Liouville quantum gravity with central charge $\mathbf{c} \in(1,25)$: a probabilistic approach

Nina Holden

ETH Zürich, Institute for Theoretical Studies

Collaboration with Ewain Gwynne, Josh Pfeffer, and Guillaume Remy

June 21, 2019

Liouville quantum gravity

- $D \subset \mathbb{C}$ a domain, h a Gaussian free field (GFF), and $\gamma \in(0,2)$
- Riemannian manifold $e^{\gamma h}\left(d x^{2}+d y^{2}\right)$
- Area measure $\mu_{h}=e^{\gamma h} d^{2} z$
- Boundary measure $\nu_{h}=e^{\gamma h / 2} d z$
- Metric $\operatorname{dist}\left(w_{1}, w_{2}\right)=\inf _{P: w_{1} \rightarrow w_{2}} \int_{P} e^{\gamma h / d} d z, d=\operatorname{dimension}$

Definition of an LQG surface

Definition 1 (Sheffield'10)

Let $\gamma \in(0,2$] and $Q=2 / \gamma+\gamma / 2$. A γ-LQG surface is an equivalence class of pairs (D, h), where $D \subset \mathbb{C}, h$ is a distribution on D, and

$$
(D, h) \sim(\widetilde{D}, \widetilde{h}) \quad \text { iff } \quad \exists \phi: \widetilde{D} \rightarrow D \text { conformal s.t. } \widetilde{h}=h \circ \phi+Q \log \left|\phi^{\prime}\right| .
$$

Definition of an LQG surface

Coupling constant	γ	$\gamma \in(0,2]$
Background charge	$Q=2 / \gamma+\gamma / 2$	$Q \geq 2$
Central charge	$\mathbf{c}=25-6 Q^{2}$	$\mathbf{c} \leq 1$

Definition of an LQG surface

Coupling constant	γ	$\gamma \in(0,2]$	$\|\gamma\|=2$
Background charge	$Q=2 / \gamma+\gamma / 2$	$Q \geq 2$	$Q \in(0,2)$
Central charge	$\mathbf{c}=25-6 Q^{2}$	$\mathbf{c} \leq 1$	$\mathbf{c} \in(1,25)$

Definition of an LQG surface

Coupling constant	γ	$\gamma \in(0,2]$	$\|\gamma\|=2$
Background charge	$Q=2 / \gamma+\gamma / 2$	$Q \geq 2$	$Q \in(0,2)$
Central charge	$\mathbf{c}=25-6 Q^{2}$	$\mathbf{c} \leq 1$	$\mathbf{c} \in(1,25)$

Definition 2 (Gwynne-H.-Pfeffer-Remy'19)

Let $\mathbf{c}<25$. A \mathbf{c}-LQG surface is an equivalence class of pairs (D, h), where $D \subset \mathbb{C}, h$ is a distribution on D, and

$$
(D, h) \sim(\widetilde{D}, \widetilde{h}) \quad \text { iff } \quad \exists \phi: \widetilde{D} \rightarrow D \text { conformal s.t. } \tilde{h}=h \circ \phi+Q \log \left|\phi^{\prime}\right|
$$

The square subdivision model

Let $\mu_{h}=e^{\gamma h} d^{2} z$ be the \mathbf{c}-LQG area measure in $[0,1]^{2}$ for $\mathbf{c}<1$.

Fix $\epsilon>0$. Divide a square S iff $\mu_{h}(S)>\epsilon$.

The square subdivision model

Let $\mu_{h}=e^{\gamma h} d^{2} z$ be the \mathbf{c}-LQG area measure in $[0,1]^{2}$ for $\mathbf{c}<1$.

Fix $\epsilon>0$. Divide a square S iff $\mu_{h}(S)>\epsilon$.

The square subdivision model

Let $\mu_{h}=e^{\gamma h} d^{2} z$ be the \mathbf{c}-LQG area measure in $[0,1]^{2}$ for $\mathbf{c}<1$.

Fix $\epsilon>0$. Divide a square S iff $\mu_{h}(S)>\epsilon$.

The square subdivision model

Let $\mu_{h}=e^{\gamma h} d^{2} z$ be the \mathbf{c}-LQG area measure in $[0,1]^{2}$ for $\mathbf{c}<1$.

Fix $\epsilon>0$. Divide a square S iff $\mu_{h}(S)>\epsilon$.

The square subdivision model

Let $\mu_{h}=e^{\gamma h} d^{2} z$ be the \mathbf{c}-LQG area measure in $[0,1]^{2}$ for $\mathbf{c}<1$.

Fix $\epsilon>0$. Divide a square S iff $\mu_{h}(S)>\epsilon$.

The square subdivision model

Let $\mu_{h}=e^{\gamma h} d^{2} z$ be the \mathbf{c}-LQG area measure in $[0,1]^{2}$ for $\mathbf{c}<1$.

Fix $\epsilon>0$. Divide a square S iff $\mu_{h}(S)>\epsilon$.

Illustration of LQG area measure

Area measure $\mu_{h}=e^{\gamma h} d^{2} z, \gamma=1.5$
(simulation by Miller and Sheffield)

Illustration of LQG area measure

$$
\gamma=1 \quad \gamma=1.5 \quad \gamma=1.75
$$

Area measure $\mu_{h}=e^{\gamma h} d^{2} z$
(simulation by Miller and Sheffield)

Approximate LQG area measure via GFF circle average

- GFF circle average: Let $h_{r}(z)$ denote the average of h on $\partial B_{r}(z)$.

Approximate LQG area measure via GFF circle average

- GFF circle average: Let $h_{r}(z)$ denote the average of h on $\partial B_{r}(z)$.
- Define $\mu_{h}=e^{\gamma h} d^{2} z$ via regularization: $\mu_{h}=\lim _{r \rightarrow 0} r^{\gamma^{2} / 2} e^{\gamma h_{r}} d^{2} z$.

Approximate LQG area measure via GFF circle average

- GFF circle average: Let $h_{r}(z)$ denote the average of h on $\partial B_{r}(z)$.
- Define $\mu_{h}=e^{\gamma h} d^{2} z$ via regularization: $\mu_{h}=\lim _{r \rightarrow 0} r^{\gamma^{2} / 2} e^{\gamma h_{r}} d^{2} z$.
- Therefore $\mu_{h}(S) \approx|S|^{2+\gamma^{2} / 2} e^{\gamma h_{|S| / 2}\left(z_{S}\right)}$.

Approximate LQG area measure via GFF circle average

- GFF circle average: Let $h_{r}(z)$ denote the average of h on $\partial B_{r}(z)$.
- Define $\mu_{h}=e^{\gamma h} d^{2} z$ via regularization: $\mu_{h}=\lim _{r \rightarrow 0} r^{\gamma^{2} / 2} e^{\gamma h_{r}} d^{2} z$.
- Therefore $\mu_{h}(S) \approx|S|^{2+\gamma^{2} / 2} e^{\gamma h_{|S| / 2}\left(z_{S}\right)}$.
- Further, we get $\mu_{h}(S)^{1 / \gamma} \approx M_{h}^{c}(S):=|S|^{Q} e^{h_{|S| / 2}\left(z_{S}\right)}$.

The square subdivision model with GFF circle averages

Fix $\epsilon>0$. Divide a square S iff $M_{h}^{\mathrm{c}}(S):=|S|^{Q} e^{h_{|S| / 2}\left(z_{s}\right)}>\epsilon$.

The square subdivision model with GFF circle averages

Fix $\epsilon>0$. Divide a square S iff $M_{h}^{c}(S):=|S|^{Q} e^{h_{|S| / 2}\left(z_{s}\right)}>\epsilon$.
Let S_{h}^{ϵ} denote the final collection of squares.

The square subdivision model with GFF circle averages

Fix $\epsilon>0$. Divide a square S iff $M_{h}^{c}(S):=|S|^{Q} e^{h_{|S| / 2}\left(z_{S}\right)}>\epsilon$.
Let S_{h}^{ϵ} denote the final collection of squares.
Note! This model makes sense also for $\mathbf{c} \in(1,25)$.

The square subdivision as a random planar maps

Let h be a whole-plane GFF and let $\mathcal{B}_{r}^{S_{h}^{1}}(0)$ denote the graph metric ball of radius r in S_{h}^{1} centered at 0 . For $\mathbf{c}<1$, by methods of Ding-Zeitouni-Zhang'18 and Ding-Gwynne'18,

$$
\# \mathcal{B}_{r}^{S_{h}^{1}}(0)=r^{d_{c}+o(1)}
$$

where $d_{c}>2$ is the Hausdorff dimension of c-LQG (Gwynne-Pfeffer'19).

The square subdivision as a random planar maps

Let h be a whole-plane GFF and let $\mathcal{B}_{r}^{S^{1}}(0)$ denote the graph metric ball of radius r in S_{h}^{1} centered at 0 . For $\mathbf{c}<1$, by methods of Ding-Zeitouni-Zhang'18 and Ding-Gwynne'18,

$$
\# \mathcal{B}_{r}^{S_{h}^{1}}(0)=r^{d_{c}+o(1)}
$$

where $d_{c}>2$ is the Hausdorff dimension of c-LQG (Gwynne-Pfeffer'19).

The square subdivision as a random planar maps

Let h be a whole-plane GFF and let $\mathcal{B}_{r}^{S^{1}}(0)$ denote the graph metric ball of radius r in S_{h}^{1} centered at 0 . For $\mathbf{c}<1$, by methods of Ding-Zeitouni-Zhang'18 and Ding-Gwynne'18,

$$
\# \mathcal{B}_{r}^{S_{h}^{1}}(0)=r^{d_{c}+o(1)}
$$

where $d_{c}>2$ is the Hausdorff dimension of c-LQG (Gwynne-Pfeffer'19).

Gwynne-Miller-Sheffield'17 proved that a related discretization of c-LQG converges to LQG for $\mathbf{c}<1$ under the Tutte embedding.

The square subdivision as a random planar maps

Let h be a whole-plane GFF and let $\mathcal{B}_{r}^{S^{1}}(0)$ denote the graph metric ball of radius r in S_{h}^{1} centered at 0 . For $\mathbf{c}<1$, by methods of Ding-Zeitouni-Zhang'18 and Ding-Gwynne'18,

$$
\# \mathcal{B}_{r}^{S_{h}^{1}}(0)=r^{d_{c}+o(1)}
$$

where $d_{c}>2$ is the Hausdorff dimension of c-LQG (Gwynne-Pfeffer'19).

Gwynne-Miller-Sheffield'17 proved that a related
 discretization of c-LQG converges to LQG for $\mathbf{c}<1$ under the Tutte embedding.

These results suggest that for $\mathbf{c}<1, S_{h}^{\epsilon}$ is in the c-universality class of planar maps.

Phase transition at $\mathbf{c}=1$: Infinite-volume surface

Assume $\mathbf{c} \in(1,25)$ (equivalently, $Q \in(0,2)$).

Phase transition at $\mathbf{c}=1$: Infinite-volume surface

Assume $\mathbf{c} \in(1,25)$ (equivalently, $Q \in(0,2)$).
For $\alpha \in(Q, 2)$, let z be a α-thick point, i.e.,

$$
h_{r}(z) \approx B_{\log r^{-1}}+\alpha \log r^{-1}
$$

for $\left(B_{t}\right)_{t \geq 0}$ a standard Brownian motion.

Phase transition at $\mathbf{c}=1$: Infinite-volume surface

Assume $\mathbf{c} \in(1,25)$ (equivalently, $Q \in(0,2)$).
For $\alpha \in(Q, 2)$, let z be a α-thick point, i.e.,

$$
h_{r}(z) \approx B_{\log r^{-1}}+\alpha \log r^{-1}
$$

for $\left(B_{t}\right)_{t \geq 0}$ a standard Brownian motion.
We stop subdividing when the following is $<\epsilon$ (with $z \in S,|S|=2 r$)

$$
\begin{aligned}
M_{h}^{\mathrm{c}}(S) & =(2 r)^{Q} \exp \left(h_{r}\left(z_{S}\right)\right) \approx(2 r)^{Q} \exp \left(h_{r}(z)\right) \\
& \approx 2^{Q} \exp \left(B_{\log r^{-1}}+(\alpha-Q) \log r^{-1}\right)
\end{aligned}
$$

When $\epsilon \rightarrow 0$ the probability that we ever stop subdividing converges to 0 .

Phase transition at $\mathbf{c}=1$: Infinite-volume surface

Assume $\mathbf{c} \in(1,25)$ (equivalently, $Q \in(0,2)$). For $\alpha \in(Q, 2)$, let z be a α-thick point, i.e.,

$$
h_{r}(z) \approx B_{\log r^{-1}}+\alpha \log r^{-1}
$$

for $\left(B_{t}\right)_{t \geq 0}$ a standard Brownian motion.
We stop subdividing when the following is $<\epsilon$ (with $z \in S,|S|=2 r$)

$$
\begin{aligned}
M_{h}^{c}(S) & =(2 r)^{Q} \exp \left(h_{r}\left(z_{S}\right)\right) \approx(2 r)^{Q} \exp \left(h_{r}(z)\right) \\
& \approx 2^{Q} \exp \left(B_{\log r^{-1}}+(\alpha-Q) \log r^{-1}\right) .
\end{aligned}
$$

When $\epsilon \rightarrow 0$ the probability that we ever stop subdividing converges to 0 .
Dense set of "infinite mass" points ($\operatorname{dim}=2-Q^{2} / 2$, Hu-Miller-Peres'10).

Measures on c-LQG surfaces

- Let $A \subset D$ have d-dim. Minkowski content defining a measure \mathfrak{m}.

Measures on c-LQG surfaces

- Let $A \subset D$ have d-dim. Minkowski content defining a measure \mathfrak{m}.
- $d<Q^{2} / 2$, so A does not intersect "infinite mass" (Q-thick) points.

Measures on c-LQG surfaces

- Let $A \subset D$ have d-dim. Minkowski content defining a measure \mathfrak{m}.
- $d<Q^{2} / 2$, so A does not intersect "infinite mass" (Q-thick) points.
- If $\widetilde{\gamma}<\sqrt{2 d}$ define $\nu_{h, A}=e^{\widetilde{\gamma} h} d \mathfrak{m}$ by regularization (e.g. Berestycki'17)

$$
\nu_{h, A}=\lim _{r \rightarrow 0} r^{\tilde{\gamma}^{2} / 2} e^{\widetilde{\gamma} h_{r}} d \mathfrak{m} .
$$

Measures on c-LQG surfaces

- Let $A \subset D$ have d-dim. Minkowski content defining a measure \mathfrak{m}.
- $d<Q^{2} / 2$, so A does not intersect "infinite mass" (Q-thick) points.
- If $\widetilde{\gamma}<\sqrt{2 d}$ define $\nu_{h, A}=e^{\widetilde{\gamma} h} d \mathfrak{m}$ by regularization (e.g. Berestycki'17)

$$
\nu_{h, A}=\lim _{r \rightarrow 0} r^{\widetilde{\gamma}^{2} / 2} e^{\widetilde{\gamma} h_{r}} d \mathfrak{m}
$$

- Choose $\widetilde{\gamma}$ s.t. $Q=d / \widetilde{\gamma}+\widetilde{\gamma} / 2$; then $\nu_{h, A}$ invariant under coord. change

$$
\nu_{h, \phi^{-1}(A)}(\widetilde{D})=\nu_{h, A}(D)
$$

Measures on c-LQG surfaces

- Let $A \subset D$ have d-dim. Minkowski content defining a measure \mathfrak{m}.
- $d<Q^{2} / 2$, so A does not intersect "infinite mass" (Q-thick) points.
- If $\widetilde{\gamma}<\sqrt{2 d}$ define $\nu_{h, A}=e^{\widetilde{\gamma} h} d \mathfrak{m}$ by regularization (e.g. Berestycki'17)

$$
\nu_{h, A}=\lim _{r \rightarrow 0} r^{\tilde{\gamma}^{2} / 2} e^{\widetilde{\gamma} h_{r}} d \mathfrak{m}
$$

- Choose $\widetilde{\gamma}$ s.t. $Q=d / \widetilde{\gamma}+\widetilde{\gamma} / 2$; then $\nu_{h, A}$ invariant under coord. change
- Example: Liouville dynamical percolation on c-LQG, c <16; pivotal points ($d=3 / 4$) govern dynamics (Garban-H.-Sepulveda-Sun'19).

$$
\nu_{h, \phi^{-1}(A)}(\widetilde{D})=\nu_{h, A}(D)
$$

Hausdorff dimension of c-LQG for c<1

Gwynne-Pfeffer'19: A c-LQG surface has Hausdorff dimension d_{c}.
Bounds for d_{c} : Gwynne-Pfeffer'19, Ding-Gwynne'18, Ding-Zeitouni-Zhang'18, Gwynne-H.-Sun'16

Superpolynomial ball volume growth

Theorem 1 (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)
Let $\mathbf{c} \in(1,25)$. Almost surely, $\lim _{r \rightarrow \infty} \frac{\log \# \mathcal{B}_{r}^{\mathcal{S}_{h}^{1}}(0)}{\log r}=\infty$.

Point-to-point distances grow polynomially

Proposition 2 (Gwynne-H.-Pfeffer-Remy'19)

For $\mathbf{c}<25$, there exists $\underline{\xi}, \bar{\xi}>0$ s.t. for fixed $z, w \in \mathbb{C}$, a.s.

$$
\epsilon^{-\underline{\xi}+o(1)} \leq D_{h}^{\epsilon}(z, w) \leq \epsilon^{-\bar{\xi}-o(1)} \quad \text { as } \epsilon \rightarrow 0 .
$$

- For $\mathbf{c}<1, D_{h}^{\epsilon}(z, w)=\epsilon^{-\gamma_{c} / d_{c}+o(1)}$.
- Although $\gamma_{\mathbf{c}}, d_{\mathbf{c}} \in \mathbb{C}$ for $\mathbf{c}>1$, the ratio $\gamma_{\mathrm{c}} / d_{\mathrm{c}}$ may be real.
- We expect that
$D_{h}^{\epsilon}(z, w)=\epsilon^{-\xi_{c}+o(1)}$ for $\mathbf{c}>1$, where ξ_{c} is the analytic continuation of $\gamma_{\mathbf{c}} / d_{\mathrm{c}}$.

KPZ (Knizhnik-Polyakov-Zamolodchikov) formula

- Let X be a fractal independent of the Gaussian free field h.
- Let $N_{0}^{\epsilon}(X)$ and $N_{h}^{\epsilon}(X)$ denote the number of squares intersecting X.
- Let d (resp. $d_{\mathbf{c}}$) denote the Euclidean (resp. c-LQG) dimension of X.
- KPZ formula: $d=Q d_{c}-0.5 d_{c}^{2}$
- KPZ formula used in physics to predict exponents and dimensions.

KPZ (Knizhnik-Polyakov-Zamolodchikov) formula

Theorem 3 (Gwynne-H.-Pfeffer-Remy'19; KPZ formula for c < 25)

If $\operatorname{dim}_{\text {Haus }}(X)=\operatorname{dim}_{\text {Mink }}(X)=d$ then a.s. for sufficiently small $\epsilon>0$,

$$
N_{h}^{\epsilon}(X)= \begin{cases}\epsilon^{-\left(Q-\sqrt{Q^{2}-2 d}\right)+o_{\epsilon}(1)} & \text { if } d<Q^{2} / 2 \\ \infty & \text { if } d>Q^{2} / 2\end{cases}
$$

Furthermore, $\mathbb{E}\left[N_{h}^{\epsilon}(X)\right]=\epsilon^{-\left(Q-\sqrt{Q^{2}-2 d}\right)+o_{\epsilon}(1)}$ for $d<Q^{2} / 2$.

- X intersects "infinite mass" points $\Leftrightarrow d>Q^{2} / 2 \Leftrightarrow$ exponent complex
- Duplantier-Sheffield'11 proved KPZ formula in expectation for square subdivision with LQG area and $\mathbf{c}<1$.
- Other variants for $\mathbf{c} \leq 1$: Benjamini-Schramm'09, Rhodes-Vargas'11, Barral-Jin-Rhodes-Vargas'13, Aru'15, Gwynne-H.-Miller'15, Berestycki-Garban-Rhodes-Vargas'16, Gwynne-Pfeffer'19, etc.

Planar maps reweighted by the Laplacian determinant

- $\Delta_{M}=$ linear operator derived from adj. matrix of M
- $\operatorname{det} \Delta_{M}=\#$ spanning trees on M
- $M_{n}=$ rand. planar map with n vert. s.t. $\mathbb{P}\left[M_{n}=\mathfrak{m}\right] \propto\left(\operatorname{det} \Delta_{\mathfrak{m}}\right)^{-\mathbf{c} / 2}$

Conjecture 1

For $\mathbf{c}<1, M_{n}$ converges to $\mathbf{c}-L Q G$.

Planar maps reweighted by the Laplacian determinant

- $\Delta_{M}=$ linear operator derived from adj. matrix of M
- $\operatorname{det} \Delta_{M}=\#$ spanning trees on M
- $M_{n}=$ rand. planar map with n vert. s.t. $\mathbb{P}\left[M_{n}=\mathfrak{m}\right] \propto\left(\operatorname{det} \Delta_{\mathfrak{m}}\right)^{-\mathbf{c} / 2}$

Conjecture 1

For $\mathbf{c}<1, M_{n}$ converges to $\mathbf{c}-L Q G$.
$\mathbf{c}=0$.

$\mathbf{c} \neq 0$: peanosphere topology; dimensions agree

Planar maps reweighted by the Laplacian determinant

- $\Delta_{M}=$ linear operator derived from adj. matrix of M
- $\operatorname{det} \Delta_{M}=\#$ spanning trees on M
- $M_{n}=$ rand. planar map with n vert. s.t. $\mathbb{P}\left[M_{n}=\mathfrak{m}\right] \propto\left(\operatorname{det} \Delta_{\mathfrak{m}}\right)^{-\mathbf{c} / 2}$

Conjecture 1

For $\mathbf{c}<1, M_{n}$ converges to $\mathbf{c}-L Q G$.

Conjecture 2

For $\mathbf{c}>1$ (or $\mathbf{c} \geq 12$), $M_{n} \Rightarrow C R T$ (continuum random tree) for the Gromov-Hausdorff metric.

Is this conjecture consistent with our model, which describes c-LQG for c >1 as a surface with non-trivial geometry?

Relating S_{h}^{ϵ} for different c via Laplacian determinants

Upcoming work Ang-Park-Pfeffer-Sheffield:

- Fix $\mathbf{c}, \mathbf{c}^{\prime} \in \mathbb{R}, \epsilon>0$, and $n \in \mathbb{N}$.

S_{h}^{ϵ}

Relating S_{h}^{ϵ} for different c via Laplacian determinants

Upcoming work Ang-Park-Pfeffer-Sheffield:

- Fix $\mathbf{c}, \mathbf{c}^{\prime} \in \mathbb{R}, \epsilon>0$, and $n \in \mathbb{N}$.
- Consider S_{h}^{ϵ} for central charge c, conditioned on $\# S_{h}^{\epsilon}=n$.

S_{h}^{ϵ}

Relating S_{h}^{ϵ} for different c via Laplacian determinants

Upcoming work Ang-Park-Pfeffer-Sheffield:

- Fix $\mathbf{c}, \mathbf{c}^{\prime} \in \mathbb{R}, \epsilon>0$, and $n \in \mathbb{N}$.
- Consider S_{h}^{ϵ} for central charge c, conditioned on $\# S_{h}^{\epsilon}=n$.
- Reweight the prob. meas. by Laplacian determinant (defined via smooth approx. to h and Polyakov-Alvarez) to the power $-\mathbf{c}^{\prime} / 2$.

S_{h}^{ϵ}

Relating S_{h}^{ϵ} for different c via Laplacian determinants

Upcoming work Ang-Park-Pfeffer-Sheffield:

- Fix $\mathbf{c}, \mathbf{c}^{\prime} \in \mathbb{R}, \epsilon>0$, and $n \in \mathbb{N}$.
- Consider S_{h}^{ϵ} for central charge c, conditioned on $\# S_{h}^{\epsilon}=n$.
- Reweight the prob. meas. by Laplacian determinant (defined via smooth approx. to h and Polyakov-Alvarez) to the power $-\mathbf{c}^{\prime} / 2$.
- For the resulting probability measure, S_{h}^{ϵ}

S_{h}^{ϵ} has the law associated with central charge $\mathbf{c}+\mathbf{c}^{\prime}$, conditioned on $\# S_{h}^{\epsilon}=n$.

Relating S_{h}^{ϵ} for different c via Laplacian determinants

Upcoming work Ang-Park-Pfeffer-Sheffield:

- Fix $\mathbf{c}, \mathbf{c}^{\prime} \in \mathbb{R}, \epsilon>0$, and $n \in \mathbb{N}$.
- Consider S_{h}^{ϵ} for central charge c, conditioned on $\# S_{h}^{\epsilon}=n$.
- Reweight the prob. meas. by Laplacian determinant (defined via smooth approx. to h and Polyakov-Alvarez) to the power $-\mathbf{c}^{\prime} / 2$.
- For the resulting probability measure, S_{h}^{ϵ}

S_{h}^{ϵ} has the law associated with central charge $\mathbf{c}+\mathbf{c}^{\prime}$, conditioned on $\# S_{h}^{\epsilon}=n$.
Note! Conditioning on $\# S_{h}^{\epsilon}=n$ changes drastically the law of S_{h}^{ϵ} for $\mathbf{c}>1$.

Superpolynomial ball volume growth

Theorem 3 (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)
Let $\mathbf{c} \in(1,25)$. Almost surely, $\lim _{r \rightarrow \infty} \frac{\log \# \mathcal{B}_{r}^{\mathcal{S}_{h}^{1}}(0)}{\log r}=\infty$.

big square
small square

Superpolynomial ball volume growth

Theorem 3 (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)
Let $\mathbf{c} \in(1,25)$. Almost surely, $\lim _{r \rightarrow \infty} \frac{\log \# \mathcal{B}_{r}^{\mathcal{S}_{h}^{1}}(0)}{\log r}=\infty$.
(1) Large squares well connected: Any two big squares (side length $>\epsilon^{1 / Q}$) have distance $<\epsilon^{-C}$.

GFF level lines (SLE ${ }_{4}$-type curves)

Superpolynomial ball volume growth

Theorem 3 (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)

Let $\mathbf{c} \in(1,25)$. Almost surely, $\lim _{r \rightarrow \infty} \frac{\log \# \mathcal{B}_{r}^{\mathcal{S}_{h}^{1}}(0)}{\log r}=\infty$.
(1) Large squares well connected: Any two big squares (side length $>\epsilon^{1 / Q}$) have distance $<\epsilon^{-C}$.
(2) Many small squares close to a big square: For any $K>0$ there are $>\epsilon^{-c K}$ squares of side length $<\epsilon^{K}$ with distance $<\epsilon^{-C}$ from a big square (C and K independent).

Superpolynomial ball volume growth

Theorem 3 (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)
Let $\mathbf{c} \in(1,25)$. Almost surely, $\lim _{r \rightarrow \infty} \frac{\log \# \mathcal{B}_{r}^{\mathcal{S}_{h}^{1}}(0)}{\log r}=\infty$.
(1) Large squares well connected: Any two big squares (side length $>\epsilon^{1 / Q}$) have distance $<\epsilon^{-C}$.
(2) Many small squares close to a big square: For any $K>0$ there are $>\epsilon^{-c K}$ squares of side length $<\epsilon^{K}$ with distance $<\epsilon^{-C}$ from a big square (C and K independent).
(3) Origin close to a big square: The origin has distance $<\epsilon^{-C}$ to a big square.

Superpolynomial ball volume growth

Theorem 3 (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)

Let $\mathbf{c} \in(1,25)$. Almost surely, $\lim _{r \rightarrow \infty} \frac{\log \# \mathcal{B}_{r}^{\mathcal{S}_{h}^{1}}(0)}{\log r}=\infty$.
(1) Large squares well connected: Any two big squares (side length $>\epsilon^{1 / Q}$) have distance $<\epsilon^{-C}$.
(2) Many small squares close to a big square: For any $K>0$ there are $>\epsilon^{-c K}$ squares of side length $<\epsilon^{K}$ with distance $<\epsilon^{-C}$ from a big square (C and K independent).
(3) Origin close to a big square: The origin has distance $<\epsilon^{-C}$ to a big square.
By the triangle inequality and the above, $\# \mathcal{B}_{r}^{S_{h}^{1}}(0)>\epsilon^{-c k}$ for $r=3 \epsilon^{-C}$.

Open problems

- Does S_{h}^{ϵ} converge as a metric measure space?
- Le Gall'13, Miermont'13, and others: Uniform planar maps $(\mathbf{c}=0) \Rightarrow$ Brownian map for the Gromov-Hausdorff-Prokhorov topology.

Open problems

- Does S_{h}^{ϵ} converge as a metric measure space?
- Le Gall'13, Miermont'13, and others: Uniform planar maps $(\mathbf{c}=0) \Rightarrow$ Brownian map for the Gromov-Hausdorff-Prokhorov topology.
- Is S_{h}^{ϵ} related to complex Gaussian multiplicative chaos $e^{\gamma h}, \gamma \in \mathbb{C}$?
- Complex GMC studied by Lacoin-Rhodes-Vargas'13\&'19 and Junnila-Saksman-Webb'18, but not for $|\gamma|=2$.

Open problems

- Does S_{h}^{ϵ} converge as a metric measure space?
- Le Gall'13, Miermont'13, and others: Uniform planar maps $(\mathbf{c}=0) \Rightarrow$ Brownian map for the Gromov-Hausdorff-Prokhorov topology.
- Is S_{h}^{ϵ} related to complex Gaussian multiplicative chaos $e^{\gamma h}, \gamma \in \mathbb{C}$?
- Complex GMC studied by Lacoin-Rhodes-Vargas'13\&'19 and Junnila-Saksman-Webb'18, but not for $|\gamma|=2$.
- Path integral approach $e^{-S_{\mathrm{L}}(\varphi)} D \varphi$ to $\mathbf{c}>1$, where

$$
S_{\mathrm{L}}(\varphi):=\frac{1}{4 \pi} \int\left(\left|\nabla_{g} \varphi(z)\right|^{2}+R_{g}(z) Q \varphi(z)+4 \pi \mu e^{\gamma \varphi(z)}\right) g(z) d^{2} z
$$

Quantum disk/sphere/wedge/cone.

Open problems

- Does S_{h}^{ϵ} converge as a metric measure space?
- Le Gall'13, Miermont'13, and others: Uniform planar maps $(\mathbf{c}=0) \Rightarrow$ Brownian map for the Gromov-Hausdorff-Prokhorov topology.
- Is S_{h}^{ϵ} related to complex Gaussian multiplicative chaos $e^{\gamma h}, \gamma \in \mathbb{C}$?
- Complex GMC studied by Lacoin-Rhodes-Vargas'13\&'19 and Junnila-Saksman-Webb'18, but not for $|\gamma|=2$.
- Path integral approach $e^{-S_{\mathrm{L}}(\varphi)} D \varphi$ to $\mathbf{c}>1$, where

$$
S_{\mathrm{L}}(\varphi):=\frac{1}{4 \pi} \int\left(\left|\nabla_{g} \varphi(z)\right|^{2}+R_{g}(z) Q \varphi(z)+4 \pi \mu e^{\gamma \varphi(z)}\right) g(z) d^{2} z
$$

Quantum disk/sphere/wedge/cone.

- Schramm-Loewner evolution for $\mathbf{c}>1$. SLE and LQG couplings (mating of trees, quantum zipper, etc.)
- Kozdron-Lawler'07: λ-self avoiding walk for $\lambda=-\mathbf{c} / 2$.

Open problems

- Does S_{h}^{ϵ} converge as a metric measure space?
- Le Gall'13, Miermont'13, and others: Uniform planar maps $(\mathbf{c}=0) \Rightarrow$ Brownian map for the Gromov-Hausdorff-Prokhorov topology.
- Is S_{h}^{ϵ} related to complex Gaussian multiplicative chaos $e^{\gamma h}, \gamma \in \mathbb{C}$?
- Complex GMC studied by Lacoin-Rhodes-Vargas'13\&'19 and Junnila-Saksman-Webb'18, but not for $|\gamma|=2$.
- Path integral approach $e^{-S_{\mathrm{L}}(\varphi)} D \varphi$ to $\mathbf{c}>1$, where

$$
S_{\mathrm{L}}(\varphi):=\frac{1}{4 \pi} \int\left(\left|\nabla_{g} \varphi(z)\right|^{2}+R_{g}(z) Q \varphi(z)+4 \pi \mu e^{\gamma \varphi(z)}\right) g(z) d^{2} z
$$

Quantum disk/sphere/wedge/cone.

- Schramm-Loewner evolution for $\mathbf{c}>1$. SLE and LQG couplings (mating of trees, quantum zipper, etc.)
- Kozdron-Lawler'07: λ-self avoiding walk for $\lambda=-\mathbf{c} / 2$.
- Combinatorial RPM model for $\mathbf{c} \in(1,25)$.

Open problems

- Does S_{h}^{ϵ} converge as a metric measure space?
- Le Gall'13, Miermont'13, and others: Uniform planar maps $(\mathbf{c}=0) \Rightarrow$ Brownian map for the Gromov-Hausdorff-Prokhorov topology.
- Is S_{h}^{ϵ} related to complex Gaussian multiplicative chaos $e^{\gamma h}, \gamma \in \mathbb{C}$?
- Complex GMC studied by Lacoin-Rhodes-Vargas'13\&'19 and Junnila-Saksman-Webb'18, but not for $|\gamma|=2$.
- Path integral approach $e^{-S_{\mathrm{L}}(\varphi)} D \varphi$ to $\mathbf{c}>1$, where

$$
S_{\mathrm{L}}(\varphi):=\frac{1}{4 \pi} \int\left(\left|\nabla_{g} \varphi(z)\right|^{2}+R_{g}(z) Q \varphi(z)+4 \pi \mu e^{\gamma \varphi(z)}\right) g(z) d^{2} z
$$

Quantum disk/sphere/wedge/cone.

- Schramm-Loewner evolution for $\mathbf{c}>1$. SLE and LQG couplings (mating of trees, quantum zipper, etc.)
- Kozdron-Lawler'07: λ-self avoiding walk for $\lambda=-\mathbf{c} / 2$.
- Combinatorial RPM model for $\mathbf{c} \in(1,25)$.
- Interpretations of complex dimensions, for example in the KPZ formula $d_{\mathbf{c}}=Q-\sqrt{Q^{2}-2 d}$ for $d>Q^{2} / 2$.

Thanks!

