Uniform Lipschitz functions

Ioan Manolescu

joint work with:
Alexander Glazman

University of Fribourg

> 19th June 2019
> Probability and quantum field theory: discrete models, CFT, SLE and constructive aspects (Porquerolles)

What are Lipschitz functions?

Integer valued function on the faces of the hexagonal lattice \mathbb{H}, with values at adjacent faces differing by at most 1 .

What are Lipschitz functions?

Integer valued function on the faces of the hexagonal lattice \mathbb{H}, with values at adjacent faces differing by at most 1 .

What are Lipschitz functions?

Integer valued function on the faces of the hexagonal lattice \mathbb{H}, with values at adjacent faces differing by at most 1 .

$\Gamma_{\mathcal{D}}$ uniform sample on finite domain \mathcal{D}, with value 0 on boundary faces.

What are Lipschitz functions?

Integer valued function on the faces of the hexagonal lattice \mathbb{H}, with values at adjacent faces differing by at most 1 .

$\Gamma_{\mathcal{D}}$ uniform sample on finite domain \mathcal{D}, with value 0 on boundary faces. Main question: How does $\Gamma_{\mathcal{D}}$ behave when \mathcal{D} is large?

What are Lipschitz functions?

Integer valued function on the faces of the hexagonal lattice \mathbb{H}, with values at adjacent faces differing by at most 1 .

$\Gamma_{\mathcal{D}}$ uniform sample on finite domain \mathcal{D}, with value 0 on boundary faces. Main question: How does $\Gamma_{\mathcal{D}}$ behave when \mathcal{D} is large?

What are Lipschitz functions?

Integer valued function on the faces of the hexagonal lattice \mathbb{H}, with values at adjacent faces differing by at most 1 .

$\Gamma_{\mathcal{D}}$ uniform sample on finite domain \mathcal{D}, with value 0 on boundary faces.
Main question: How does $\Gamma_{\mathcal{D}}$ behave when \mathcal{D} is large?
Option 1: $\Gamma_{\mathcal{D}}(0)$ is tight, with exponential tails \longrightarrow Localization
Option 2: $\Gamma_{\mathcal{D}}(0)$ has logarithmic variance in the size of $\mathcal{D} \rightarrow$ Log-delocalization

Main results: Uniform Lipschitz functions delocalize logarithmically! Convergence to infinite volume measure for gradient.

Theorem (Glazman, M. 18)
For a domain \mathcal{D} containing 0 let r be the distance form 0 to \mathcal{D}^{c}.

$$
c \log r \leq \operatorname{Var}\left(\Gamma_{\mathcal{D}}(0)\right) \leq C \log r .
$$

Moreover, $\Gamma_{\mathcal{D}}()-.\Gamma_{\mathcal{D}}(0)$ converges in law as \mathcal{D} increases to \mathbb{H}.

Observations:

- Strong result: quantitative delocalisation; not just $\operatorname{Var}\left(\Gamma_{\mathcal{D}}(0)\right) \rightarrow \infty$ as \mathcal{D} increases.
- Covariances between points also diverge as log of distance between points.
- Coherent with conjectured convergence of $\Gamma_{\frac{1}{n} \Lambda_{n}}$ to the Gaussian Free Field.

Link to loop model:

Lipschitz function $\stackrel{1 \text { to } 1}{\longleftrightarrow}$ oriented loop configuration

Link to loop model:

Lipschitz function $\stackrel{1 \text { to } 1}{\longleftrightarrow}$ oriented loop configuration

Link to loop model:
Lipschitz function $\stackrel{1 \text { to } 1}{\longleftrightarrow}$ oriented loop configuration

Link to loop model:
Lipschitz function $\stackrel{{ }^{1 \text { to } 1}}{\longleftrightarrow}$ oriented loop configuration $\xrightarrow{\text { many to } 1}$ loop configuration.

Link to loop model:

Lipschitz function $\stackrel{{ }^{1 \text { to } 1}}{\longleftrightarrow}$ oriented loop configuration $\xrightarrow{\text { many to } 1}$ loop configuration.
Conversely: a loop configuration corresponds to $2^{\text {\#loops }}$ oriented loop configs:

$$
\mathbb{P}(\text { loop configuration }) \propto 2^{\# \text { loops }}
$$

Link to loop model:

Lipschitz function $\stackrel{{ }^{1 \text { to } 1}}{\longleftrightarrow}$ oriented loop configuration $\xrightarrow{\text { many to } 1}$ loop configuration.
Conversely: a loop configuration corresponds to $2^{\# l o o p s}$ oriented loop configs:

$$
\begin{aligned}
& \mathbb{P}(\text { loop configuration }) \propto 2^{\# \text { loops }} \\
& \operatorname{Var}\left(\Gamma_{\mathcal{D}}(0)\right)=\mathbb{E}_{\mathcal{D}, n, x}(\# \text { loops surrounding } 0)
\end{aligned}
$$

Definition (Loop $O(n)$ model)

A loop configuration is an even subgraph of \mathcal{D}.
The loop $O(n)$ measure with edge-parameter $x>0$ is given by

$$
\mathbb{P}_{\mathcal{D}, n, x}(\omega)=\frac{1}{Z_{\text {loop }}(\mathcal{D}, n, x)} n^{\# \text { loops }} x^{\# \text { edges }} \mathbf{1}_{\omega \text { loop config }}
$$

Phase diagram:

Dichotomy:

Exponential decay of loop sizes: the size of the loop of any point has exponential tail, unif. in \mathcal{D}.

Macroscopic loops: the size of the loop of any point has powerlaw decay up to the size of \mathcal{D}. In \mathcal{D} there are loops at every scale up to the size of \mathcal{D}.

Definition (Loop $O(n)$ model)

A loop configuration is an even subgraph of \mathcal{D}.
The loop $O(n)$ measure with edge-parameter $x>0$ is given by

$$
\mathbb{P}_{\mathcal{D}, n, x}(\omega)=\frac{1}{Z_{\text {loop }}(\mathcal{D}, n, x)} n^{\# \text { loops }} x^{\# \text { edges }} \mathbf{1}_{\omega \text { loop config }}
$$

Phase diagram:

Dichotomy:

Exponential decay of loop sizes: the size of the loop of any point has exponential tail, unif. in \mathcal{D}.

Macroscopic loops: the size of the loop of any point has powerlaw decay up to the size of \mathcal{D}. In \mathcal{D} there are loops at every scale up to the size of \mathcal{D}.

Definition (Loop $O(n)$ model)

A loop configuration is an even subgraph of \mathcal{D}.
The loop $O(n)$ measure with edge-parameter $x>0$ is given by

$$
\mathbb{P}_{\mathcal{D}, n, x}(\omega)=\frac{1}{Z_{\text {loop }}(\mathcal{D}, n, x)} n^{\# \text { loops }} x^{\# \text { edges }} \mathbf{1}_{\omega \text { loop config }}
$$

Phase diagram:

Dichotomy:

Exponential decay of loop sizes: the size of the loop of any point has exponential tail, unif. in \mathcal{D}.

Macroscopic loops: the size of the loop of any point has powerlaw decay up to the size of \mathcal{D}. In \mathcal{D} there are loops at every scale up to the size of \mathcal{D}.

Definition (Loop $O(n)$ model)

A loop configuration is an even subgraph of \mathcal{D}.
The loop $O(n)$ measure with edge-parameter $x>0$ is given by

$$
\mathbb{P}_{\mathcal{D}, n, x}(\omega)=\frac{1}{Z_{\text {loop }}(\mathcal{D}, n, x)} n^{\# \text { loops }} x^{\# \text { edges }} \mathbf{1}_{\omega \text { loop config }}
$$

Theorem (Glazman, M. 18)

- There exists a infinite volume Gibbs measure $\mathbb{P}_{\mathbb{H}, 2,1}$ for the loop $O(2)$ model with $x=1$.
- $\mathbb{P}_{\mathbb{H}, 2,1}=\lim \mathbb{P}_{\mathcal{D}, 2,1}$ as $\mathcal{D} \rightarrow \mathbb{H}$.
- It is translation invariant, ergodic, formed entirely of loops.
- The origin is surrounded $\mathbb{P}_{\mathbb{H}, 2,1^{-}}$-a.s. by infinitely many loops.
- Order $\log n$ of these are in $\Lambda_{n} \Rightarrow$ "macroscopic loops".
- $\mathbb{P}_{\mathbb{H}, 2,1}$ is the unique infinite volume Gibbs measure for the loop $O(2)$ model.

Case study: the Ising model ($n=1$ and $x \leq 1$).

$$
\mathbb{P}_{\mathcal{D}, x}(\omega)=\frac{1}{Z_{\text {loop }}(\mathcal{D}, 1, x)} x^{\# \text { edges }} \mathbf{1}_{\omega \text { loop config }}
$$

Case study: the Ising model ($n=1$ and $x \leq 1$).

$$
\mathbb{P}_{\mathcal{D}, x}(\omega)=\frac{1}{Z_{\text {loop }}(\mathcal{D}, 1, x)} x^{\# \text { edges }} \mathbf{1}_{\omega \text { loop config }}
$$

Loop configuration $\stackrel{\text { bijection }}{\longleftrightarrow} \oplus \Theta$-spin configuration on faces ($\mathrm{w} \oplus$ on boundary).

Case study: the Ising model ($n=1$ and $x \leq 1$).

$$
\mathbb{P}_{\mathcal{D}, x}(\omega)=\frac{1}{Z_{\text {loop }}(\mathcal{D}, 1, x)} x^{\# \text { edges }} \mathbf{1}_{\omega \text { loop config }}
$$

Loop configuration $\stackrel{\text { bijection }}{\longrightarrow} \oplus \Theta$-spin configuration on faces ($w \oplus$ on boundary).

Case study: the Ising model ($n=1$ and $x \leq 1$).

$$
\mathbb{P}_{\mathcal{D}, x}(\omega)=\frac{1}{Z_{\text {loop }}(\mathcal{D}, 1, x)} x^{\# \text { edges }} \mathbf{1}_{\omega \text { loop config }}
$$

Loop configuration $\stackrel{\text { bijection }}{\longrightarrow} \oplus \Theta$-spin configuration on faces ($\mathrm{w} \oplus$ on boundary).
For spin configuration σ (w. \oplus on boundary),

$$
\mathbb{P}_{\mathcal{D}, x}(\sigma)=\frac{1}{z} x^{\# \oplus \in}
$$

Ising model on faces with $\beta=-\frac{1}{2} \log x \geq 0$.

Case study: the Ising model ($n=1$ and $x \leq 1$).

$$
\mathbb{P}_{\mathcal{D}, x}(\omega)=\frac{1}{Z_{\text {loop }}(\mathcal{D}, 1, x)} x^{\# \text { edges }} \mathbf{1}_{\omega \text { loop config }}
$$

Loop configuration $\stackrel{\text { bijection }}{\longrightarrow} \oplus \Theta$-spin configuration on faces ($\mathrm{w} \oplus$ on boundary).
For spin configuration σ (w. \oplus on boundary),

$$
\mathbb{P}_{\mathcal{D}, x}(\sigma)=\frac{1}{z} x^{\# \oplus \in}
$$

Ising model on faces with $\beta=-\frac{1}{2} \log x \geq 0$.

Properties:

FKG: $\mathbb{P}(A \cap B) \geq \mathbb{P}(A) \mathbb{P}(B)$ if $A, B \uparrow$

Case study: the Ising model ($n=1$ and $x \leq 1$).

$$
\mathbb{P}_{\mathcal{D}, x}(\omega)=\frac{1}{Z_{\text {loop }}(\mathcal{D}, 1, x)} x^{\# \text { edges }} \mathbf{1}_{\omega \text { loop config }}
$$

Loop configuration $\stackrel{\text { bijection }}{\longrightarrow} \oplus \Theta$-spin configuration on faces ($w \oplus$ on boundary).
For spin configuration σ (w. \oplus on boundary),

$$
\mathbb{P}_{\mathcal{D}, x}(\sigma)=\frac{1}{z} x^{\# \oplus \in}
$$

Ising model on faces with $\beta=-\frac{1}{2} \log x \geq 0$.

Properties:

FKG: $\mathbb{P}(A \cap B) \geq \mathbb{P}(A) \mathbb{P}(B)$ if $A, B \uparrow$ Spatial Markov property

Case study: the Ising model ($n=1$ and $x \leq 1$).

$$
\mathbb{P}_{\mathcal{D}, x}(\omega)=\frac{1}{Z_{\text {loop }}(\mathcal{D}, 1, x)} x^{\# \text { edges }} \mathbf{1}_{\omega \text { loop config }}
$$

Loop configuration $\stackrel{\text { bijection }}{\longrightarrow} \oplus \Theta$-spin configuration on faces ($w \oplus$ on boundary).
For spin configuration σ (w. \oplus on boundary),

$$
\mathbb{P}_{\mathcal{D}, x}(\sigma)=\frac{1}{Z} x^{\# \oplus \ominus}
$$

Ising model on faces with $\beta=-\frac{1}{2} \log x \geq 0$.

Properties:

FKG: $\mathbb{P}(A \cap B) \geq \mathbb{P}(A) \mathbb{P}(B)$ if $A, B \uparrow$ Spatial Markov property

Case study: the Ising model ($n=1$ and $x \leq 1$).

$$
\mathbb{P}_{\mathcal{D}, x}(\omega)=\frac{1}{Z_{\text {loop }}(\mathcal{D}, 1, x)} x^{\# \text { edges }} \mathbf{1}_{\omega \text { loop config }}
$$

Loop configuration $\stackrel{\text { bijection }}{\longrightarrow} \oplus \Theta$-spin configuration on faces ($\mathrm{w} \oplus$ on boundary).
For spin configuration σ (w. \oplus on boundary),

$$
\mathbb{P}_{\mathcal{D}, x}(\sigma)=\frac{1}{Z} x^{\# \oplus \ominus}
$$

Ising model on faces with $\beta=-\frac{1}{2} \log x \geq 0$.

Properties:

FKG: $\mathbb{P}(A \cap B) \geq \mathbb{P}(A) \mathbb{P}(B)$ if $A, B \uparrow$ Spatial Markov property
Maximal/minimal b.c..

Case study: the Ising model ($n=1$ and $x \leq 1$).

$$
\mathbb{P}_{\mathcal{D}, x}(\omega)=\frac{1}{Z_{\text {loop }}(\mathcal{D}, 1, x)} x^{\# \text { edges }} \mathbf{1}_{\omega \text { loop config }}
$$

Loop configuration $\stackrel{\text { bijection }}{\longrightarrow} \oplus \Theta$-spin configuration on faces ($w \oplus$ on boundary).
For spin configuration σ (w. \oplus on boundary),

$$
\mathbb{P}_{\mathcal{D}, x}(\sigma)=\frac{1}{z} x^{\# \oplus \ominus}
$$

Ising model on faces with $\beta=-\frac{1}{2} \log x \geq 0$.

Properties:

FKG: $\mathbb{P}(A \cap B) \geq \mathbb{P}(A) \mathbb{P}(B)$ if $A, B \uparrow$ Spatial Markov property
Maximal/minimal b.c..

Case study: the Ising model ($n=1$ and $x \leq 1$).

$$
\mathbb{P}_{\mathcal{D}, x}(\omega)=\frac{1}{Z_{\text {loop }}(\mathcal{D}, 1, x)} x^{\# \text { edges }} \mathbf{1}_{\omega \text { loop config }}
$$

Loop configuration $\stackrel{\text { bijection }}{\longleftrightarrow} \oplus \Theta$-spin configuration on faces ($w \oplus$ on boundary).
For spin configuration σ (w. \oplus on boundary),

$$
\mathbb{P}_{\mathcal{D}, x}(\sigma)=\frac{1}{Z} x^{\# \oplus \Theta}
$$

Ising model on faces with $\beta=-\frac{1}{2} \log x \geq 0$.

Properties:

FKG: $\mathbb{P}(A \cap B) \geq \mathbb{P}(A) \mathbb{P}(B)$ if $A, B \uparrow$ Spatial Markov property
Maximal/minimal b.c..

Duality between \oplus and Θ

Case study: the Ising model ($n=1$ and $x \leq 1$).

$$
\mathbb{P}_{\mathcal{D}, x}(\omega)=\frac{1}{Z_{\text {loop }}(\mathcal{D}, 1, x)} x^{\# \text { edges }} \mathbf{1}_{\omega \text { loop config }}
$$

Loop configuration $\stackrel{\text { bijection }}{\longrightarrow} \oplus \Theta$-spin configuration on faces ($\mathrm{w} \oplus$ on boundary).
For spin configuration σ (w. \oplus on boundary),

$$
\mathbb{P}_{\mathcal{D}, x}(\sigma)=\frac{1}{Z} x^{\# \oplus \Theta}
$$

Ising model on faces with $\beta=-\frac{1}{2} \log x \geq 0$.

Properties:

FKG: $\mathbb{P}(A \cap B) \geq \mathbb{P}(A) \mathbb{P}(B)$ if $A, B \uparrow$ Spatial Markov property
Maximal/minimal b.c..

Duality between \oplus and Θ

Case study: the Ising model ($n=1$ and $x \leq 1$).

$$
\mathbb{P}_{\mathcal{D}, x}(\omega)=\frac{1}{Z_{\text {loop }}(\mathcal{D}, 1, x)} x^{\# \text { edges }} \mathbf{1}_{\omega \text { loop config }}
$$

Loop configuration $\stackrel{\text { bijection }}{\longleftrightarrow} \oplus \Theta$-spin configuration on faces ($w \oplus$ on boundary).
For spin configuration σ (w. \oplus on boundary),

$$
\mathbb{P}_{\mathcal{D}, x}(\sigma)=\frac{1}{Z} x^{\# \oplus \Theta}
$$

Ising model on faces with $\beta=-\frac{1}{2} \log x \geq 0$.

Properties:

FKG: $\mathbb{P}(A \cap B) \geq \mathbb{P}(A) \mathbb{P}(B)$ if $A, B \uparrow$ Spatial Markov property
Maximal/minimal b.c..

Duality between \oplus and Θ

Spin as percolation models: Same spin representation holds for any n and x
Theorem (Duminil-Copin, Glazman, Peled, Spinka 17)
For $n \geq 1$ and $x<1 / \sqrt{n}$ the spin model has FKG!

Spin as percolation models: Same spin representation holds for any n and x
Theorem (Duminil-Copin, Glazman, Peled, Spinka 17)
For $n \geq 1$ and $x<1 / \sqrt{n}$ the spin model has FKG!

+ Spatial Markov property

Theorem (Dichotomy theorem)

Either:
(A) exponential decay of \oplus inside $\Theta-b c$, or
(B) RSW of \oplus inside Θ, hence clusters of any size of any spin

Spin as percolation models: Same spin representation holds for any n and x
Theorem (Duminil-Copin, Glazman, Peled, Spinka 17)
For $n \geq 1$ and $x<1 / \sqrt{n}$ the spin model has FKG!

+ Spatial Markov property

Theorem (Dichotomy theorem)
Either:
(A) exponential decay of \oplus inside $\Theta-b c$, or
(B) RSW of \oplus inside Θ, hence clusters of any size of any spin

Spin as percolation models: Same spin representation holds for any n and x
Theorem (Duminil-Copin, Glazman, Peled, Spinka 17)
For $n \geq 1$ and $x<1 / \sqrt{n}$ the spin model has FKG!

+ Spatial Markov property

Theorem (Dichotomy theorem)
Either:
(A) exponential decay of \oplus inside $\Theta-b c$, or
(B) RSW of \oplus inside Θ, hence clusters of any size of any spin

Spin as percolation models: Same spin representation holds for any n and x
Theorem (Duminil-Copin, Glazman, Peled, Spinka 17)
For $n \geq 1$ and $x<1 / \sqrt{n}$ the spin model has FKG!

+ Spatial Markov property

Theorem (Dichotomy theorem)
Either:
(A) exponential decay of \oplus inside $\Theta-b c$, or
(B) RSW of \oplus inside Θ, hence clusters of any size of any spin

Spin as percolation models: Same spin representation holds for any n and x
Theorem (Duminil-Copin, Glazman, Peled, Spinka 17)
For $n \geq 1$ and $x<1 / \sqrt{n}$ the spin model has FKG!

+ Spatial Markov property

Theorem (Dichotomy theorem)
Either:
(A) exponential decay of \oplus inside $\Theta-b c$, or
(B) RSW of \oplus inside Θ, hence clusters of any size of any spin

Back to $n=2=1+1, x=1: \mathbb{P}(\omega) \propto 2^{\# \text { loops }}$

Back to $n=2=1+1, x=1: \mathbb{P}(\omega) \propto 2^{\# \text { loops }}$
Coloured loop measure: uniform on pairs (ω_{r}, ω_{b}) of non-intersecting loops.

Back to $n=2=1+1, x=1: \mathbb{P}(\omega) \propto 2^{\# \text { loops }}$
Coloured loop measure: uniform on pairs (ω_{r}, ω_{b}) of non-intersecting loops.
Spin measure: $\mu_{\mathcal{D}}$ uniform on red/blue spin configurations $\{\oplus, \Theta\}^{F} \times\{\boldsymbol{\oplus}, \oplus\}^{F}$ with no simultaneous disagreement and \oplus, \ominus on outer layer.

Back to $n=2=1+1, x=1: \mathbb{P}(\omega) \propto 2^{\text {\#loops }}$
Coloured loop measure: uniform on pairs (ω_{r}, ω_{b}) of non-intersecting loops.
Spin measure: $\mu_{\mathcal{D}}$ uniform on red/blue spin configurations $\{\oplus, \Theta\}^{F} \times\{\oplus, \oplus\}^{F}$ with no simultaneous disagreement and \oplus, \ominus on outer layer.

Back to $n=2=1+1, x=1: \mathbb{P}(\omega) \propto 2^{\text {\#loops }}$
Coloured loop measure: uniform on pairs (ω_{r}, ω_{b}) of non-intersecting loops.
Spin measure: $\mu_{\mathcal{D}}$ uniform on red/blue spin configurations $\{\oplus, \Theta\}^{F} \times\{\oplus, \oplus\}^{F}$ with no simultaneous disagreement and \oplus, \ominus on outer layer.

Back to $n=2=1+1, x=1: \mathbb{P}(\omega) \propto 2^{\text {\#loops }}$
Coloured loop measure: uniform on pairs (ω_{r}, ω_{b}) of non-intersecting loops. Spin measure: $\mu_{\mathcal{D}}$ uniform on red/blue spin configurations $\{\oplus, \Theta\}^{F} \times\{\boldsymbol{\oplus}, \oplus\}^{F}$ with no simultaneous disagreement and \oplus, \ominus on outer layer.
Red spin marginal: $\nu_{\mathcal{D}}\left(\sigma_{r}\right)=\frac{1}{Z} \sum_{\sigma_{b}} \mathbf{1}_{\left\{\sigma_{r} \perp \sigma_{b}\right\}}=\frac{1}{Z} 2^{\# \text { free faces. }}$. Has FKG!!!

Back to $n=2=1+1, x=1: \mathbb{P}(\omega) \propto 2^{\# \text { loops }}$
Coloured loop measure: uniform on pairs (ω_{r}, ω_{b}) of non-intersecting loops.
Spin measure: $\mu_{\mathcal{D}}$ uniform on red/blue spin configurations $\{\oplus, \ominus\}^{F} \times\{\boldsymbol{\oplus}, \ominus\}^{F}$ with no simultaneous disagreement and \oplus, \ominus on outer layer.
Red spin marginal: $\nu_{\mathcal{D}}\left(\sigma_{r}\right)=\frac{1}{Z} \sum_{\sigma_{b}} \mathbf{1}_{\left\{\sigma_{r} \perp \sigma_{b}\right\}}=\frac{1}{Z} 2^{\# \text { free faces. }}$. Has FKG!!! Spatial Markov: Generally NO!

Back to $n=2=1+1, x=1: \mathbb{P}(\omega) \propto 2^{\text {\#loops }}$
Coloured loop measure: uniform on pairs (ω_{r}, ω_{b}) of non-intersecting loops.
Spin measure: $\mu_{\mathcal{D}}$ uniform on red/blue spin configurations $\{\oplus, \Theta\}^{F} \times\{\boldsymbol{\oplus}, \oplus\}^{F}$ with no simultaneous disagreement and \oplus, \ominus on outer layer.
Red spin marginal: $\nu_{\mathcal{D}}\left(\sigma_{r}\right)=\frac{1}{Z} \sum_{\sigma_{b}} \mathbf{1}_{\left\{\sigma_{r} \perp \sigma_{b}\right\}}=\frac{1}{Z} 2^{\# \text { free faces. }}$. Has FKG!!! Spatial Markov: Generally NO!

Back to $n=2=1+1, x=1: \mathbb{P}(\omega) \propto 2^{\text {\#loops }}$
Coloured loop measure: uniform on pairs (ω_{r}, ω_{b}) of non-intersecting loops.
Spin measure: $\mu_{\mathcal{D}}$ uniform on red/blue spin configurations $\{\oplus, \Theta\}^{F} \times\{\boldsymbol{\oplus}, \oplus\}^{F}$ with no simultaneous disagreement and \oplus, \ominus on outer layer.
Red spin marginal: $\nu_{\mathcal{D}}\left(\sigma_{r}\right)=\frac{1}{Z} \sum_{\sigma_{b}} \mathbf{1}_{\left\{\sigma_{r} \perp \sigma_{b}\right\}}=\frac{1}{Z} 2^{\# \text { free faces. }}$. Has FKG!!! Spatial Markov: Generally NO! Yes for $\Theta \oplus \rightarrow \nu_{\mathcal{D}}^{\ominus \oplus}$

Back to $n=2=1+1, x=1: \mathbb{P}(\omega) \propto 2^{\text {\#loops }}$
Coloured loop measure: uniform on pairs (ω_{r}, ω_{b}) of non-intersecting loops.
Spin measure: $\mu_{\mathcal{D}}$ uniform on red/blue spin configurations $\{\oplus, \Theta\}^{F} \times\{\oplus, \oplus\}^{F}$ with no simultaneous disagreement and \oplus, \ominus on outer layer.
Red spin marginal: $\nu_{\mathcal{D}}\left(\sigma_{r}\right)=\frac{1}{Z} \sum_{\sigma_{b}} \mathbf{1}_{\left\{\sigma_{r} \perp \sigma_{b}\right\}}=\frac{1}{Z} 2^{\# \text { free faces. }}$. Has FKG!!!
Spatial Markov: Generally NO! Yes for $\Theta \oplus \rightarrow \nu_{\mathcal{D}}^{\ominus \oplus}$ and $\oplus \oplus \rightarrow \nu_{\mathcal{D}}^{\oplus \oplus}$ - maximal

A taste of the proof. Step 1: infinite vol. measure

- Red marginal: $\nu_{\mathbb{H}}^{\oplus \oplus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}} \downarrow \nu_{\mathcal{D}}^{\oplus \oplus}$

A taste of the proof. Step 1: infinite vol. measure

- Red marginal: $\nu_{\mathbb{H}}^{\oplus \oplus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}^{\dagger}} \downarrow \nu_{\mathcal{D}}^{\oplus \oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:

A taste of the proof. Step 2: ergodicity (via RSW)

- Red marginal: $\nu_{\mathbb{H}}^{\oplus \oplus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}^{\dagger}} \downarrow \nu_{\mathcal{D}}^{\oplus \oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:

Weak RSW result for $\Theta \oplus$ percolation:

A taste of the proof. Step 2: ergodicity (via RSW)

- Red marginal: $\nu_{\mathbb{H}}^{\oplus \oplus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}^{\dagger}} \downarrow \nu_{\mathcal{D}}^{\oplus \oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:

Weak RSW result for $\Theta \oplus$ percolation:

A taste of the proof. Step 2: ergodicity (via RSW)

- Red marginal: $\nu_{\mathbb{H}}^{€ \mathbb{~}}=\lim _{\mathcal{D} \rightarrow \mathbb{H}^{\prime}} \downarrow \nu_{\mathcal{D}}^{\oplus \oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:

Weak RSW result for $\oplus \oplus$ percolation:

A taste of the proof. Step 2: ergodicity (via RSW)

- Red marginal: $\nu_{\mathbb{H}}^{€ \mathbb{~}}=\lim _{\mathcal{D} \rightarrow \mathbb{H}^{\prime}} \downarrow \nu_{\mathcal{D}}^{\oplus \oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:

Weak RSW result for $\oplus \oplus$ percolation:

A taste of the proof. Step 2: ergodicity (via RSW)

- Red marginal: $\nu_{\mathbb{H}}^{\oplus \oplus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}^{\prime}} \downarrow \nu_{\mathcal{D}}^{\oplus \oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:

A taste of the proof. Step 2: ergodicity (via RSW)

- Red marginal: $\nu_{\mathbb{H}}^{\oplus \oplus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}^{\dagger}} \downarrow \nu_{\mathcal{D}}^{\oplus \oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:

A taste of the proof. Step 2: ergodicity (via RSW)

- Red marginal: $\nu_{\mathbb{H}}^{\oplus \oplus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}^{\dagger}} \downarrow \nu_{\mathcal{D}}^{\oplus \oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:

A taste of the proof. Step 2: ergodicity (via RSW)

- Red marginal: $\nu_{\mathbb{H}}^{\oplus \oplus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}^{\prime}} \downarrow \nu_{\mathcal{D}}^{\oplus \oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:
- 0 is surrounded by infinitely many $\oplus \oplus$ circuits $\mu_{\mathbb{H}}$-a.s.
- in particular $\mu_{\mathbb{H}}$ is translation invariant and ergodic;

A taste of the proof. Step 3: $\mu_{\mathbb{H}}^{\oplus}=\mu_{\mathbb{H}}^{\oplus}$

- Red marginal: $\nu_{\mathbb{H}}^{\oplus \oplus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}} \downarrow \nu_{\mathcal{D}}^{\oplus \oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:
- 0 is surrounded by infinitely many $\oplus \oplus$ circuits $\mu_{\mathbb{H}}$-a.s.
- in particular $\mu_{\mathbb{H}}$ is translation invariant and ergodic;
- Burton-Keane applies \Rightarrow zero or one infinite 4 -cluster

A taste of the proof. Step 3: $\mu_{\mathbb{H}}^{\oplus \oplus}=\mu_{\mathbb{H}}^{\ominus}$

- Red marginal: $\nu_{\mathbb{H}}^{\oplus \oplus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}} \downarrow \nu_{\mathcal{D}}^{\oplus \oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:
- 0 is surrounded by infinitely many $\mathbb{H} \oplus$ circuits $\mu_{\mathbb{H}}$-a.s.
- in particular $\mu_{\mathbb{H}}$ is translation invariant and ergodic;
- Burton-Keane applies \Rightarrow zero or one infinite -cluster
- Zhang's trick \Rightarrow no infinite $\boldsymbol{\oplus}$-cluster and no infinite Θ-cluster

A taste of the proof. Step 3: $\mu_{\mathbb{H}}^{\oplus \oplus}=\mu_{\mathbb{H}}^{\ominus}$

- Red marginal: $\nu_{\mathbb{H}}^{\oplus \oplus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}} \downarrow \nu_{\mathcal{D}}^{\oplus \oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:
- 0 is surrounded by infinitely many $\oplus \oplus$ circuits $\mu_{\mathbb{H}}$-a.s.
- in particular $\mu_{\mathbb{H}}$ is translation invariant and ergodic;
- Burton-Keane applies \Rightarrow zero or one infinite 9 -cluster
- Zhang's trick \Rightarrow no infinite $\boldsymbol{\oplus}$-cluster and no infinite Θ-cluster

A taste of the proof. Step 3: $\mu_{\mathbb{H}}^{\oplus \oplus}=\mu_{\mathbb{H}}^{\ominus}$

- Red marginal: $\nu_{\mathbb{H}}^{\bigoplus \oplus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}} \downarrow \nu_{\mathcal{D}}^{\oplus \oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:
- 0 is surrounded by infinitely many $\mathbb{H} \oplus \oplus^{\text {circuits }} \mu_{\mathbb{H}}$-a.s.
- in particular $\mu_{\mathbb{H}}$ is translation invariant and ergodic;
- Burton-Keane applies \Rightarrow zero or one infinite \oplus-cluster
- Zhang's trick \Rightarrow no infinite $\boldsymbol{\theta}$-cluster and no infinite Θ-cluster
- Infinitely many blue loops

A taste of the proof. Step 3: $\mu_{\mathbb{H}}^{\oplus \in}=\mu_{\mathbb{H}}^{\ominus}$

- Red marginal: $\nu_{\mathbb{H}}^{\oplus \mathbb{H}}=\lim _{\mathcal{D} \rightarrow \mathbb{H}} \downarrow \nu_{\mathcal{D}}^{\oplus \oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:
- 0 is surrounded by infinitely many $\mathbb{\oplus} \oplus$ circuits $\mu_{\mathbb{H}}$-a.s.
- in particular $\mu_{\mathbb{H}}$ is translation invariant and ergodic;
- Burton-Keane applies \Rightarrow zero or one infinite $\boldsymbol{\epsilon}$-cluster
- Zhang's trick \Rightarrow no infinite $\boldsymbol{\theta}$-cluster and no infinite Θ-cluster
- Infinitely many blue loops and infinitely many red loops

A taste of the proof. Step 3: $\mu_{\mathbb{H}}^{\oplus \oplus}=\mu_{\mathbb{H}}^{\ominus}$

- Red marginal: $\nu_{\mathbb{H}}^{\oplus \oplus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}^{\ominus}} \downarrow \nu_{\mathcal{D}}^{\oplus \oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:
- 0 is surrounded by infinitely many $\mathbb{H} \oplus$ circuits $\mu_{\mathbb{H}}$-a.s.
- in particular $\mu_{\mathbb{H}}$ is translation invariant and ergodic;
- Burton-Keane applies \Rightarrow zero or one infinite \oplus-cluster
- Zhang's trick \Rightarrow no infinite $\boldsymbol{\oplus}$-cluster and no infinite Θ-cluster
- Infinitely many blue loops and infinitely many red loops
- Changing colours of loops + infinitely many $₫ \oplus$ circuits
$\Rightarrow \mu_{\mathbb{H}}^{\oplus \oplus}$ unique infinite-volume measure: $\mu_{\mathbb{H}}^{\oplus \oplus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}} \mu_{\mathcal{D}}^{\ominus \ominus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}} \mu_{\mathcal{D}}^{\ominus \oplus}$

A taste of the proof. Step 4: delocalization

- Red marginal: $\nu_{\mathbb{H}}^{\oplus \oplus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}^{\dagger}} \downarrow \nu_{\mathcal{D}}^{\oplus \oplus}$
- Blue marginal: i.i.d. colouring of red config. \Rightarrow joint measure $\mu_{\mathbb{H}}^{\oplus \oplus}$:
- 0 is surrounded by infinitely many $\mathbb{\oplus} \oplus$ circuits $\mu_{\mathbb{H}}$-a.s.
- in particular $\mu_{\mathbb{H}}$ is translation invariant and ergodic;
- Burton-Keane applies \Rightarrow zero or one infinite \oplus-cluster
- Zhang's trick \Rightarrow no infinite ©-cluster and no infinite Θ-cluster
- Infinitely many blue loops and infinitely many red loops
- Changing colours of loops + infinitely many $\mathbb{\oplus} \oplus$ circuits $\Rightarrow \mu_{\mathbb{H}}^{\oplus \oplus+}$ unique infinite-volume measure: $\mu_{\mathbb{H}}^{\oplus \oplus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}} \mu_{\mathcal{D}}^{\ominus \ominus}=\lim _{\mathcal{D} \rightarrow \mathbb{H}} \mu_{\mathcal{D}}^{\ominus \Theta}$
- infinitely many loops around $0 \Rightarrow$ delocalisation for $\mu_{\mathbb{H}}$.
- $\operatorname{Var}\left(\Gamma_{\mathcal{D}}(0)\right) \rightarrow \infty$ as \mathcal{D} increases to $\mathbb{H} \Rightarrow$ Delocalisation in finite volume.

Dichotomy theorem: idea of proof

Lemma (Pushing lemma)

Dichotomy theorem: idea of proof

Lemma (Pushing lemma)

and

Proof of dichotomy using pushing lemma

Either: $\alpha_{n} \geq c>0$ or $\alpha_{n} \leq \exp \left(-c n^{\delta}\right)$, where

Proof of dichotomy using pushing lemma

Either: $\alpha_{n} \geq c>0$ or $\alpha_{n} \leq \exp \left(-c n^{\delta}\right)$, where

Proof of dichotomy using pushing lemma

Either: $\alpha_{n} \geq c>0$ or $\alpha_{n} \leq \exp \left(-c n^{\delta}\right)$, where

Proof of dichotomy using pushing lemma

Either: $\alpha_{n} \geq c>0$ or $\alpha_{n} \leq \exp \left(-c n^{\delta}\right)$, where

Proof of dichotomy using pushing lemma

Either: $\alpha_{n} \geq c>0$ or $\alpha_{n} \leq \exp \left(-c n^{\delta}\right)$, where

With probability $\quad \alpha_{\rho n}$:

Proof of dichotomy using pushing lemma

Either: $\alpha_{n} \geq c>0$ or $\alpha_{n} \leq \exp \left(-c n^{\delta}\right)$, where

With probability $C \alpha_{\rho n}$:

Proof of dichotomy using pushing lemma

Either: $\alpha_{n} \geq c>0$ or $\alpha_{n} \leq \exp \left(-c n^{\delta}\right)$, where

Proof of dichotomy using pushing lemma

Either: $\alpha_{n} \geq c>0$ or $\alpha_{n} \leq \exp \left(-c n^{\delta}\right)$, where

Proof of dichotomy using pushing lemma

Either: $\alpha_{n} \geq c>0$ or $\alpha_{n} \leq \exp \left(-c n^{\delta}\right)$, where

With probability $c^{3} \alpha_{\rho n}$:
\Rightarrow Two isolated circuits,
so $\alpha_{\rho n} \leq c^{7} \alpha_{n}^{2}$

Proof of dichotomy using pushing lemma

Either: $\alpha_{n} \geq c>0$ or $\alpha_{n} \leq \exp \left(-c n^{\delta}\right)$, where

With probability $c^{7} \alpha_{\rho n}$:
\Rightarrow Two isolated circuits,
so $\alpha_{\rho n} \leq c^{7} \alpha_{n}^{2}$

Thank you!

