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What are Lipschitz functions?
Integer valued function on the faces of the hexagonal lattice H, with values at
adjacent faces differing by at most 1.
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ΓD uniform sample on finite domain D, with value 0 on boundary faces.

Main question: How does ΓD behave when D is large?

Option 1: ΓD(0) is tight, with exponential tails −→ Localization
Option 2: ΓD(0) has logarithmic variance in the size of D→Log-delocalization
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Main results: Uniform Lipschitz functions delocalize logarithmically!
Convergence to infinite volume measure for gradient.

Theorem (Glazman, M. 18)

For a domain D containing 0 let r be the distance form 0 to Dc .

c log r ≤ Var(ΓD(0)) ≤ C log r .

Moreover, ΓD(.)− ΓD(0) converges in law as D increases to H.

Observations:

Strong result: quantitative delocalisation; not just Var(ΓD(0))→∞ as D
increases.

Covariances between points also diverge as log of distance between points.

Coherent with conjectured convergence of Γ 1
n Λn

to the Gaussian Free Field.
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Link to loop model:

Lipschitz function
1 to 1←−−→ oriented loop configuration

many to 1−−−−−−→ loop configuration.

Conversely: a loop configuration corresponds to 2#loops oriented loop configs:

P(loop configuration) ∝ 2#loops.

Var(ΓD(0)) = ED,n,x(#loops surrounding 0)
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Definition (Loop O(n) model)

A loop configuration is an even subgraph of D.
The loop O(n) measure with edge-parameter x > 0 is given by

PD,n,x(ω) =
1

Zloop(D, n, x)
n#loopsx#edges 1ωloop config.

Dichotomy:

Exponential decay of loop sizes:
the size of the loop of any point
has exponential tail, unif. in D.

Macroscopic loops: the size of
the loop of any point has power-
law decay up to the size of D.
In D there are loops at every scale
up to the size of D.

Phase diagram:
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Definition (Loop O(n) model)

A loop configuration is an even subgraph of D.
The loop O(n) measure with edge-parameter x > 0 is given by

PD,n,x(ω) =
1

Zloop(D, n, x)
n#loopsx#edges 1ωloop config.

Theorem (Glazman, M. 18)

There exists a infinite volume Gibbs measure PH,2,1 for the loop O(2)
model with x = 1.

PH,2,1 = limPD,2,1 as D → H.

It is translation invariant, ergodic, formed entirely of loops.

The origin is surrounded PH,2,1-a.s. by infinitely many loops.

Order log n of these are in Λn ⇒ “macroscopic loops”.

PH,2,1 is the unique infinite volume Gibbs measure for the loop O(2) model.
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Case study: the Ising model (n = 1 and x ≤ 1).

PD,x(ω) = 1
Zloop(D,1,x) x

#edges 1ω loop config.

Loop configuration
bijection←−−−→ -spin configuration on faces (w on boundary).

For spin configuration σ
(w. on boundary),

PD,x(σ) = 1
Z x

#

Ising model on faces with
β = − 1

2 log x ≥ 0.

Properties:

FKG: P(A∩B) ≥ P(A)P(B) if A,B ↑

Spatial Markov property

Maximal/minimal b.c..

Duality between and
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Spin as percolation models: Same spin representation holds for any n and x

Theorem (Duminil-Copin, Glazman,
Peled, Spinka 17)

For n ≥ 1 and x < 1/
√
n the spin

model has FKG!

+ Spatial Markov property
⇓

Theorem (Dichotomy theorem)

Either:
(A) exponential decay of inside -bc,
or
(B) RSW of inside , hence clusters
of any size of any spin
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For n ≥ 1 and x < 1/
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model has FKG!
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Back to n = 2 = 1 + 1, x = 1: P(ω) ∝ 2#loops

Coloured loop measure: uniform on pairs (ωr , ωb) of non-intersecting loops.

Spin measure: µD uniform on red/blue spin configurations { , }F × { , }F
with no simultaneous disagreement and , on outer layer.

Red spin marginal: νD(σr ) = 1
Z

∑
σb

1{σr⊥σb} = 1
Z 2#free faces. Has FKG!!!

Spatial Markov: Generally NO!

Yes for → νD and → νD - maximal
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Back to n = 2 = 1 + 1, x = 1: P(ω) ∝ 2#loops

Coloured loop measure: uniform on pairs (ωr , ωb) of non-intersecting loops.

Spin measure: µD uniform on red/blue spin configurations { , }F × { , }F
with no simultaneous disagreement and , on outer layer.

Red spin marginal: νD(σr ) = 1
Z

∑
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1{σr⊥σb} = 1
Z 2#free faces. Has FKG!!!

Spatial Markov: Generally NO! Yes for → νD and → νD - maximal

?
any blue spins

any blue spins
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A taste of the proof. Step 1: infinite vol. measure

Red marginal: νH = lim
D→H
↓ νD

Blue marginal: i.i.d. colouring of red config. ⇒ joint measure µH :

0 is surrounded by infinitely many circuits µH-a.s.

in particular µH is translation invariant and ergodic;

Weak RSW result for percolation:
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A taste of the proof. Step 3: µH = µH

Red marginal: νH = lim
D→H
↓ νD

Blue marginal: i.i.d. colouring of red config. ⇒ joint measure µH :

0 is surrounded by infinitely many circuits µH-a.s.

in particular µH is translation invariant and ergodic;

Burton-Keane applies ⇒ zero or one infinite -cluster

Zhang’s trick ⇒ no infinite -cluster and no infinite -cluster

Weak RSW result for percolation:
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0 is surrounded by infinitely many circuits µH-a.s.

in particular µH is translation invariant and ergodic;

Burton-Keane applies ⇒ zero or one infinite -cluster

Zhang’s trick ⇒ no infinite -cluster and no infinite -cluster

Infinitely many blue loops

Weak RSW result for percolation:

Λn
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A taste of the proof. Step 4: delocalization

Red marginal: νH = lim
D→H
↓ νD

Blue marginal: i.i.d. colouring of red config. ⇒ joint measure µH :

0 is surrounded by infinitely many circuits µH-a.s.

in particular µH is translation invariant and ergodic;

Burton-Keane applies ⇒ zero or one infinite -cluster

Zhang’s trick ⇒ no infinite -cluster and no infinite -cluster

Infinitely many blue loops and infinitely many red loops

Changing colours of loops + infinitely many circuits
⇒ µH unique infinite-volume measure: µH = lim

D→H
µD = lim

D→H
µD

infinitely many loops around 0 ⇒ delocalisation for µH.

Var(ΓD(0))→∞ as D increases to H ⇒ Delocalisation in finite volume.

Weak RSW result for percolation:
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Dichotomy theorem: idea of proof

Lemma (Pushing lemma)

ρn

n
n
ρ

µ( )≥ c(ρ) > 0

and

5n

nµ( )≥ c
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Proof of dichotomy using pushing lemma

Either: αn ≥ c > 0 or αn ≤ exp(−cnδ) , where

αn:=µ ( )
Λρn

ΛnΛn/2

With probability

c

αρn:

⇒ Two isolated circuits,

so αρn ≤ c7α2
n

Λn Λn

ρn

Λρ2n

Ioan Manolescu (University of Fribourg) Uniform Lipschitz functions 19th June 2019 11 / 12



Proof of dichotomy using pushing lemma

Either: αn ≥ c > 0 or αn ≤ exp(−cnδ) , where

αn:=µ ( )
Λρn

ΛnΛn/2

With probability

c

αρn:

⇒ Two isolated circuits,

so αρn ≤ c7α2
n

Λn Λn

ρn

Λρ2n

Ioan Manolescu (University of Fribourg) Uniform Lipschitz functions 19th June 2019 11 / 12



Proof of dichotomy using pushing lemma

Either: αn ≥ c > 0 or αn ≤ exp(−cnδ) , where

αn:=µ ( )
Λρn

ΛnΛn/2

With probability

c

αρn:

⇒ Two isolated circuits,

so αρn ≤ c7α2
n

Λn Λn

ρn

Λρ2n

Ioan Manolescu (University of Fribourg) Uniform Lipschitz functions 19th June 2019 11 / 12



Proof of dichotomy using pushing lemma

Either: αn ≥ c > 0 or αn ≤ exp(−cnδ) , where

αn:=µ ( )
Λρn

ΛnΛn/2

With probability c αρn:

⇒ Two isolated circuits,

so αρn ≤ c7α2
n

Λn Λn

ρn

Λρ2n

Ioan Manolescu (University of Fribourg) Uniform Lipschitz functions 19th June 2019 11 / 12



Proof of dichotomy using pushing lemma

Either: αn ≥ c > 0 or αn ≤ exp(−cnδ) , where

αn:=µ ( )
Λρn

ΛnΛn/2

With probability

c

αρn:

⇒ Two isolated circuits,

so αρn ≤ c7α2
n

Λn Λn

ρn

Λρn

Λ2ρn Λρ2n

Ioan Manolescu (University of Fribourg) Uniform Lipschitz functions 19th June 2019 11 / 12



Proof of dichotomy using pushing lemma

Either: αn ≥ c > 0 or αn ≤ exp(−cnδ) , where

αn:=µ ( )
Λρn

ΛnΛn/2

With probability c αρn:

⇒ Two isolated circuits,

so αρn ≤ c7α2
n

Λn Λn

ρn

Λρn

Λ2ρn Λρ2n

Ioan Manolescu (University of Fribourg) Uniform Lipschitz functions 19th June 2019 11 / 12



Proof of dichotomy using pushing lemma

Either: αn ≥ c > 0 or αn ≤ exp(−cnδ) , where

αn:=µ ( )
Λρn

ΛnΛn/2

With probability c αρn:

⇒ Two isolated circuits,

so αρn ≤ c7α2
n

Λn Λn

ρn

Λρ2n

Ioan Manolescu (University of Fribourg) Uniform Lipschitz functions 19th June 2019 11 / 12



Proof of dichotomy using pushing lemma

Either: αn ≥ c > 0 or αn ≤ exp(−cnδ) , where

αn:=µ ( )
Λρn

ΛnΛn/2

With probability c3αρn:

⇒ Two isolated circuits,

so αρn ≤ c7α2
n

Λn Λn

ρn

Λρ2n

Ioan Manolescu (University of Fribourg) Uniform Lipschitz functions 19th June 2019 11 / 12



Proof of dichotomy using pushing lemma

Either: αn ≥ c > 0 or αn ≤ exp(−cnδ) , where

αn:=µ ( )
Λρn

ΛnΛn/2

With probability c3αρn:

⇒ Two isolated circuits,

so αρn ≤ c7α2
n

Λn Λn

ρn

Ioan Manolescu (University of Fribourg) Uniform Lipschitz functions 19th June 2019 11 / 12



Proof of dichotomy using pushing lemma

Either: αn ≥ c > 0 or αn ≤ exp(−cnδ) , where

αn:=µ ( )
Λρn

ΛnΛn/2

With probability c7αρn:

⇒ Two isolated circuits,

so αρn ≤ c7α2
n

Λn Λn

ρn

Ioan Manolescu (University of Fribourg) Uniform Lipschitz functions 19th June 2019 11 / 12



Thank you!
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