Uniform Lipschitz functions

Ioan Manolescu

joint work with: Alexander Glazman

University of Fribourg

19th June 2019 Probability and quantum field theory: discrete models, CFT, SLE and constructive aspects (Porquerolles)

Integer valued function on the faces of the hexagonal lattice \mathbb{H} , with values at adjacent faces differing by at most 1.

Integer valued function on the faces of the hexagonal lattice \mathbb{H} , with values at adjacent faces differing by at most 1.

Integer valued function on the faces of the hexagonal lattice $\mathbb H,$ with values at adjacent faces differing by at most 1.

 $\Gamma_{\mathcal{D}}$ uniform sample on finite domain $\mathcal{D},$ with value 0 on boundary faces.

Integer valued function on the faces of the hexagonal lattice $\mathbb H,$ with values at adjacent faces differing by at most 1.

 $\Gamma_{\mathcal{D}}$ uniform sample on finite domain \mathcal{D} , with value 0 on boundary faces. Main question: How does $\Gamma_{\mathcal{D}}$ behave when \mathcal{D} is large?

Integer valued function on the faces of the hexagonal lattice $\mathbb H,$ with values at adjacent faces differing by at most 1.

 $\Gamma_{\mathcal{D}}$ uniform sample on finite domain \mathcal{D} , with value 0 on boundary faces. Main question: How does $\Gamma_{\mathcal{D}}$ behave when \mathcal{D} is large?

Integer valued function on the faces of the hexagonal lattice $\mathbb H,$ with values at adjacent faces differing by at most 1.

 $\Gamma_{\mathcal{D}}$ uniform sample on finite domain \mathcal{D} , with value 0 on boundary faces. Main question: How does $\Gamma_{\mathcal{D}}$ behave when \mathcal{D} is large?

Option 1: $\Gamma_{\mathcal{D}}(0)$ is tight, with exponential tails \longrightarrow Localization Option 2: $\Gamma_{\mathcal{D}}(0)$ has logarithmic variance in the size of $\mathcal{D} \rightarrow$ Log-delocalization Main results: Uniform Lipschitz functions delocalize logarithmically! Convergence to infinite volume measure for gradient.

Theorem (Glazman, M. 18)

For a domain \mathcal{D} containing 0 let r be the distance form 0 to \mathcal{D}^c .

 $c \log r \leq Var(\Gamma_{\mathcal{D}}(0)) \leq C \log r.$

Moreover, $\Gamma_{\mathcal{D}}(.) - \Gamma_{\mathcal{D}}(0)$ converges in law as \mathcal{D} increases to \mathbb{H} .

Observations:

- Strong result: quantitative delocalisation; not just $\mathsf{Var}(\Gamma_{\mathcal{D}}(0))\to\infty$ as $\mathcal D$ increases.
- Covariances between points also diverge as log of distance between points.
- Coherent with conjectured convergence of $\Gamma_{\frac{1}{2}\Lambda_{n}}$ to the Gaussian Free Field.

Lipschitz function $\stackrel{1 \text{ to } 1}{\longleftrightarrow}$ oriented loop configuration

Lipschitz function $\xleftarrow{1 \text{ to } 1}$ oriented loop configuration

Lipschitz function $\stackrel{1 \text{ to } 1}{\longleftrightarrow}$ oriented loop configuration

 $\label{eq:lipschitz} \mbox{ function } \xleftarrow{\mbox{1 to 1}} \mbox{ oriented loop configuration } \xrightarrow{\mbox{$many to 1}} \mbox{ loop configuration.}$

Lipschitz function $\stackrel{1 \text{ to } 1}{\longleftrightarrow}$ oriented loop configuration $\xrightarrow{\text{many to } 1}$ loop configuration.

Conversely: a loop configuration corresponds to $2^{\#loops}$ oriented loop configs:

 $\mathbb{P}(\text{loop configuration}) \propto 2^{\#\text{loops}}.$

Lipschitz function $\stackrel{1 \text{ to } 1}{\longrightarrow}$ oriented loop configuration $\xrightarrow{\text{many to } 1}$ loop configuration.

Conversely: a loop configuration corresponds to $2^{\#loops}$ oriented loop configs:

 $\mathbb{P}(\text{loop configuration}) \propto 2^{\#\text{loops}}.$

 $Var(\Gamma_{\mathcal{D}}(0)) = \mathbb{E}_{\mathcal{D},n,x}(\# \text{loops surrounding } 0)$

A loop configuration is an even subgraph of \mathcal{D} . The loop O(n) measure with edge-parameter x > 0 is given by

$$\mathbb{P}_{\mathcal{D},n,x}(\omega) = \frac{1}{Z_{\mathsf{loop}}(\mathcal{D},n,x)} n^{\#\mathsf{loops}} x^{\#\mathsf{edges}} \mathbf{1}_{\omega\mathsf{loop config}}.$$

Dichotomy:

Exponential decay of loop sizes: the size of the loop of any point has exponential tail, unif. in \mathcal{D} .

Macroscopic loops: the size of the loop of any point has power-law decay up to the size of \mathcal{D} . In \mathcal{D} there are loops at every scale up to the size of \mathcal{D} .

Phase diagram:

A loop configuration is an even subgraph of \mathcal{D} . The loop O(n) measure with edge-parameter x > 0 is given by

$$\mathbb{P}_{\mathcal{D},n,x}(\omega) = rac{1}{Z_{\mathsf{loop}}(\mathcal{D},n,x)} n^{\#\mathsf{loops}} x^{\#\mathsf{edges}} \, \mathbf{1}_{\omega\mathsf{loop}} \, \mathsf{config}.$$

Dichotomy:

Exponential decay of loop sizes: the size of the loop of any point has exponential tail, unif. in \mathcal{D} .

Macroscopic loops: the size of the loop of any point has powerlaw decay up to the size of \mathcal{D} . In \mathcal{D} there are loops at every scale up to the size of \mathcal{D} . Phase diagram:

A loop configuration is an even subgraph of \mathcal{D} . The loop O(n) measure with edge-parameter x > 0 is given by

$$\mathbb{P}_{\mathcal{D},n,x}(\omega) = rac{1}{Z_{\mathsf{loop}}(\mathcal{D},n,x)} n^{\#\mathsf{loops}} x^{\#\mathsf{edges}} \, \mathbf{1}_{\omega\mathsf{loop}} \, \mathsf{config}.$$

Dichotomy:

Exponential decay of loop sizes: the size of the loop of any point has exponential tail, unif. in \mathcal{D} .

Macroscopic loops: the size of the loop of any point has powerlaw decay up to the size of \mathcal{D} . In \mathcal{D} there are loops at every scale up to the size of \mathcal{D} .

Phase diagram:

A loop configuration is an even subgraph of \mathcal{D} . The loop O(n) measure with edge-parameter x > 0 is given by

$$\mathbb{P}_{\mathcal{D},n,x}(\omega) = \frac{1}{Z_{\mathsf{loop}}(\mathcal{D},n,x)} n^{\#\mathsf{loops}} x^{\#\mathsf{edges}} \mathbf{1}_{\omega\mathsf{loop config}}.$$

Theorem (Glazman, M. 18)

- There exists a infinite volume Gibbs measure P_{H,2,1} for the loop O(2) model with x = 1.
- $\mathbb{P}_{\mathbb{H},2,1} = \lim \mathbb{P}_{\mathcal{D},2,1}$ as $\mathcal{D} \to \mathbb{H}$.
- It is translation invariant, ergodic, formed entirely of loops.
- The origin is surrounded $\mathbb{P}_{\mathbb{H},2,1}$ -a.s. by infinitely many loops.
- Order log *n* of these are in $\Lambda_n \Rightarrow$ "macroscopic loops".
- $\mathbb{P}_{\mathbb{H},2,1}$ is the unique infinite volume Gibbs measure for the loop O(2) model.

$$\mathbb{P}_{\mathcal{D},x}(\omega) = rac{1}{Z_{\mathsf{loop}}(\mathcal{D},1,x)} x^{\#\mathsf{edges}} \mathbf{1}_{\omega \; \mathsf{loop \; config}}.$$

$$\mathbb{P}_{\mathcal{D},x}(\omega) = rac{1}{Z_{\mathsf{loop}}(\mathcal{D},1,x)} \, x^{\#\mathsf{edges}} \, \mathbf{1}_{\omega \, \, \mathsf{loop} \, \mathsf{config}}.$$

Loop configuration $\xleftarrow{bijection} \bigoplus$ -spin configuration on faces (w \oplus on boundary).

$$\mathbb{P}_{\mathcal{D},x}(\omega) = rac{1}{Z_{\mathsf{loop}}(\mathcal{D},1,x)} \, x^{\#\mathsf{edges}} \, \mathbf{1}_{\omega \, \, \mathsf{loop} \, \mathsf{config}}.$$

Loop configuration $\xleftarrow{bijection} \bigoplus$ -spin configuration on faces (w \oplus on boundary).

$$\mathbb{P}_{\mathcal{D},x}(\omega) = rac{1}{Z_{ ext{loop}}(\mathcal{D},1,x)} x^{\# ext{edges}} \mathbf{1}_{\omega ext{ loop config}}.$$

Loop configuration $\xleftarrow{bijection} \bigoplus$ -spin configuration on faces (w \oplus on boundary).

For spin configuration σ (w. \oplus on boundary),

$$\mathbb{P}_{\mathcal{D},x}(\sigma) = \frac{1}{Z} x^{\# \oplus \mathbb{C}}$$

Ising model on faces with $\beta = -\frac{1}{2} \log x \ge 0.$

$$\mathbb{P}_{\mathcal{D},x}(\omega) = rac{1}{Z_{ ext{loop}}(\mathcal{D},1,x)} x^{\# ext{edges}} \mathbf{1}_{\omega ext{ loop config}}.$$

Loop configuration $\xleftarrow{bijection} \bigoplus$ -spin configuration on faces (w \oplus on boundary).

For spin configuration σ (w. \oplus on boundary),

$$\mathbb{P}_{\mathcal{D},x}(\sigma) = \frac{1}{Z} x^{\# \oplus \mathbb{C}}$$

Ising model on faces with $\beta = -\frac{1}{2} \log x \ge 0.$

Properties:

 $\mathsf{FKG}:\mathbb{P}(A \cap B) \geq \mathbb{P}(A)\mathbb{P}(B) \text{ if } A, B \uparrow$

$$\mathbb{P}_{\mathcal{D},x}(\omega) = rac{1}{Z_{ ext{loop}}(\mathcal{D},1,x)} x^{\# ext{edges}} \mathbf{1}_{\omega ext{ loop config}}.$$

Loop configuration $\xleftarrow{bijection} \bigoplus$ -spin configuration on faces (w \oplus on boundary).

For spin configuration σ (w. \oplus on boundary),

$$\mathbb{P}_{\mathcal{D},x}(\sigma) = \frac{1}{Z} x^{\# \oplus \mathbb{C}}$$

Ising model on faces with $\beta = -\frac{1}{2} \log x \ge 0.$

Properties:

 $\mathsf{FKG}: \mathbb{P}(A \cap B) \geq \mathbb{P}(A)\mathbb{P}(B) \text{ if } A, B \uparrow$ Spatial Markov property

$$\mathbb{P}_{\mathcal{D},x}(\omega) = rac{1}{Z_{ ext{loop}}(\mathcal{D},1,x)} x^{\# ext{edges}} \mathbf{1}_{\omega ext{ loop config}}.$$

Loop configuration $\xleftarrow{bijection} \bigoplus$ -spin configuration on faces (w \oplus on boundary).

For spin configuration σ (w. \oplus on boundary),

$$\mathbb{P}_{\mathcal{D},x}(\sigma) = \frac{1}{Z} x^{\# \oplus \mathbb{C}}$$

Ising model on faces with $\beta = -\frac{1}{2} \log x \ge 0.$

Properties:

 $\mathsf{FKG} \colon \mathbb{P}(A \cap B) \geq \mathbb{P}(A)\mathbb{P}(B) \text{ if } A, B \uparrow$ Spatial Markov property

$$\mathbb{P}_{\mathcal{D},x}(\omega) = rac{1}{Z_{ ext{loop}}(\mathcal{D},1,x)} x^{\# ext{edges}} \mathbf{1}_{\omega ext{ loop config}}.$$

Loop configuration $\xleftarrow{bijection} \bigoplus$ -spin configuration on faces (w \oplus on boundary).

For spin configuration σ (w. \oplus on boundary),

$$\mathbb{P}_{\mathcal{D},x}(\sigma) = \frac{1}{Z} x^{\# \oplus \mathbb{C}}$$

Ising model on faces with $\beta = -\frac{1}{2} \log x \ge 0.$

Properties:

FKG: $\mathbb{P}(A \cap B) \ge \mathbb{P}(A)\mathbb{P}(B)$ if $A, B \uparrow$ Spatial Markov property Maximal/minimal b.c..

$$\mathbb{P}_{\mathcal{D},x}(\omega) = rac{1}{Z_{ ext{loop}}(\mathcal{D},1,x)} x^{\# ext{edges}} \mathbf{1}_{\omega ext{ loop config}}.$$

Loop configuration $\xleftarrow{bijection} \bigoplus$ -spin configuration on faces (w \oplus on boundary).

For spin configuration σ (w. \oplus on boundary),

$$\mathbb{P}_{\mathcal{D},x}(\sigma) = \frac{1}{Z} x^{\# \oplus \mathbb{C}}$$

Ising model on faces with $\beta = -\frac{1}{2} \log x \ge 0.$

Properties:

FKG: $\mathbb{P}(A \cap B) \ge \mathbb{P}(A)\mathbb{P}(B)$ if $A, B \uparrow$ Spatial Markov property Maximal/minimal b.c..

$$\mathbb{P}_{\mathcal{D},x}(\omega) = rac{1}{Z_{ ext{loop}}(\mathcal{D},1,x)} x^{\# ext{edges}} \mathbf{1}_{\omega ext{ loop config}}.$$

Loop configuration $\xleftarrow{bijection} \bigoplus$ -spin configuration on faces (w \oplus on boundary).

For spin configuration σ (w. \oplus on boundary),

$$\mathbb{P}_{\mathcal{D},x}(\sigma) = \frac{1}{Z} x^{\# \oplus \mathbb{C}}$$

Ising model on faces with $\beta = -\frac{1}{2} \log x \ge 0.$

Properties:

FKG: $\mathbb{P}(A \cap B) \ge \mathbb{P}(A)\mathbb{P}(B)$ if $A, B \uparrow$ Spatial Markov property

Maximal/minimal b.c..

Duality between \oplus and \ominus

$$\mathbb{P}_{\mathcal{D},x}(\omega) = rac{1}{Z_{ ext{loop}}(\mathcal{D},1,x)} x^{\# ext{edges}} \mathbf{1}_{\omega ext{ loop config}}.$$

Loop configuration $\xleftarrow{bijection} \bigoplus$ -spin configuration on faces (w \oplus on boundary).

For spin configuration σ (w. \oplus on boundary),

$$\mathbb{P}_{\mathcal{D},x}(\sigma) = \frac{1}{Z} x^{\# \oplus \mathbb{C}}$$

Ising model on faces with $\beta = -\frac{1}{2} \log x \ge 0.$

Properties:

FKG: $\mathbb{P}(A \cap B) \geq \mathbb{P}(A)\mathbb{P}(B)$ if $A, B \uparrow$

Spatial Markov property

Maximal/minimal b.c..

Duality between \oplus and \ominus

$$\mathbb{P}_{\mathcal{D},x}(\omega) = rac{1}{Z_{ ext{loop}}(\mathcal{D},1,x)} x^{\# ext{edges}} \mathbf{1}_{\omega ext{ loop config}}.$$

Loop configuration $\xleftarrow{bijection} \bigoplus$ -spin configuration on faces (w \oplus on boundary).

For spin configuration σ (w. \oplus on boundary),

$$\mathbb{P}_{\mathcal{D},x}(\sigma) = \frac{1}{Z} x^{\# \oplus \mathbb{C}}$$

Ising model on faces with $\beta = -\frac{1}{2} \log x \ge 0.$

Properties:

FKG: $\mathbb{P}(A \cap B) \geq \mathbb{P}(A)\mathbb{P}(B)$ if $A, B \uparrow$

Spatial Markov property

Maximal/minimal b.c..

Duality between \oplus and \ominus

Theorem (Duminil-Copin, Glazman, Peled, Spinka 17)

For $n \ge 1$ and $x < 1/\sqrt{n}$ the spin model has FKG!

Theorem (Duminil-Copin, Glazman, Peled, Spinka 17)

For $n \ge 1$ and $x < 1/\sqrt{n}$ the spin model has FKG!

+ Spatial Markov property \Downarrow

Theorem (Dichotomy theorem)

Either: (A) exponential decay of \oplus inside \ominus -bc, or (B) RSW of \oplus inside \ominus , hence clusters of any size of any spin

Back to n=2=1+1, x=1: $\mathbb{P}(\omega) \propto 2^{\# \text{loops}}$

Coloured loop measure: uniform on pairs (ω_r, ω_b) of non-intersecting loops.

Coloured loop measure: uniform on pairs (ω_r, ω_b) of non-intersecting loops. **Spin measure:** μ_D uniform on red/blue spin configurations $\{\oplus, \ominus\}^F \times \{\oplus, \bullet\}^F$ with **no simultaneous disagreement** and \oplus, \ominus on outer layer.

Coloured loop measure: uniform on pairs (ω_r, ω_b) of non-intersecting loops. **Spin measure:** μ_D uniform on red/blue spin configurations $\{\oplus, \ominus\}^F \times \{\oplus, \bullet\}^F$ with **no simultaneous disagreement** and \oplus, \ominus on outer layer.

Coloured loop measure: uniform on pairs (ω_r, ω_b) of non-intersecting loops. **Spin measure:** μ_D uniform on red/blue spin configurations $\{\bigoplus, \ominus\}^F \times \{\bigoplus, \bigoplus\}^F$ with **no simultaneous disagreement** and \bigoplus, \ominus on outer layer.

Coloured loop measure: uniform on pairs (ω_r, ω_b) of non-intersecting loops. **Spin measure:** μ_D uniform on red/blue spin configurations $\{\oplus, \ominus\}^F \times \{\diamondsuit, \diamondsuit\}^F$ with **no simultaneous disagreement** and \oplus, \ominus on outer layer.

Red spin marginal: $\nu_{\mathcal{D}}(\sigma_r) = \frac{1}{Z} \sum_{\sigma_b} \mathbf{1}_{\{\sigma_r \perp \sigma_b\}} = \frac{1}{Z} 2^{\text{#free faces}}$. Has **FKG**!!!

Coloured loop measure: uniform on pairs (ω_r, ω_b) of non-intersecting loops. **Spin measure:** μ_D uniform on red/blue spin configurations $\{\bigoplus, \bigoplus\}^F \times \{\bigoplus, \bigoplus\}^F$ with **no simultaneous disagreement** and \bigoplus, \bigoplus on outer layer.

Red spin marginal: $\nu_{\mathcal{D}}(\sigma_r) = \frac{1}{Z} \sum_{\sigma_b} \mathbf{1}_{\{\sigma_r \perp \sigma_b\}} = \frac{1}{Z} 2^{\text{#free faces}}$. Has **FKG**!!!

Spatial Markov: Generally NO!

Coloured loop measure: uniform on pairs (ω_r, ω_b) of non-intersecting loops. **Spin measure:** μ_D uniform on red/blue spin configurations $\{\bigoplus, \bigoplus\}^F \times \{\bigoplus, \bigoplus\}^F$ with **no simultaneous disagreement** and \bigoplus, \bigoplus on outer layer.

Red spin marginal: $\nu_{\mathcal{D}}(\sigma_r) = \frac{1}{Z} \sum_{\sigma_b} \mathbf{1}_{\{\sigma_r \perp \sigma_b\}} = \frac{1}{Z} 2^{\text{#free faces}}$. Has **FKG**!!!

Spatial Markov: Generally NO!

Coloured loop measure: uniform on pairs (ω_r, ω_b) of non-intersecting loops. **Spin measure:** μ_D uniform on red/blue spin configurations $\{\oplus, \ominus\}^F \times \{\diamondsuit, \diamondsuit\}^F$ with **no simultaneous disagreement** and \oplus, \ominus on outer layer.

Red spin marginal: $\nu_{\mathcal{D}}(\sigma_r) = \frac{1}{Z} \sum_{\sigma_b} \mathbf{1}_{\{\sigma_r \perp \sigma_b\}} = \frac{1}{Z} 2^{\text{#free faces}}$. Has FKG!!! Spatial Markov: Generally NO! Yes for $\mathfrak{S} \to \nu_{\mathcal{D}}^{\mathfrak{S} \oplus}$

Coloured loop measure: uniform on pairs (ω_r, ω_b) of non-intersecting loops. **Spin measure:** μ_D uniform on red/blue spin configurations $\{\oplus, \ominus\}^F \times \{\diamondsuit, \diamondsuit\}^F$ with **no simultaneous disagreement** and \oplus, \ominus on outer layer.

Red spin marginal: $\nu_{\mathcal{D}}(\sigma_r) = \frac{1}{Z} \sum_{\sigma_b} \mathbf{1}_{\{\sigma_r \perp \sigma_b\}} = \frac{1}{Z} 2^{\text{#free faces}}$. Has **FKG**!!!

Spatial Markov: Generally NO! Yes for $\Theta \to \nu_D^{\Theta}$ and $\Theta \to \nu_D^{\Theta}$ - maximal

A taste of the proof. Step 1: infinite vol. measure

• Red marginal: $\nu_{\mathbb{H}}^{\oplus\oplus} = \lim_{\mathcal{D}\to\mathbb{H}} \nu_{\mathcal{D}}^{\oplus\oplus}$

A taste of the proof. Step 1: infinite vol. measure

• Red marginal:
$$\nu_{\mathbb{H}}^{\oplus\oplus} = \lim_{\mathcal{D} \to \mathbb{H}} \nu_{\mathcal{D}}^{\oplus\oplus}$$

• Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:

• Red marginal:
$$\nu_{\mathbb{H}}^{\oplus\oplus} = \lim_{\mathcal{D}\to\mathbb{H}} \nu_{\mathcal{D}}^{\oplus\oplus}$$

• Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:

Weak RSW result for 🕫 percolation:

• Red marginal:
$$\nu_{\mathbb{H}}^{\oplus\oplus} = \lim_{\mathcal{D}\to\mathbb{H}} \nu_{\mathcal{D}}^{\oplus\oplus}$$

• Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:

Weak RSW result for 0 percolation:

• Red marginal:
$$\nu_{\mathbb{H}}^{\oplus\oplus} = \lim_{\mathcal{D}\to\mathbb{H}} \nu_{\mathcal{D}}^{\oplus\oplus}$$

• Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:

Weak RSW result for 🕮 percolation:

• Red marginal:
$$\nu_{\mathbb{H}}^{\oplus\oplus} = \lim_{\mathcal{D}\to\mathbb{H}} \nu_{\mathcal{D}}^{\oplus\oplus}$$

• Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:

Weak RSW result for 🕮 percolation:

• Red marginal:
$$\nu_{\mathbb{H}}^{\oplus\oplus} = \lim_{\mathcal{D}\to\mathbb{H}} \nu_{\mathcal{D}}^{\oplus\oplus}$$

• Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:

• Red marginal:
$$\nu_{\mathbb{H}}^{\textcircled{00}} = \lim_{\mathcal{D} \to \mathbb{H}} \nu_{\mathcal{D}}^{\textcircled{00}}$$

• Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:

- Red marginal: $\nu_{\mathbb{H}}^{\textcircled{\oplus}\textcircled{\oplus}} = \lim_{\mathcal{D}} \bigcup_{\mathcal{D}} \nu_{\mathcal{D}}^{\textcircled{\oplus}\textcircled{\oplus}}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus\oplus}$:

• Red marginal:
$$\nu_{\mathbb{H}}^{\oplus\oplus} = \lim_{\mathcal{D}\to\mathbb{H}} \nu_{\mathcal{D}}^{\oplus\oplus}$$

- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:
- 0 is surrounded by infinitely many $\textcircled{}{} \textcircled{}{} \textcircled{}$ circuits $\mu_{\mathbb{H}}$ -a.s.
- in particular $\mu_{\mathbb{H}}$ is translation invariant and **ergodic**;

- Red marginal: $\nu_{\mathbb{H}}^{\oplus\oplus} = \lim_{\mathcal{D}\to\mathbb{H}} \nu_{\mathcal{D}}^{\oplus\oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:
- 0 is surrounded by infinitely many $\textcircled{}{} \textcircled{}{} \textcircled{}$ circuits $\mu_{\mathbb{H}}$ -a.s.
- in particular $\mu_{\mathbb{H}}$ is translation invariant and **ergodic**;
- Burton-Keane applies \Rightarrow zero or one infinite \bigcirc -cluster

- Red marginal: $\nu_{\mathbb{H}}^{\oplus\oplus} = \lim_{\mathcal{D}\to\mathbb{H}} \nu_{\mathcal{D}}^{\oplus\oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:
- 0 is surrounded by infinitely many \bigoplus circuits $\mu_{\mathbb{H}}$ -a.s.
- in particular $\mu_{\mathbb{H}}$ is translation invariant and **ergodic**;
- Burton-Keane applies \Rightarrow zero or one infinite \bullet -cluster
- Zhang's trick \Rightarrow no infinite \bigcirc -cluster and no infinite \bigcirc -cluster

- Red marginal: $\nu_{\mathbb{H}}^{\oplus\oplus} = \lim_{\mathcal{D}\to\mathbb{H}} \nu_{\mathcal{D}}^{\oplus\oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:
- 0 is surrounded by infinitely many \bigoplus circuits $\mu_{\mathbb{H}}$ -a.s.
- in particular $\mu_{\mathbb{H}}$ is translation invariant and **ergodic**;
- Burton-Keane applies ⇒ zero or one infinite �-cluster
- Zhang's trick \Rightarrow no infinite \bigcirc -cluster and no infinite \bigcirc -cluster

• Red marginal:
$$\nu_{\mathbb{H}}^{\textcircled{00}} = \lim_{\mathcal{D} \to \mathbb{H}} \nu_{\mathcal{D}}^{\textcircled{00}}$$

- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:
- 0 is surrounded by infinitely many $\textcircled{} \oplus \textcircled{}$ circuits $\mu_{\mathbb{H}}$ -a.s.
- in particular $\mu_{\mathbb{H}}$ is translation invariant and **ergodic**;
- Burton-Keane applies \Rightarrow zero or one infinite \bigcirc -cluster
- Zhang's trick \Rightarrow no infinite \bigcirc -cluster and no infinite \bigcirc -cluster
- Infinitely many blue loops

• Red marginal:
$$\nu_{\mathbb{H}}^{\textcircled{\oplus}\oplus} = \lim_{\mathcal{D}\to\mathbb{H}} \nu_{\mathcal{D}}^{\textcircled{\oplus}\oplus}$$

- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:
- 0 is surrounded by infinitely many $\textcircled{} \oplus \textcircled{}$ circuits $\mu_{\mathbb{H}}$ -a.s.
- in particular $\mu_{\mathbb{H}}$ is translation invariant and **ergodic**;
- Burton-Keane applies \Rightarrow zero or one infinite \bigcirc -cluster
- Zhang's trick \Rightarrow no infinite \bigcirc -cluster and no infinite \bigcirc -cluster
- Infinitely many blue loops and infinitely many red loops

A taste of the proof. Step 3: $\mu_{\mathbb{H}}^{\texttt{ss}} = \mu_{\mathbb{H}}^{\texttt{ss}}$

- Red marginal: $\nu_{\mathbb{H}}^{\oplus\oplus} = \lim_{\mathcal{D}\to\mathbb{H}} \nu_{\mathcal{D}}^{\oplus\oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:
- 0 is surrounded by infinitely many $\textcircled{}{} \textcircled{}{} \textcircled{}$ circuits $\mu_{\mathbb{H}}$ -a.s.
- in particular $\mu_{\mathbb{H}}$ is translation invariant and **ergodic**;
- Burton-Keane applies \Rightarrow zero or one infinite \bullet -cluster
- Zhang's trick ⇒ no infinite ♀-cluster and no infinite ♀-cluster
- Infinitely many blue loops and infinitely many red loops
- Changing colours of loops + infinitely many \mathfrak{H} circuits $\Rightarrow \mu_{\mathbb{H}}^{\mathfrak{H}}$ unique infinite-volume measure: $\mu_{\mathbb{H}}^{\mathfrak{H}} = \lim_{\mathcal{D}\to\mathbb{H}} \mu_{\mathcal{D}}^{\mathfrak{H}} = \lim_{\mathcal{D}\to\mathbb{H}} \mu_{\mathcal{D}}^{\mathfrak{H}}$

A taste of the proof. Step 4: delocalization

• Red marginal:
$$\nu_{\mathbb{H}}^{\oplus\oplus} = \lim_{\mathcal{D}\to\mathbb{H}} \nu_{\mathcal{D}}^{\oplus\oplus}$$

- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:
- 0 is surrounded by infinitely many $\textcircled{} \oplus \textcircled{}$ circuits $\mu_{\mathbb{H}}$ -a.s.
- in particular $\mu_{\mathbb{H}}$ is translation invariant and **ergodic**;
- Burton-Keane applies \Rightarrow zero or one infinite \bigcirc -cluster
- Zhang's trick ⇒ no infinite ♀-cluster and no infinite ♀-cluster
- Infinitely many blue loops and infinitely many red loops
- Changing colours of loops + infinitely many \mathfrak{H} circuits $\Rightarrow \mu_{\mathbb{H}}^{\mathfrak{H}}$ unique infinite-volume measure: $\mu_{\mathbb{H}}^{\mathfrak{H}} = \lim_{\mathcal{D} \to \mathbb{H}} \mu_{\mathcal{D}}^{\mathfrak{H}} = \lim_{\mathcal{D} \to \mathbb{H}} \mu_{\mathcal{D}}^{\mathfrak{H}}$
- infinitely many loops around $0 \Rightarrow$ delocalisation for $\mu_{\mathbb{H}}$.
- $Var(\Gamma_{\mathcal{D}}(0)) \to \infty$ as \mathcal{D} increases to $\mathbb{H} \Rightarrow$ Delocalisation in finite volume.

Dichotomy theorem: idea of proof

Dichotomy theorem: idea of proof

Proof of dichotomy using pushing lemma

Either: $lpha_{\it n} \geq {\it c} > 0$ or $lpha_{\it n} \leq \exp(-{\it cn}^{\delta})$, where

Proof of dichotomy using pushing lemma

Either: $lpha_{\it n} \geq {\it c} > 0$ or $lpha_{\it n} \leq \exp(-{\it cn}^{\delta})$, where

Proof of dichotomy using pushing lemma

Either: $lpha_{\it n} \geq {\it c} > 0$ or $lpha_{\it n} \leq \exp(-{\it cn}^{\delta})$, where

Thank you!