^1}(0)$ denote the graph metric ball of radius r in S_h^1 centered at 0. For $\mathbf{c} < 1$, by methods of Ding-Zeitouni-Zhang'18 and Ding-Gwynne'18,

$$\#\mathcal{B}_r^{S_h^1}(0) = r^{d_c + o(1)},$$

where $d_c > 2$ is the Hausdorff dimension of c-LQG (Gwynne-Pfeffer'19).

Let h be a whole-plane GFF and let $\mathcal{B}_r^{S_h^1}(0)$ denote the graph metric ball of radius r in S_h^1 centered at 0. For $\mathbf{c} < 1$, by methods of Ding-Zeitouni-Zhang'18 and Ding-Gwynne'18,

$$\#\mathcal{B}_r^{S_h^1}(0) = r^{d_c + o(1)},$$

where $d_c > 2$ is the Hausdorff dimension of c-LQG (Gwynne-Pfeffer'19).

Gwynne-Miller-Sheffield'17 proved that a related discretization of ${\bf c}$ -LQG converges to LQG for ${\bf c} < 1$ under the Tutte embedding.

Let h be a whole-plane GFF and let $\mathcal{B}_r^{S_h^1}(0)$ denote the graph metric ball of radius r in S_h^1 centered at 0. For $\mathbf{c} < 1$, by methods of Ding-Zeitouni-Zhang'18 and Ding-Gwynne'18,

$$\#\mathcal{B}_r^{S_h^1}(0) = r^{d_c + o(1)},$$

where $d_c > 2$ is the Hausdorff dimension of c-LQG (Gwynne-Pfeffer'19).

Gwynne-Miller-Sheffield'17 proved that a related discretization of c-LQG converges to LQG for c < 1 under the Tutte embedding.

These results suggest that for $\mathbf{c} < 1$, S_h^{ϵ} is in the \mathbf{c} -universality class of planar maps.

9/21

Holden (ETH Zürich) June 21, 2019

Assume $\mathbf{c} \in (1,25)$ (equivalently, $Q \in (0,2)$).

Assume $\mathbf{c} \in (1,25)$ (equivalently, $Q \in (0,2)$).

For $\alpha \in (Q, 2)$, let z be a α -thick point, i.e.,

$$h_r(z) \approx B_{\log r^{-1}} + \alpha \log r^{-1}$$

for $(B_t)_{t\geq 0}$ a standard Brownian motion.

Assume $\mathbf{c} \in (1,25)$ (equivalently, $Q \in (0,2)$).

For $\alpha \in (Q, 2)$, let z be a α -thick point, i.e.,

$$h_r(z) \approx B_{\log r^{-1}} + \alpha \log r^{-1}$$

for $(B_t)_{t\geq 0}$ a standard Brownian motion.

We stop subdividing when the following is $< \epsilon$ (with $z \in S$, |S| = 2r)

$$M_h^{\mathbf{c}}(S) = (2r)^Q \exp(h_r(z_S)) \approx (2r)^Q \exp(h_r(z))$$
$$\approx 2^Q \exp(B_{\log r^{-1}} + (\alpha - Q) \log r^{-1}).$$

When $\epsilon \to 0$ the probability that we ever stop subdividing converges to 0.

Assume $\mathbf{c} \in (1,25)$ (equivalently, $Q \in (0,2)$).

For $\alpha \in (Q, 2)$, let z be a α -thick point, i.e.,

$$h_r(z) \approx B_{\log r^{-1}} + \alpha \log r^{-1}$$

for $(B_t)_{t\geq 0}$ a standard Brownian motion.

We stop subdividing when the following is $< \epsilon$ (with $z \in S$, |S| = 2r)

$$M_h^{\mathbf{c}}(S) = (2r)^Q \exp(h_r(z_S)) \approx (2r)^Q \exp(h_r(z))$$

 $\approx 2^Q \exp(B_{\log r^{-1}} + (\alpha - Q) \log r^{-1}).$

When $\epsilon \to 0$ the probability that we ever stop subdividing converges to 0.

Dense set of "infinite mass" points (dim= $2 - Q^2/2$, Hu-Miller-Peres'10).

- 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q G

• Let $A \subset D$ have d-dim. Minkowski content defining a measure \mathfrak{m} .

- Let $A \subset D$ have d-dim. Minkowski content defining a measure \mathfrak{m} .
- $d < Q^2/2$, so A does not intersect "infinite mass" (Q-thick) points.

- Let $A \subset D$ have d-dim. Minkowski content defining a measure \mathfrak{m} .
- $d < Q^2/2$, so A does not intersect "infinite mass" (Q-thick) points.
- If $\widetilde{\gamma} < \sqrt{2d}$ define $\nu_{h,A} = e^{\widetilde{\gamma}h} d\mathfrak{m}$ by regularization (e.g. Berestycki'17)

$$\nu_{h,A} = \lim_{r \to 0} r^{\widetilde{\gamma}^2/2} e^{\widetilde{\gamma} h_r} d\mathfrak{m}.$$

Holden (ETH Zürich)

- Let $A \subset D$ have d-dim. Minkowski content defining a measure \mathfrak{m} .
- $d < Q^2/2$, so A does not intersect "infinite mass" (Q-thick) points.
- If $\widetilde{\gamma} < \sqrt{2d}$ define $\nu_{h,A} = e^{\widetilde{\gamma}h} d\mathfrak{m}$ by regularization (e.g. Berestycki'17)

$$\nu_{h,A} = \lim_{r \to 0} r^{\widetilde{\gamma}^2/2} e^{\widetilde{\gamma}h_r} d\mathfrak{m}.$$

• Choose $\widetilde{\gamma}$ s.t. $Q=d/\widetilde{\gamma}+\widetilde{\gamma}/2$; then $\nu_{h,A}$ invariant under coord. change

$$\nu_{\widetilde{h},\phi^{-1}(A)}(\widetilde{D}) = \nu_{h,A}(D)$$

4 D > 4 B > 4 B > 4 B > 1 B - 9Q @

- Let $A \subset D$ have d-dim. Minkowski content defining a measure \mathfrak{m} .
- $d < Q^2/2$, so A does not intersect "infinite mass" (Q-thick) points.
- If $\widetilde{\gamma}<\sqrt{2d}$ define $u_{h,A}=e^{\widetilde{\gamma}h}d\mathfrak{m}$ by regularization (e.g. Berestycki'17)

$$\nu_{h,A} = \lim_{r \to 0} r^{\widetilde{\gamma}^2/2} e^{\widetilde{\gamma} h_r} d\mathfrak{m}.$$

- Choose $\widetilde{\gamma}$ s.t. $Q=d/\widetilde{\gamma}+\widetilde{\gamma}/2$; then $\nu_{h,A}$ invariant under coord. change
- Example: Liouville dynamical percolation on c-LQG, c < 16; pivotal points (d = 3/4) govern dynamics (Garban-H.-Sepulveda-Sun'19).

$$\nu_{\widetilde{h},\phi^{-1}(A)}(\widetilde{D}) = \nu_{h,A}(D)$$

| \(\lambda \rightarrow \rig

Hausdorff dimension of **c**-LQG for $\mathbf{c} < 1$

Gwynne-Pfeffer'19: A c-LQG surface has Hausdorff dimension dc.

Bounds for d_c : Gwynne-Pfeffer'19, Ding-Gwynne'18, Ding-Zeitouni-Zhang'18, Gwynne-H.-Sun'16

Holden (ETH Zürich) June 21, 2019

12 / 21

Superpolynomial ball volume growth

Theorem 1 (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)

Let
$$\mathbf{c} \in (1,25)$$
. Almost surely, $\lim_{r \to \infty} \frac{\log \#\mathcal{B}_r^{\mathcal{S}_h^1}(0)}{\log r} = \infty$.

13 / 21

Holden (ETH Zürich) June 21, 2019

Point-to-point distances grow polynomially

Proposition 2 (Gwynne-H.-Pfeffer-Remy'19)

For $\mathbf{c} < 25$, there exists $\xi, \overline{\xi} > 0$ s.t. for fixed $z, w \in \mathbb{C}$, a.s.

$$\epsilon^{-\underline{\xi}+o(1)} \leq D_h^{\epsilon}(z,w) \leq \epsilon^{-\overline{\xi}-o(1)} \quad \text{as } \epsilon o 0.$$

- For **c** < 1, $D_h^{\epsilon}(z, w) = \epsilon^{-\gamma_c/d_c + o(1)}$.
- Although $\gamma_{\mathbf{c}}, d_{\mathbf{c}} \in \mathbb{C}$ for $\mathbf{c} > 1$, the ratio $\gamma_{\mathbf{c}}/d_{\mathbf{c}}$ may be real.
- We expect that $D_h^{\epsilon}(z,w) = \epsilon^{-\xi_c + o(1)}$ for $\mathbf{c} > 1$, where $\xi_{\mathbf{c}}$ is the analytic continuation of $\gamma_{\mathbf{c}}/d_{\mathbf{c}}$.

Holden (ETH Zürich) June 21, 2019

KPZ (Knizhnik-Polyakov-Zamolodchikov) formula

- Let X be a fractal independent of the Gaussian free field h.
- Let $N_0^{\epsilon}(X)$ and $N_h^{\epsilon}(X)$ denote the number of squares intersecting X.
- Let d (resp. d_c) denote the Euclidean (resp. c-LQG) dimension of X.
- KPZ formula: $d = Qd_c 0.5d_c^2$
- KPZ formula used in physics to predict exponents and dimensions.

Holden (ETH Zürich)

June 21, 2019 15/21

KPZ (Knizhnik-Polyakov-Zamolodchikov) formula

Theorem 3 (Gwynne-H.-Pfeffer-Remy'19; KPZ formula for $\mathbf{c} < 25$)

If $\dim_{\mathsf{Haus}}(X) = \dim_{\mathsf{Mink}}(X) = d$ then a.s. for sufficiently small $\epsilon > 0$,

$$N_h^{\epsilon}(X) = egin{cases} \epsilon^{-(Q-\sqrt{Q^2-2d})+o_{\epsilon}(1)} & \text{if } d < Q^2/2, \\ \infty & \text{if } d > Q^2/2. \end{cases}$$

Furthermore, $\mathbb{E}[N_h^{\epsilon}(X)] = \epsilon^{-(Q-\sqrt{Q^2-2d})+o_{\epsilon}(1)}$ for $d < Q^2/2$.

- X intersects "infinite mass" points $\Leftrightarrow d > Q^2/2 \Leftrightarrow$ exponent complex
- Duplantier-Sheffield'11 proved KPZ formula in expectation for square subdivision with LQG area and $\mathbf{c} < 1$.
- Other variants for $\mathbf{c} \leq 1$: Benjamini-Schramm'09, Rhodes-Vargas'11, Barral-Jin-Rhodes-Vargas'13, Aru'15, Gwynne-H.-Miller'15, Berestycki-Garban-Rhodes-Vargas'16, Gwynne-Pfeffer'19, etc.

Holden (ETH Zürich) June 21, 2019

Planar maps reweighted by the Laplacian determinant

- ullet $\Delta_M=$ linear operator derived from adj. matrix of M
- $\det \Delta_M = \#$ spanning trees on M
- ullet $M_n=$ rand. planar map with n vert. s.t. $\mathbb{P}[M_n=\mathfrak{m}] \propto (\det \Delta_\mathfrak{m})^{-\mathbf{c}/2}$

Conjecture 1

For $\mathbf{c} < 1$, M_n converges to \mathbf{c} -LQG.

Holden (ETH Zürich)

Planar maps reweighted by the Laplacian determinant

- Δ_M = linear operator derived from adj. matrix of M
- $\det \Delta_M = \#$ spanning trees on M
- $M_n=$ rand. planar map with n vert. s.t. $\mathbb{P}[M_n=\mathfrak{m}] \propto (\det \Delta_\mathfrak{m})^{-\mathbf{c}/2}$

Conjecture 1

For $\mathbf{c} < 1$, M_n converges to \mathbf{c} -LQG.

 $\mathbf{c} = 0$:

 $\mathbf{c} \neq 0$: peanosphere topology; dimensions agree

Holden (ETH Zürich) June 21, 2019

17/21

Planar maps reweighted by the Laplacian determinant

- Δ_M = linear operator derived from adj. matrix of M
- $\det \Delta_M = \#$ spanning trees on M
- $M_n=$ rand. planar map with n vert. s.t. $\mathbb{P}[M_n=\mathfrak{m}] \propto (\det \Delta_\mathfrak{m})^{-\mathbf{c}/2}$

Conjecture 1

For $\mathbf{c} < 1$, M_n converges to \mathbf{c} -LQG.

Conjecture 2

For c > 1 (or $c \ge 12$), $M_n \Rightarrow CRT$ (continuum random tree) for the Gromov-Hausdorff metric.

Is this conjecture consistent with our model, which describes ${\bf c}$ -LQG for ${\bf c}>1$ as a surface with non-trivial geometry?

< ロ > ← □

Upcoming work Ang-Park-Pfeffer-Sheffield:

• Fix $\mathbf{c}, \mathbf{c}' \in \mathbb{R}$, $\epsilon > 0$, and $n \in \mathbb{N}$.

 S_{h}^{ϵ}

Upcoming work Ang-Park-Pfeffer-Sheffield:

- Fix $\mathbf{c}, \mathbf{c}' \in \mathbb{R}$, $\epsilon > 0$, and $n \in \mathbb{N}$.
- Consider S_h^{ϵ} for central charge **c**, conditioned on $\#S_h^{\epsilon} = n$.

 S_h^{ϵ}

Upcoming work Ang-Park-Pfeffer-Sheffield:

- Fix $\mathbf{c}, \mathbf{c}' \in \mathbb{R}$, $\epsilon > 0$, and $n \in \mathbb{N}$.
- Consider S_h^{ϵ} for central charge **c**, conditioned on $\#S_h^{\epsilon} = n$.
- Reweight the prob. meas. by Laplacian determinant (defined via smooth approx. to h and Polyakov-Alvarez) to the power -c'/2.

 S_h^{ϵ}

Upcoming work Ang-Park-Pfeffer-Sheffield:

- Fix $\mathbf{c}, \mathbf{c}' \in \mathbb{R}$, $\epsilon > 0$, and $n \in \mathbb{N}$.
- Consider S_h^{ϵ} for central charge **c**, conditioned on $\#S_h^{\epsilon} = n$.
- Reweight the prob. meas. by Laplacian determinant (defined via smooth approx. to h and Polyakov-Alvarez) to the power -c'/2.
- For the resulting probability measure, S_h^{ϵ} has the law associated with central charge $\mathbf{c} + \mathbf{c}'$, conditioned on $\#S_h^{\epsilon} = n$.

 $\boldsymbol{\varsigma}\epsilon$

Upcoming work Ang-Park-Pfeffer-Sheffield:

- Fix $\mathbf{c}, \mathbf{c}' \in \mathbb{R}$, $\epsilon > 0$, and $n \in \mathbb{N}$.
- Consider S_h^{ϵ} for central charge **c**, conditioned on $\#S_h^{\epsilon} = n$.
- Reweight the prob. meas. by Laplacian determinant (defined via smooth approx. to h and Polyakov-Alvarez) to the power -c'/2.
- For the resulting probability measure, S_h^{ϵ} has the law associated with central charge $\mathbf{c} + \mathbf{c}'$, conditioned on $\#S_h^{\epsilon} = n$.

Note! Conditioning on $\#S_h^{\epsilon} = n$ changes drastically the law of S_h^{ϵ} for $\mathbf{c} > 1$.

 ς_{ϵ}

Holden (ETH Zürich)

Theorem 3 (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)

Let
$$\mathbf{c} \in (1,25)$$
. Almost surely, $\lim_{r \to \infty} \frac{\log \#\mathcal{B}_r^{S_h^1}(0)}{\log r} = \infty$.

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Holden (ETH Zürich) June 21, 2019 19 / 21

Theorem 3 (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)

Let
$$\mathbf{c} \in (1,25)$$
. Almost surely, $\lim_{r \to \infty} \frac{\log \#\mathcal{B}_r^{S_h^1}(0)}{\log r} = \infty$.

1 Large squares well connected: Any two big squares (side length $> \epsilon^{1/Q}$) have distance $< \epsilon^{-C}$.

GFF level lines (SLE₄-type curves)

Holden (ETH Zürich)

June 21, 2019 19 / 21

Theorem 3 (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)

Let
$$\mathbf{c} \in (1,25)$$
. Almost surely, $\lim_{r \to \infty} \frac{\log \#\mathcal{B}_r^{\mathcal{S}_h^1}(0)}{\log r} = \infty$.

- **1 Large squares well connected**: Any two big squares (side length $> \epsilon^{1/Q}$) have distance $< \epsilon^{-C}$.
- **4 Many small squares close to a big square**: For any K > 0 there are $> \epsilon^{-cK}$ squares of side length $< \epsilon^K$ with distance $< \epsilon^{-C}$ from a big square (C and K independent).

Holden (ETH Zürich) June 21, 2019

Theorem 3 (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)

Let
$$\mathbf{c} \in (1,25)$$
. Almost surely, $\lim_{r \to \infty} \frac{\log \# \mathcal{B}_r^{\mathcal{S}_h^1}(0)}{\log r} = \infty$.

- **1** Large squares well connected: Any two big squares (side length $> \epsilon^{1/Q}$) have distance $< \epsilon^{-C}$.
- **2** Many small squares close to a big square: For any K>0 there are $> \epsilon^{-cK}$ squares of side length $< \epsilon^K$ with distance $< \epsilon^{-C}$ from a big square (C and K independent).
- **Origin close to a big square**: The origin has distance $<\epsilon^{-\mathcal{C}}$ to a big square.

(ロト 4년) + 4분 + 4분 + 1분 - 1900은

Theorem 3 (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)

Let
$$\mathbf{c} \in (1,25)$$
. Almost surely, $\lim_{r \to \infty} \frac{\log \# \mathcal{B}_r^{\mathcal{S}_h^1}(0)}{\log r} = \infty$.

- **Quarter Section 2.1 Large squares well connected**: Any two big squares (side length $> \epsilon^{1/Q}$) have distance $< \epsilon^{-C}$.
- ② Many small squares close to a big square: For any K>0 there are $>\epsilon^{-cK}$ squares of side length $<\epsilon^K$ with distance $<\epsilon^{-C}$ from a big square (C and K independent).
- **Origin close to a big square**: The origin has distance $<\epsilon^{-\mathcal{C}}$ to a big square.

By the triangle inequality and the above, $\#\mathcal{B}_{r}^{S_{h}^{1}}(0) > \epsilon^{-cK}$ for $r = 3\epsilon^{-C}$.

Holden (ETH Zürich)

June 21, 2019 19/21

- Does S_h^{ϵ} converge as a metric measure space?
 - Le Gall'13, Miermont'13, and others: Uniform planar maps (${\bf c}=0$) \Rightarrow Brownian map for the Gromov-Hausdorff-Prokhorov topology.

- Does S_h^{ϵ} converge as a metric measure space?
 - Le Gall'13, Miermont'13, and others: Uniform planar maps ($\mathbf{c} = 0$) \Rightarrow Brownian map for the Gromov-Hausdorff-Prokhorov topology.
- Is S_h^{ϵ} related to complex Gaussian multiplicative chaos $e^{\gamma h}$, $\gamma \in \mathbb{C}$?
 - Complex GMC studied by Lacoin-Rhodes-Vargas'13&'19 and Junnila-Saksman-Webb'18, but not for $|\gamma|=2$.

- Does S_h^{ϵ} converge as a metric measure space?
 - Le Gall'13, Miermont'13, and others: Uniform planar maps ($\mathbf{c} = 0$) \Rightarrow Brownian map for the Gromov-Hausdorff-Prokhorov topology.
- Is S^{ϵ}_h related to complex Gaussian multiplicative chaos $e^{\gamma h}$, $\gamma \in \mathbb{C}$?
 - Complex GMC studied by Lacoin-Rhodes-Vargas'13&'19 and Junnila-Saksman-Webb'18, but not for $|\gamma|=2$.
- Path integral approach $e^{-S_{\rm L}(\varphi)}D\varphi$ to ${f c}>1$, where

$$S_{\mathsf{L}}(\varphi) := \frac{1}{4\pi} \int (|\nabla_{\mathsf{g}} \varphi(z)|^2 + \mathsf{R}_{\mathsf{g}}(z) Q\varphi(z) + 4\pi \mu \mathsf{e}^{\gamma \varphi(z)}) g(z) d^2 z.$$

Quantum disk/sphere/wedge/cone.

Holden (ETH Zürich)

- Does S_h^{ϵ} converge as a metric measure space?
 - Le Gall'13, Miermont'13, and others: Uniform planar maps $(\mathbf{c}=0)\Rightarrow$ Brownian map for the Gromov-Hausdorff-Prokhorov topology.
- Is S_h^{ϵ} related to complex Gaussian multiplicative chaos $e^{\gamma h}$, $\gamma \in \mathbb{C}$?
 - Complex GMC studied by Lacoin-Rhodes-Vargas'13&'19 and Junnila-Saksman-Webb'18, but not for $|\gamma|=2$.
- \bullet Path integral approach $e^{-\mathcal{S}_{\rm L}(\varphi)}D\varphi$ to ${\bf c}>$ 1, where

$$S_{\mathsf{L}}(\varphi) := rac{1}{4\pi} \int (|
abla_g \varphi(z)|^2 + R_g(z) Q \varphi(z) + 4\pi \mu \mathrm{e}^{\gamma \varphi(z)}) g(z) \, d^2 z.$$

Quantum disk/sphere/wedge/cone.

- Schramm-Loewner evolution for c > 1. SLE and LQG couplings (mating of trees, quantum zipper, etc.)
 - Kozdron-Lawler'07: λ -self avoiding walk for $\lambda = -\mathbf{c}/2$.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ 壹 めなべ

Holden (ETH Zürich)

- Does S_h^{ϵ} converge as a metric measure space?
 - Le Gall'13, Miermont'13, and others: Uniform planar maps $(\mathbf{c}=0)\Rightarrow$ Brownian map for the Gromov-Hausdorff-Prokhorov topology.
- Is S_h^{ϵ} related to complex Gaussian multiplicative chaos $e^{\gamma h}$, $\gamma \in \mathbb{C}$?
 - Complex GMC studied by Lacoin-Rhodes-Vargas'13&'19 and Junnila-Saksman-Webb'18, but not for $|\gamma|=2$.
- \bullet Path integral approach $e^{-\mathcal{S}_{\rm L}(\varphi)}D\varphi$ to ${\bf c}>$ 1, where

$$S_{\mathsf{L}}(\varphi) := \frac{1}{4\pi} \int (|\nabla_{\mathsf{g}} \varphi(\mathsf{z})|^2 + R_{\mathsf{g}}(\mathsf{z}) Q\varphi(\mathsf{z}) + 4\pi \mu \mathsf{e}^{\gamma \varphi(\mathsf{z})}) \mathsf{g}(\mathsf{z}) \, d^2 \mathsf{z}.$$

Quantum disk/sphere/wedge/cone.

- Schramm-Loewner evolution for c > 1. SLE and LQG couplings (mating of trees, quantum zipper, etc.)
 - Kozdron-Lawler'07: λ -self avoiding walk for $\lambda = -\mathbf{c}/2$.
- Combinatorial RPM model for $\mathbf{c} \in (1, 25)$.

4 - D > 4 - Ø > 4 - E > - E - 90

- Does S_h^{ϵ} converge as a metric measure space?
 - Le Gall'13, Miermont'13, and others: Uniform planar maps ($\mathbf{c} = 0$) \Rightarrow Brownian map for the Gromov-Hausdorff-Prokhorov topology.
- ullet Is S^{ϵ}_h related to complex Gaussian multiplicative chaos $\mathrm{e}^{\gamma h}$, $\gamma\in\mathbb{C}$?
 - Complex GMC studied by Lacoin-Rhodes-Vargas'13&'19 and Junnila-Saksman-Webb'18, but not for $|\gamma|=2$.
- Path integral approach $e^{-S_L(\varphi)}D\varphi$ to $\mathbf{c}>1$, where

$$S_{\mathsf{L}}(\varphi) := rac{1}{4\pi} \int (|
abla_g \varphi(z)|^2 + R_g(z) Q \varphi(z) + 4\pi \mu e^{\gamma \varphi(z)}) g(z) d^2 z.$$

Quantum disk/sphere/wedge/cone.

- Schramm-Loewner evolution for ${\bf c}>1$. SLE and LQG couplings (mating of trees, quantum zipper, etc.)
 - Kozdron-Lawler'07: λ -self avoiding walk for $\lambda = -\mathbf{c}/2$.
- Combinatorial RPM model for $\mathbf{c} \in (1, 25)$.
- Interpretations of complex dimensions, for example in the KPZ formula $d_{\bf c}=Q-\sqrt{Q^2-2d}$ for $d>Q^2/2$.

Holden (ETH Zürich) June 21, 2019 20 / 21

Thanks!