Liouville quantum gravity with central charge $\mathbf{c} \in (1, 25)$: a probabilistic approach

Nina Holden

ETH Zürich, Institute for Theoretical Studies

Collaboration with Ewain Gwynne, Josh Pfeffer, and Guillaume Remy

June 21, 2019

Liouville quantum gravity

- $D \subset \mathbb{C}$ a domain, h a Gaussian free field (GFF), and $\gamma \in (0,2)$
- Riemannian manifold $e^{\gamma h}(dx^2 + dy^2)$
- Area measure $\mu_h = e^{\gamma h} d^2 z$
- Boundary measure $u_h = e^{\gamma h/2} dz$

• Metric dist
$$(w_1, w_2) = \inf_{P: w_1 \to w_2} \int_P e^{\gamma h/d} dz$$
, $d =$ dimension

Definition 1 (Sheffield'10)

Let $\gamma \in (0,2]$ and $Q = 2/\gamma + \gamma/2$. A γ -LQG surface is an equivalence class of pairs (D, h), where $D \subset \mathbb{C}$, h is a distribution on D, and

 $(D,h) \sim (\widetilde{D},\widetilde{h})$ iff $\exists \phi: \widetilde{D} \to D$ conformal s.t. $\widetilde{h} = h \circ \phi + Q \log |\phi'|$.

Definition of an LQG surface

Coupling constant	γ	$\gamma \in (0,2]$
Background charge	$Q=2/\gamma+\gamma/2$	$Q \ge 2$
Central charge	$c = 25 - 6Q^2$	$\mathbf{c} \leq 1$

(日)

Definition of an LQG surface

Coupling constant	γ	$\gamma \in (0,2]$	$ \gamma =2$
Background charge	$Q = 2/\gamma + \gamma/2$	$Q \ge 2$	$Q \in (0,2)$
Central charge	$c = 25 - 6Q^2$	$\mathbf{c} \leq 1$	$\mathbf{c} \in (1,25)$

Definition of an LQG surface

Coupling constant	γ	$\gamma \in (0, 2]$	$ \gamma =2$
Background charge	$Q = 2/\gamma + \gamma/2$	$Q \ge 2$	$Q \in (0,2)$
Central charge	$c = 25 - 6Q^2$	$\mathbf{c} \leq 1$	$\mathbf{c} \in (1,25)$

Definition 2 (Gwynne-H.-Pfeffer-Remy'19)

Let $\mathbf{c} < 25$. A \mathbf{c} -LQG surface is an equivalence class of pairs (D, h), where $D \subset \mathbb{C}$, h is a distribution on D, and

 $(D,h) \sim (\widetilde{D},\widetilde{h}) \quad ext{iff} \quad \exists \phi: \widetilde{D}
ightarrow D ext{ conformal s.t. } \widetilde{h} = h \circ \phi + Q \log |\phi'|.$

Let $\mu_h = e^{\gamma h} d^2 z$ be the **c**-LQG area measure in $[0, 1]^2$ for **c** < 1.

Let $\mu_h = e^{\gamma h} d^2 z$ be the **c**-LQG area measure in $[0, 1]^2$ for **c** < 1.

Let $\mu_h = e^{\gamma h} d^2 z$ be the **c**-LQG area measure in $[0, 1]^2$ for **c** < 1.

Let $\mu_h = e^{\gamma h} d^2 z$ be the **c**-LQG area measure in $[0, 1]^2$ for **c** < 1.

Let $\mu_h = e^{\gamma h} d^2 z$ be the **c**-LQG area measure in $[0, 1]^2$ for **c** < 1.

Let $\mu_h = e^{\gamma h} d^2 z$ be the **c**-LQG area measure in $[0, 1]^2$ for **c** < 1.

Illustration of LQG area measure

Area measure
$$\mu_h = e^{\gamma h} d^2 z$$
, $\gamma = 1.5$

(simulation by Miller and Sheffield)

Illustration of LQG area measure

$\gamma = 1$ $\gamma = 1.5$ $\gamma = 1.75$

Area measure $\mu_h = e^{\gamma h} d^2 z$

(simulation by Miller and Sheffield)

< □ > < 同 > < 回 > < Ξ > < Ξ

• GFF circle average: Let $h_r(z)$ denote the average of h on $\partial B_r(z)$.

- GFF circle average: Let $h_r(z)$ denote the average of h on $\partial B_r(z)$.
- Define $\mu_h = e^{\gamma h} d^2 z$ via regularization: $\mu_h = \lim_{r \to 0} r^{\gamma^2/2} e^{\gamma h_r} d^2 z$.

- GFF circle average: Let $h_r(z)$ denote the average of h on $\partial B_r(z)$.
- Define $\mu_h = e^{\gamma h} d^2 z$ via regularization: $\mu_h = \lim_{r \to 0} r^{\gamma^2/2} e^{\gamma h_r} d^2 z$.
- Therefore $\mu_h(S) \approx |S|^{2+\gamma^2/2} e^{\gamma h_{|S|/2}(z_S)}$.

- GFF circle average: Let $h_r(z)$ denote the average of h on $\partial B_r(z)$.
- Define $\mu_h = e^{\gamma h} d^2 z$ via regularization: $\mu_h = \lim_{r \to 0} r^{\gamma^2/2} e^{\gamma h_r} d^2 z$.
- Therefore $\mu_h(S) \approx |S|^{2+\gamma^2/2} e^{\gamma h_{|S|/2}(z_S)}$.
- Further, we get $\mu_h(S)^{1/\gamma} \approx M_h^{\mathbf{c}}(S) := |S|^Q e^{h_{|S|/2}(z_S)}$.

The square subdivision model with GFF circle averages

 $\mathsf{Fix}\ \epsilon > 0. \ \mathsf{Divide}\ \mathsf{a}\ \mathsf{square}\ S\ \mathsf{iff}\ \mathit{M}^{\mathbf{c}}_{\mathit{h}}(S) := |S|^{Q} e^{h_{|S|/2}(z_{S})} > \epsilon.$

The square subdivision model with GFF circle averages

Fix $\epsilon > 0$. Divide a square S iff $M_h^c(S) := |S|^Q e^{h_{|S|/2}(z_S)} > \epsilon$.

Let S_h^{ϵ} denote the final collection of squares.

The square subdivision model with GFF circle averages

Fix $\epsilon > 0$. Divide a square S iff $M_h^c(S) := |S|^Q e^{h_{|S|/2}(z_S)} > \epsilon$.

Let S_h^{ϵ} denote the final collection of squares.

Note! This model makes sense also for $\mathbf{c} \in (1, 25)$.

Let *h* be a whole-plane GFF and let $\mathcal{B}_{r}^{S_{h}^{1}}(0)$ denote the graph metric ball of radius *r* in S_{h}^{1} centered at 0. For **c** < 1, by methods of Ding-Zeitouni-Zhang'18 and Ding-Gwynne'18,

$$\#\mathcal{B}_r^{S_h^1}(0)=r^{d_{\mathbf{c}}+o(1)},$$

where $d_{c} > 2$ is the Hausdorff dimension of c-LQG (Gwynne-Pfeffer'19).

Let *h* be a whole-plane GFF and let $\mathcal{B}_{r}^{S_{h}^{1}}(0)$ denote the graph metric ball of radius *r* in S_{h}^{1} centered at 0. For **c** < 1, by methods of Ding-Zeitouni-Zhang'18 and Ding-Gwynne'18,

$$\#\mathcal{B}_r^{S_h^1}(0)=r^{d_{\mathbf{c}}+o(1)},$$

where $d_{c} > 2$ is the Hausdorff dimension of c-LQG (Gwynne-Pfeffer'19).

Let *h* be a whole-plane GFF and let $\mathcal{B}_r^{S_h^1}(0)$ denote the graph metric ball of radius *r* in S_h^1 centered at 0. For **c** < 1, by methods of Ding-Zeitouni-Zhang'18 and Ding-Gwynne'18,

$$\#\mathcal{B}_r^{S_h^1}(0)=r^{d_{\mathbf{c}}+o(1)},$$

where $d_{c} > 2$ is the Hausdorff dimension of c-LQG (Gwynne-Pfeffer'19).

Gwynne-Miller-Sheffield'17 proved that a related discretization of c-LQG converges to LQG for c < 1 under the Tutte embedding.

Let *h* be a whole-plane GFF and let $\mathcal{B}_r^{S_h^1}(0)$ denote the graph metric ball of radius *r* in S_h^1 centered at 0. For **c** < 1, by methods of Ding-Zeitouni-Zhang'18 and Ding-Gwynne'18,

$$\#\mathcal{B}_r^{S_h^1}(0)=r^{d_{\mathbf{c}}+o(1)},$$

where $d_{c} > 2$ is the Hausdorff dimension of c-LQG (Gwynne-Pfeffer'19).

Gwynne-Miller-Sheffield'17 proved that a related discretization of c-LQG converges to LQG for $\mathbf{c} < 1$ under the Tutte embedding.

These results suggest that for $\mathbf{c} < 1$, S_h^{ϵ} is in the **c**-universality class of planar maps.

Assume $\mathbf{c} \in (1, 25)$ (equivalently, $Q \in (0, 2)$).

Assume $\mathbf{c} \in (1, 25)$ (equivalently, $Q \in (0, 2)$). For $\alpha \in (Q, 2)$, let z be a α -thick point, i.e.,

$$h_r(z) \approx B_{\log r^{-1}} + \alpha \log r^{-1}$$

for $(B_t)_{t\geq 0}$ a standard Brownian motion.

Assume $\mathbf{c} \in (1, 25)$ (equivalently, $Q \in (0, 2)$). For $\alpha \in (Q, 2)$, let z be a α -thick point, i.e.,

$$h_r(z) \approx B_{\log r^{-1}} + \alpha \log r^{-1}$$

for $(B_t)_{t\geq 0}$ a standard Brownian motion.

We stop subdividing when the following is $< \epsilon$ (with $z \in S$, |S| = 2r)

$$\begin{split} M_h^{\mathbf{c}}(S) &= (2r)^Q \exp(h_r(z_S)) \approx (2r)^Q \exp(h_r(z)) \\ &\approx 2^Q \exp(B_{\log r^{-1}} + (\alpha - Q) \log r^{-1}). \end{split}$$

Assume $\mathbf{c} \in (1, 25)$ (equivalently, $Q \in (0, 2)$). For $\alpha \in (Q, 2)$, let z be a α -thick point, i.e.,

$$h_r(z) \approx B_{\log r^{-1}} + \alpha \log r^{-1}$$

for $(B_t)_{t\geq 0}$ a standard Brownian motion.

We stop subdividing when the following is $< \epsilon$ (with $z \in S$, |S| = 2r)

$$egin{aligned} \mathcal{M}^{\mathbf{c}}_{h}(S) &= (2r)^{Q} \exp(h_{r}(z_{S})) pprox (2r)^{Q} \exp(h_{r}(z)) \ &pprox 2^{Q} \exp(B_{\log r^{-1}} + (lpha - Q) \log r^{-1}). \end{aligned}$$

When $\epsilon \rightarrow 0$ the probability that we ever stop subdividing converges to 0. Dense set of "infinite mass" points (dim= 2 - $Q^2/2$, Hu-Miller-Peres'10).

• Let $A \subset D$ have *d*-dim. Minkowski content defining a measure \mathfrak{m} .

- Let $A \subset D$ have *d*-dim. Minkowski content defining a measure \mathfrak{m} .
- $d < Q^2/2$, so A does not intersect "infinite mass" (Q-thick) points.

- Let $A \subset D$ have *d*-dim. Minkowski content defining a measure \mathfrak{m} .
- $d < Q^2/2$, so A does not intersect "infinite mass" (Q-thick) points.
- If $\tilde{\gamma} < \sqrt{2d}$ define $\nu_{h,A} = e^{\tilde{\gamma}h} d\mathfrak{m}$ by regularization (e.g. Berestycki'17)

$$\nu_{h,A} = \lim_{r\to 0} r^{\widetilde{\gamma}^2/2} e^{\widetilde{\gamma}h_r} d\mathfrak{m}.$$

- Let $A \subset D$ have *d*-dim. Minkowski content defining a measure \mathfrak{m} .
- $d < Q^2/2$, so A does not intersect "infinite mass" (Q-thick) points.
- If $\tilde{\gamma} < \sqrt{2d}$ define $\nu_{h,A} = e^{\tilde{\gamma}h} d\mathfrak{m}$ by regularization (e.g. Berestycki'17)

$$\nu_{h,A} = \lim_{r\to 0} r^{\widetilde{\gamma}^2/2} e^{\widetilde{\gamma}h_r} d\mathfrak{m}.$$

• Choose $\tilde{\gamma}$ s.t. $Q = d/\tilde{\gamma} + \tilde{\gamma}/2$; then $\nu_{h,A}$ invariant under coord. change

• Let $A \subset D$ have *d*-dim. Minkowski content defining a measure \mathfrak{m} .

• $d < Q^2/2$, so A does not intersect "infinite mass" (Q-thick) points.

• If $\tilde{\gamma} < \sqrt{2d}$ define $\nu_{h,A} = e^{\tilde{\gamma}h} d\mathfrak{m}$ by regularization (e.g. Berestycki'17)

$$\nu_{h,A} = \lim_{r\to 0} r^{\widetilde{\gamma}^2/2} e^{\widetilde{\gamma}h_r} d\mathfrak{m}.$$

- Choose $\widetilde{\gamma}$ s.t. $Q = d/\widetilde{\gamma} + \widetilde{\gamma}/2$; then $\nu_{h,A}$ invariant under coord. change
- Example: Liouville dynamical percolation on c-LQG, c < 16; pivotal points (d = 3/4) govern dynamics (Garban-H.-Sepulveda-Sun'19).

 $\nu_{\widetilde{h},\phi^{-1}(A)}(\widetilde{D}) = \nu_{h,A}(D)$

Hausdorff dimension of c-LQG for c<1

Gwynne-Pfeffer'19: A c-LQG surface has Hausdorff dimension d_c .

Bounds for *d*_c: Gwynne-Pfeffer'19, Ding-Gwynne'18, Ding-Zeitouni-Zhang'18, Gwynne-H.-Sun'16

Holden (ETH Zürich)

June 21, 2019 12 / 21

Proposition 2 (Gwynne-H.-Pfeffer-Remy'19)

For $\mathbf{c} < 25$, there exists $\underline{\xi}, \overline{\xi} > 0$ s.t. for fixed $z, w \in \mathbb{C}$, a.s. $\epsilon^{-\underline{\xi}+o(1)} \leq D_h^{\epsilon}(z, w) \leq \epsilon^{-\overline{\xi}-o(1)} \text{ as } \epsilon \to 0.$

• For
$$\mathbf{c} < 1$$
, $D^\epsilon_h(z,w) = \epsilon^{-\gamma_\mathbf{c}/d_\mathbf{c}+o(1)}$

- Although $\gamma_{\mathbf{c}}, d_{\mathbf{c}} \in \mathbb{C}$ for $\mathbf{c} > 1$, the ratio $\gamma_{\mathbf{c}}/d_{\mathbf{c}}$ may be real.
- We expect that $D_h^{\epsilon}(z, w) = e^{-\xi_{\mathbf{c}}+o(1)}$ for $\mathbf{c} > 1$, where $\xi_{\mathbf{c}}$ is the analytic continuation of $\gamma_{\mathbf{c}}/d_{\mathbf{c}}$.

KPZ (Knizhnik-Polyakov-Zamolodchikov) formula

- Let X be a fractal independent of the Gaussian free field h.
- Let $N_0^{\epsilon}(X)$ and $N_h^{\epsilon}(X)$ denote the number of squares intersecting X.
- Let d (resp. d_c) denote the Euclidean (resp. c-LQG) dimension of X.
- KPZ formula: $d = Qd_c 0.5d_c^2$
- KPZ formula used in physics to predict exponents and dimensions.

KPZ (Knizhnik-Polyakov-Zamolodchikov) formula

Theorem 3 (Gwynne-H.-Pfeffer-Remy'19; KPZ formula for c < 25)

If $\dim_{Haus}(X) = \dim_{Mink}(X) = d$ then a.s. for sufficiently small $\epsilon > 0$,

$$N_h^{\epsilon}(X) = \begin{cases} \epsilon^{-(Q-\sqrt{Q^2-2d})+o_{\epsilon}(1)} & \text{if } d < Q^2/2, \\ \infty & \text{if } d > Q^2/2. \end{cases}$$

Furthermore,
$$\mathbb{E}[N_h^{\epsilon}(X)] = \epsilon^{-(Q - \sqrt{Q^2 - 2d}) + o_{\epsilon}(1)}$$
 for $d < Q^2/2$.

- X intersects "infinite mass" points $\Leftrightarrow d > Q^2/2 \Leftrightarrow$ exponent complex
- Duplantier-Sheffield'11 proved KPZ formula in expectation for square subdivision with LQG area and $\mathbf{c} < 1$.
- Other variants for c ≤ 1: Benjamini-Schramm'09, Rhodes-Vargas'11, Barral-Jin-Rhodes-Vargas'13, Aru'15, Gwynne-H.-Miller'15, Berestycki-Garban-Rhodes-Vargas'16, Gwynne-Pfeffer'19, etc.

Planar maps reweighted by the Laplacian determinant

- Δ_M = linear operator derived from adj. matrix of M
- det $\Delta_M = \#$ spanning trees on M
- $M_n = \text{rand. planar map with } n \text{ vert. s.t. } \mathbb{P}[M_n = \mathfrak{m}] \propto (\det \Delta_\mathfrak{m})^{-\mathbf{c}/2}$

Conjecture 1

For $\mathbf{c} < 1$, M_n converges to \mathbf{c} -LQG.

Planar maps reweighted by the Laplacian determinant

- $\Delta_M =$ linear operator derived from adj. matrix of M
- det $\Delta_M = \#$ spanning trees on M
- M_n = rand. planar map with *n* vert. s.t. $\mathbb{P}[M_n = \mathfrak{m}] \propto (\det \Delta_\mathfrak{m})^{-\mathbf{c}/2}$

Conjecture 1

For $\mathbf{c} < 1$, M_n converges to \mathbf{c} -LQG.

c = 0:

 $\mathbf{c} \neq 0$: peanosphere topology; dimensions agree

Planar maps reweighted by the Laplacian determinant

- Δ_M = linear operator derived from adj. matrix of M
- det $\Delta_M = \#$ spanning trees on M
- $M_n = \text{rand. planar map with } n \text{ vert. s.t. } \mathbb{P}[M_n = \mathfrak{m}] \propto (\det \Delta_\mathfrak{m})^{-\mathbf{c}/2}$

Conjecture 1

For $\mathbf{c} < 1$, M_n converges to \mathbf{c} -LQG.

Conjecture 2

For c > 1 (or $c \ge 12$), $M_n \Rightarrow CRT$ (continuum random tree) for the Gromov-Hausdorff metric.

Is this conjecture consistent with our model, which describes c-LQG for $\mathbf{c}>1$ as a surface with non-trivial geometry?

Upcoming work Ang-Park-Pfeffer-Sheffield:

• Fix $\mathbf{c}, \mathbf{c}' \in \mathbb{R}$, $\epsilon > 0$, and $n \in \mathbb{N}$.

Upcoming work Ang-Park-Pfeffer-Sheffield:

- Fix $\mathbf{c}, \mathbf{c}' \in \mathbb{R}$, $\epsilon > 0$, and $n \in \mathbb{N}$.
- Consider S_h^{ϵ} for central charge **c**, conditioned on $\#S_h^{\epsilon} = n$.

Upcoming work Ang-Park-Pfeffer-Sheffield:

- Fix $\mathbf{c}, \mathbf{c}' \in \mathbb{R}$, $\epsilon > 0$, and $n \in \mathbb{N}$.
- Consider S_h^{ϵ} for central charge **c**, conditioned on $\#S_h^{\epsilon} = n$.
- Reweight the prob. meas. by Laplacian determinant (defined via smooth approx. to h and Polyakov-Alvarez) to the power -c'/2.

Upcoming work Ang-Park-Pfeffer-Sheffield:

- Fix $\mathbf{c}, \mathbf{c}' \in \mathbb{R}$, $\epsilon > 0$, and $n \in \mathbb{N}$.
- Consider S_h^ε for central charge c, conditioned on #S_h^ε = n.
- Reweight the prob. meas. by Laplacian determinant (defined via smooth approx. to h and Polyakov-Alvarez) to the power -c'/2.
- For the resulting probability measure, S^ε_h has the law associated with central charge c + c', conditioned on #S^ε_h = n.

Upcoming work Ang-Park-Pfeffer-Sheffield:

- Fix $\mathbf{c}, \mathbf{c}' \in \mathbb{R}$, $\epsilon > 0$, and $n \in \mathbb{N}$.
- Consider S_h^ε for central charge c, conditioned on #S_h^ε = n.
- Reweight the prob. meas. by Laplacian determinant (defined via smooth approx. to h and Polyakov-Alvarez) to the power -c'/2.
- For the resulting probability measure, S_h^{ϵ} has the law associated with central charge $\mathbf{c} + \mathbf{c}'$, conditioned on $\#S_h^{\epsilon} = n$.

Note! Conditioning on $\#S_h^{\epsilon} = n$ changes drastically the law of S_h^{ϵ} for $\mathbf{c} > 1$.

Let
$$\mathbf{c} \in (1, 25)$$
. Almost surely, $\lim_{r \to \infty} \frac{\log \# \mathcal{B}_r^{\mathcal{S}_h^1}(0)}{\log r} = \infty$.

• Large squares well connected: Any two big squares (side length $> \epsilon^{1/Q}$) have distance $< \epsilon^{-C}$.

Theorem 3 (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)

Let
$$\mathbf{c} \in (1, 25)$$
. Almost surely, $\lim_{r \to \infty} \frac{\log \# \mathcal{B}_r^{\mathcal{S}_h^1}(0)}{\log r} = \infty.$

- **1** Large squares well connected: Any two big squares (side length $> \epsilon^{1/Q}$) have distance $< \epsilon^{-C}$.
- O Many small squares close to a big square: For any K > 0 there are > ε^{-cK} squares of side length < ε^K with distance < ε^{-C} from a big square (C and K independent).

Theorem 3 (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)

Let
$$\mathbf{c} \in (1, 25)$$
. Almost surely, $\lim_{r \to \infty} \frac{\log \# \mathcal{B}_r^{\mathcal{S}_h^1}(0)}{\log r} = \infty$.

- Large squares well connected: Any two big squares (side length $> \epsilon^{1/Q}$) have distance $< \epsilon^{-C}$.
- O Many small squares close to a big square: For any K > 0 there are > ε^{-cK} squares of side length < ε^K with distance < ε^{-C} from a big square (C and K independent).
- Origin close to a big square: The origin has distance < ϵ^{-C} to a big square.

Theorem 3 (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)

Let
$$\mathbf{c} \in (1, 25)$$
. Almost surely, $\lim_{r \to \infty} \frac{\log \# \mathcal{B}_r^{\mathcal{S}_h^1}(0)}{\log r} = \infty$.

- Large squares well connected: Any two big squares (side length $> \epsilon^{1/Q}$) have distance $< \epsilon^{-C}$.
- O Many small squares close to a big square: For any K > 0 there are > ε^{-cK} squares of side length < ε^K with distance < ε^{-C} from a big square (C and K independent).
- Origin close to a big square: The origin has distance < ϵ^{-C} to a big square.

By the triangle inequality and the above, $\#\mathcal{B}_r^{S_h^1}(0) > e^{-cK}$ for $r = 3e^{-C}$.

イロン イヨン イヨン

- Does S_h^{ϵ} converge as a metric measure space?
 - Le Gall'13, Miermont'13, and others: Uniform planar maps (c = 0) \Rightarrow Brownian map for the Gromov-Hausdorff-Prokhorov topology.

- Does S^{\u03c6}_h converge as a metric measure space?
 - Le Gall'13, Miermont'13, and others: Uniform planar maps (c = 0) \Rightarrow Brownian map for the Gromov-Hausdorff-Prokhorov topology.
- Is S_h^ϵ related to complex Gaussian multiplicative chaos $e^{\gamma h}$, $\gamma \in \mathbb{C}$?
 - Complex GMC studied by Lacoin-Rhodes-Vargas'13&'19 and Junnila-Saksman-Webb'18, but not for $|\gamma| = 2$.

- Does S^{\u03c6}_h converge as a metric measure space?
 - Le Gall'13, Miermont'13, and others: Uniform planar maps (c = 0) \Rightarrow Brownian map for the Gromov-Hausdorff-Prokhorov topology.
- Is S_h^ϵ related to complex Gaussian multiplicative chaos $e^{\gamma h}$, $\gamma \in \mathbb{C}$?
 - Complex GMC studied by Lacoin-Rhodes-Vargas'13&'19 and Junnila-Saksman-Webb'18, but not for $|\gamma| = 2$.
- Path integral approach $e^{-S_{L}(\varphi)}D\varphi$ to $\mathbf{c} > 1$, where

$$S_{\mathsf{L}}(\varphi) := rac{1}{4\pi} \int (|
abla_g \varphi(z)|^2 + R_g(z) Q \varphi(z) + 4\pi \mu e^{\gamma \varphi(z)}) g(z) d^2 z.$$

Quantum disk/sphere/wedge/cone.

- Does S^{\u03c6}_h converge as a metric measure space?
 - Le Gall'13, Miermont'13, and others: Uniform planar maps (c = 0) \Rightarrow Brownian map for the Gromov-Hausdorff-Prokhorov topology.
- Is S_h^ϵ related to complex Gaussian multiplicative chaos $e^{\gamma h}$, $\gamma \in \mathbb{C}$?
 - Complex GMC studied by Lacoin-Rhodes-Vargas'13&'19 and Junnila-Saksman-Webb'18, but not for $|\gamma| = 2$.
- Path integral approach $e^{-S_{L}(\varphi)}D\varphi$ to $\mathbf{c} > 1$, where

$$S_{\mathsf{L}}(\varphi) := rac{1}{4\pi} \int (|
abla_g \varphi(z)|^2 + R_g(z) Q \varphi(z) + 4\pi \mu e^{\gamma \varphi(z)}) g(z) d^2 z.$$

Quantum disk/sphere/wedge/cone.

- Schramm-Loewner evolution for c > 1. SLE and LQG couplings (mating of trees, quantum zipper, etc.)
 - Kozdron-Lawler'07: λ -self avoiding walk for $\lambda = -\mathbf{c}/2$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Does S^{\u03c6}_h converge as a metric measure space?
 - Le Gall'13, Miermont'13, and others: Uniform planar maps (c = 0) \Rightarrow Brownian map for the Gromov-Hausdorff-Prokhorov topology.
- Is S_h^ϵ related to complex Gaussian multiplicative chaos $e^{\gamma h}$, $\gamma \in \mathbb{C}$?
 - Complex GMC studied by Lacoin-Rhodes-Vargas'13&'19 and Junnila-Saksman-Webb'18, but not for $|\gamma|=2$.
- Path integral approach $e^{-S_{L}(\varphi)}D\varphi$ to $\mathbf{c} > 1$, where

$$S_{\mathsf{L}}(\varphi) := rac{1}{4\pi} \int (|
abla_g \varphi(z)|^2 + R_g(z) Q \varphi(z) + 4\pi \mu e^{\gamma \varphi(z)}) g(z) d^2 z.$$

Quantum disk/sphere/wedge/cone.

- Schramm-Loewner evolution for c > 1. SLE and LQG couplings (mating of trees, quantum zipper, etc.)
 - Kozdron-Lawler'07: λ -self avoiding walk for $\lambda = -\mathbf{c}/2$.
- Combinatorial RPM model for $\mathbf{c} \in (1, 25)$.

- Does S_h^{ϵ} converge as a metric measure space?
 - Le Gall'13, Miermont'13, and others: Uniform planar maps (c = 0) \Rightarrow Brownian map for the Gromov-Hausdorff-Prokhorov topology.
- Is S_h^ϵ related to complex Gaussian multiplicative chaos $e^{\gamma h}$, $\gamma \in \mathbb{C}$?
 - Complex GMC studied by Lacoin-Rhodes-Vargas'13&'19 and Junnila-Saksman-Webb'18, but not for $|\gamma| = 2$.
- Path integral approach $e^{-S_{L}(\varphi)}D\varphi$ to $\mathbf{c} > 1$, where

$$S_{\mathsf{L}}(\varphi) := \frac{1}{4\pi} \int (|\nabla_g \varphi(z)|^2 + R_g(z) Q\varphi(z) + 4\pi \mu e^{\gamma \varphi(z)}) g(z) d^2 z.$$

Quantum disk/sphere/wedge/cone.

- Schramm-Loewner evolution for c > 1. SLE and LQG couplings (mating of trees, quantum zipper, etc.)
 - Kozdron-Lawler'07: λ -self avoiding walk for $\lambda = -\mathbf{c}/2$.
- Combinatorial RPM model for $\mathbf{c} \in (1, 25)$.
- Interpretations of complex dimensions, for example in the KPZ formula $d_{\rm c} = Q \sqrt{Q^2 2d}$ for $d > Q^2/2$.

Thanks!

メロト メロト メヨトメ