Existence and uniqueness of the Liouville quantum gravity metric for $\gamma \in (0,2)$

Jason Miller

Cambridge

Ewain Gwynne (Cambridge)

June 14, 2019

Want to make sense of the canonical model for a random two-dimensional Riemannian manifold

- Want to make sense of the canonical model for a random two-dimensional Riemannian manifold
- Polyakov (1980s): should be formally given by the metric tensor

$$e^{\gamma h(z)}(dx^2+dy^2), \quad z=x+iy, \quad \gamma \in (0,2]$$

where h is an instance of the Gaussian free field (GFF) on a planar domain D

- Want to make sense of the canonical model for a random two-dimensional Riemannian manifold
- Polyakov (1980s): should be formally given by the metric tensor

$$e^{\gamma h(z)}(dx^2+dy^2), \quad z=x+iy, \quad \gamma \in (0,2]$$

where h is an instance of the Gaussian free field (GFF) on a planar domain D

cov(h(x), h(y)) = G(x, y) ∼ − log |x − y| as x → y where G is the Green's function for Δ on D

- Want to make sense of the canonical model for a random two-dimensional Riemannian manifold
- Polyakov (1980s): should be formally given by the metric tensor

$$e^{\gamma h(z)}(dx^2+dy^2), \quad z=x+iy, \quad \gamma \in (0,2]$$

where h is an instance of the Gaussian free field (GFF) on a planar domain D

- $\operatorname{cov}(h(x), h(y)) = G(x, y) \sim -\log |x y| \text{ as } x \to y$ where *G* is the Green's function for Δ on *D*
- Ill-defined mathematically since h is a distribution

 $\gamma\text{-Liouville}$ quantum gravity (LQG)

$$e^{\gamma h(z)}(dx^2+dy^2), \quad \gamma \in (0,2]$$

has long been conjectured to describe the scaling limits of random planar maps (RPM)

 $\gamma\text{-Liouville}$ quantum gravity (LQG)

$$e^{\gamma h(z)}(dx^2+dy^2), \quad \gamma \in (0,2]$$

has long been conjectured to describe the scaling limits of random planar maps (RPM)

• $\gamma = \sqrt{8/3}$ uniformly random

 $\gamma\text{-Liouville}$ quantum gravity (LQG)

$$e^{\gamma h(z)}(dx^2+dy^2), \quad \gamma \in (0,2]$$

has long been conjectured to describe the scaling limits of random planar maps (RPM)

- $\gamma = \sqrt{8/3}$ uniformly random
- ▶ $\gamma = \sqrt{2}$ spanning-tree decorated

 $\gamma\text{-Liouville}$ quantum gravity (LQG)

$$e^{\gamma h(z)}(dx^2+dy^2), \quad \gamma \in (0,2]$$

has long been conjectured to describe the scaling limits of random planar maps (RPM)

- $\gamma = \sqrt{8/3}$ uniformly random
- $\gamma = \sqrt{2}$ spanning-tree decorated
- $\gamma = \sqrt{3}$ Ising model decorated

 $\gamma\text{-Liouville}$ quantum gravity (LQG)

$$e^{\gamma h(z)}(dx^2+dy^2), \quad \gamma \in (0,2]$$

has long been conjectured to describe the scaling limits of random planar maps (RPM)

- $\gamma = \sqrt{8/3}$ uniformly random
- $\gamma = \sqrt{2}$ spanning-tree decorated
- $\gamma = \sqrt{3}$ Ising model decorated

Versions of these types of statements have been proved. Require interpretation since γ -LQG and RPM possess different type of structure.

 $\gamma\text{-Liouville}$ quantum gravity (LQG)

$$e^{\gamma h(z)}(dx^2+dy^2), \quad \gamma \in (0,2]$$

has long been conjectured to describe the scaling limits of random planar maps (RPM)

- $\gamma = \sqrt{8/3}$ uniformly random
- $\gamma = \sqrt{2}$ spanning-tree decorated
- $\gamma = \sqrt{3}$ Ising model decorated

Versions of these types of statements have been proved. Require interpretation since γ -LQG and RPM possess different type of structure.

This talk is about putting a **metric space** structure on LQG, which is the natural structure on a RPM (graph distance)

Every two-dimensional Riemannian manifold has a

- volume form and a
- distance function

Every two-dimensional Riemannian manifold has a

- volume form and a
- distance function
- To construct the volume form for $e^{\gamma h(z)}(dx^2 + dy^2)$, h a GFF, can
 - ▶ regularize the GFF by considering the average $h_{\epsilon}(z)$ of h on $\partial B(z, \epsilon)$ and set ▶ $\mu_{h}^{\gamma} = \lim_{\epsilon \to 0} \epsilon^{\gamma^{2}/2} e^{\gamma h_{\epsilon}(z)} dz$ where dz is Lebesgue measure

Every two-dimensional Riemannian manifold has a

- volume form and a
- distance function

• To construct the volume form for $e^{\gamma h(z)}(dx^2 + dy^2)$, h a GFF, can

- ▶ regularize the GFF by considering the average $h_{\epsilon}(z)$ of h on $\partial B(z, \epsilon)$ and set ▶ $\mu_{h}^{\gamma} = \lim_{\epsilon \to 0} \epsilon^{\gamma^{2}/2} e^{\gamma h_{\epsilon}(z)} dz$ where dz is Lebesgue measure
- Since $\operatorname{var}(h_{\epsilon}(z)) = \log \frac{1}{\epsilon} + O(1)$ as $\epsilon \to 0$, the factor $\epsilon^{\gamma^2/2}$ is necessary to get a non-trivial limit

Every two-dimensional Riemannian manifold has a

- volume form and a
- distance function

• To construct the volume form for $e^{\gamma h(z)}(dx^2 + dy^2)$, h a GFF, can

- ▶ regularize the GFF by considering the average $h_{\epsilon}(z)$ of h on $\partial B(z, \epsilon)$ and set ▶ $\mu_{h}^{\gamma} = \lim_{\epsilon \to 0} \epsilon^{\gamma^{2}/2} e^{\gamma h_{\epsilon}(z)} dz$ where dz is Lebesgue measure
- Since $\operatorname{var}(h_{\epsilon}(z)) = \log \frac{1}{\epsilon} + O(1)$ as $\epsilon \to 0$, the factor $\epsilon^{\gamma^2/2}$ is necessary to get a non-trivial limit
- Appears in works of Hoegh-Krohn, Kahane, Duplantier-Sheffield, etc...

Previously, metric only constructed for $\gamma = \sqrt{8/3}$ (M.-Sheffield) using SLE-based techniques by constructing a growth process (a version of the Eden model, called QLE(8/3,0)) which corresponds to metric balls

Previously, metric only constructed for $\gamma = \sqrt{8/3}$ (M.-Sheffield) using SLE-based techniques by constructing a growth process (a version of the Eden model, called QLE(8/3,0)) which corresponds to metric balls

Natural to try an approach analogous to the volume form construction to define the **distance function**:

$$D_h^{\epsilon}(x,y) = \inf_{P:x \to y} \int |P'(s)| e^{\xi h_{\epsilon}(P(s))} ds.$$

Approximations are referred to as Liouville first passage percolation (LFPP)

Exponent ξ is given by γ/d_γ where d_γ is the volume growth exponent for $\gamma\text{-LQG}$ constructed by Ding-Gwynne

Previously, metric only constructed for $\gamma = \sqrt{8/3}$ (M.-Sheffield) using SLE-based techniques by constructing a growth process (a version of the Eden model, called QLE(8/3,0)) which corresponds to metric balls

Natural to try an approach analogous to the volume form construction to define the **distance function**:

$$D_h^{\epsilon}(x,y) = \inf_{P:x \to y} \int |P'(s)| e^{\xi h_{\epsilon}(P(s))} ds.$$

Approximations are referred to as Liouville first passage percolation (LFPP)

Exponent ξ is given by γ/d_γ where d_γ is the volume growth exponent for $\gamma\text{-LQG}$ constructed by Ding-Gwynne

Previously, metric only constructed for $\gamma = \sqrt{8/3}$ (M.-Sheffield) using SLE-based techniques by constructing a growth process (a version of the Eden model, called QLE(8/3,0)) which corresponds to metric balls

Natural to try an approach analogous to the volume form construction to define the **distance function**:

$$D_h^{\epsilon}(x,y) = \inf_{P:x \to y} \int |P'(s)| e^{\xi h_{\epsilon}(P(s))} ds.$$

Approximations are referred to as Liouville first passage percolation (LFPP)

Exponent ξ is given by γ/d_γ where d_γ is the volume growth exponent for $\gamma\text{-LQG}$ constructed by Ding-Gwynne

Tightness results for these types of approximations (where D_h^{ϵ} normalized using median distance):

• Ding-Dunlap, (LFPP) small $\gamma > 0$

Previously, metric only constructed for $\gamma = \sqrt{8/3}$ (M.-Sheffield) using SLE-based techniques by constructing a growth process (a version of the Eden model, called QLE(8/3,0)) which corresponds to metric balls

Natural to try an approach analogous to the volume form construction to define the **distance function**:

$$D_h^{\epsilon}(x,y) = \inf_{P:x \to y} \int |P'(s)| e^{\xi h_{\epsilon}(P(s))} ds.$$

Approximations are referred to as Liouville first passage percolation (LFPP)

Exponent ξ is given by γ/d_γ where d_γ is the volume growth exponent for $\gamma\text{-LQG}$ constructed by Ding-Gwynne

- Ding-Dunlap, (LFPP) small $\gamma > 0$
- Dubédat-Falconet, (LFPP) small $\gamma > 0$

Previously, metric only constructed for $\gamma = \sqrt{8/3}$ (M.-Sheffield) using SLE-based techniques by constructing a growth process (a version of the Eden model, called QLE(8/3,0)) which corresponds to metric balls

Natural to try an approach analogous to the volume form construction to define the **distance function**:

$$D_h^{\epsilon}(x,y) = \inf_{P:x \to y} \int |P'(s)| e^{\xi h_{\epsilon}(P(s))} ds.$$

Approximations are referred to as **Liouville first passage percolation** (LFPP)

Exponent ξ is given by γ/d_γ where d_γ is the volume growth exponent for $\gamma\text{-LQG}$ constructed by Ding-Gwynne

- Ding-Dunlap, (LFPP) small $\gamma > 0$
- Dubédat-Falconet, (LFPP) small $\gamma > 0$
- Ding-Dunlap, (Liouville graph distance) all $\gamma \in (0,2)$

Previously, metric only constructed for $\gamma = \sqrt{8/3}$ (M.-Sheffield) using SLE-based techniques by constructing a growth process (a version of the Eden model, called QLE(8/3,0)) which corresponds to metric balls

Natural to try an approach analogous to the volume form construction to define the **distance function**:

$$D_h^{\epsilon}(x,y) = \inf_{P:x \to y} \int |P'(s)| e^{\xi h_{\epsilon}(P(s))} ds.$$

Approximations are referred to as Liouville first passage percolation (LFPP)

Exponent ξ is given by γ/d_γ where d_γ is the volume growth exponent for $\gamma\text{-LQG}$ constructed by Ding-Gwynne

- Ding-Dunlap, (LFPP) small $\gamma > 0$
- Dubédat-Falconet, (LFPP) small $\gamma > 0$
- ▶ Ding-Dunlap, (Liouville graph distance) all $\gamma \in (0,2)$
- ▶ Ding-Dubédat-Dunlap-Falconet, (LFFP) all γ ∈ (0,2). (See Hugo F's talk next week.)

Simulation of an LFPP metric ball for $\gamma=\sqrt{8/3}$

Plot of $\xi = \gamma/d_\gamma$ for $\gamma \in (0,2)$ where d_γ is the volume growth exponent

 $\xi(\sqrt{2}) \approx 0.39$, $\xi(\sqrt{8/3}) \approx 0.41$, $\xi(\sqrt{3}) \approx 0.41$. Value of d_{γ} not explicitly known.

Theorem (Gwynne-M.)

Suppose that h is an instance of the GFF and $\gamma \in (0, 2)$.

- The approximations D_h^{ϵ} converge in probability as $\epsilon \to 0$ to a metric D_h
- D_h is characterized by certain natural axioms (locally determined by h, homeomorphic to Euclidean space, transforms properly when applying conformal maps)
- For $\gamma = \sqrt{8/3}$, D_h is equivalent to the metric constructed with QLE(8/3,0)

The $\sqrt{8/3}$ -LQG metric (M.-Sheffield) was constructed by building a version of the Eden growth model using ${\rm SLE}_6$ processes

The $\sqrt{8/3}$ -LQG metric (M.-Sheffield) was constructed by building a version of the Eden growth model using ${\rm SLE}_6$ processes

▶ Proof hinges on certain special symmetries that SLE_6 has with $\sqrt{8/3}$ -LQG and also the presence of exact formulas coming from Lévy processes

The $\sqrt{8/3}$ -LQG metric (M.-Sheffield) was constructed by building a version of the Eden growth model using ${\rm SLE}_6$ processes

- ▶ Proof hinges on certain special symmetries that SLE_6 has with $\sqrt{8/3}$ -LQG and also the presence of exact formulas coming from Lévy processes
- Exact formulas are what make it possible to prove its equivalence with the Brownian map

The $\sqrt{8/3}$ -LQG metric (M.-Sheffield) was constructed by building a version of the Eden growth model using ${\rm SLE}_6$ processes

- ▶ Proof hinges on certain special symmetries that SLE_6 has with $\sqrt{8/3}$ -LQG and also the presence of exact formulas coming from Lévy processes
- Exact formulas are what make it possible to prove its equivalence with the Brownian map

In contrast, the construction for $\gamma \in (0, 2)$ makes no use of SLE and there are no known exact formulas; based entirely on "elementary" GFF techniques

The $\sqrt{8/3}$ -LQG metric (M.-Sheffield) was constructed by building a version of the Eden growth model using ${\rm SLE}_6$ processes

- ▶ Proof hinges on certain special symmetries that SLE_6 has with $\sqrt{8/3}$ -LQG and also the presence of exact formulas coming from Lévy processes
- Exact formulas are what make it possible to prove its equivalence with the Brownian map

In contrast, the construction for $\gamma \in (0, 2)$ makes no use of SLE and there are no known exact formulas; based entirely on "elementary" GFF techniques

Starting point is a definition of a γ-LQG metric, which contains a minimal list of properties that any metric naturally associated with γ-LQG should satisfy

The $\sqrt{8/3}$ -LQG metric (M.-Sheffield) was constructed by building a version of the Eden growth model using ${\rm SLE}_6$ processes

- ▶ Proof hinges on certain special symmetries that SLE_6 has with $\sqrt{8/3}$ -LQG and also the presence of exact formulas coming from Lévy processes
- Exact formulas are what make it possible to prove its equivalence with the Brownian map

In contrast, the construction for $\gamma \in (0, 2)$ makes no use of SLE and there are no known exact formulas; based entirely on "elementary" GFF techniques

- Starting point is a definition of a γ-LQG metric, which contains a minimal list of properties that any metric naturally associated with γ-LQG should satisfy
- Do not have an alternative simple construction of metric space trying to build using the GFF (e.g., the Brownian map)

The $\sqrt{8/3}$ -LQG metric (M.-Sheffield) was constructed by building a version of the Eden growth model using ${\rm SLE}_6$ processes

- ▶ Proof hinges on certain special symmetries that SLE_6 has with $\sqrt{8/3}$ -LQG and also the presence of exact formulas coming from Lévy processes
- Exact formulas are what make it possible to prove its equivalence with the Brownian map

In contrast, the construction for $\gamma \in (0, 2)$ makes no use of SLE and there are no known exact formulas; based entirely on "elementary" GFF techniques

- Starting point is a definition of a γ-LQG metric, which contains a minimal list of properties that any metric naturally associated with γ-LQG should satisfy
- Do not have an alternative simple construction of metric space trying to build using the GFF (e.g., the Brownian map)

Does not supersede the previous $\sqrt{8/3}$ -LQG metric construction because exact formulas for $\gamma = \sqrt{8/3}$ and connection to the Brownian map only emerge using SLE₆-based tools

Coordinate change formula

Recall that the $\gamma\text{-}\mathsf{LQG}$ volume form μ_h^γ is given by the limit

$$\mu_h^\gamma = \lim_{\epsilon o 0} \epsilon^{\gamma^2/2} e^{\gamma h_\epsilon(z)} dz \quad ext{for} \quad \gamma \in (0,2).$$

Coordinate change formula

Recall that the γ -LQG volume form μ_h^{γ} is given by the limit

$$\mu_h^\gamma = \lim_{\epsilon o 0} \epsilon^{\gamma^2/2} e^{\gamma h_\epsilon(z)} dz \quad ext{for} \quad \gamma \in (0,2).$$

As a consequence of the normalization factor $\epsilon^{\gamma^2/2}$, the measures μ_h^{γ} satisfy a modified version of the standard change of variables formula.

Coordinate change formula

Recall that the γ -LQG volume form μ_h^{γ} is given by the limit

$$\mu_h^\gamma = \lim_{\epsilon o 0} \epsilon^{\gamma^2/2} e^{\gamma h_\epsilon(z)} dz \quad ext{for} \quad \gamma \in (0,2).$$

As a consequence of the normalization factor $\epsilon^{\gamma^2/2}$, the measures μ_h^{γ} satisfy a modified version of the standard change of variables formula.

Suppose that $\psi \colon \widetilde{D} \to D$ is a conformal transformation and h is a GFF on D and $Q = \frac{2}{\gamma} + \frac{\gamma}{2}$

Then $\mu_h^{\gamma}(\psi(A)) = \mu_{\widetilde{h}}^{\gamma}(A)$ for all $A \subseteq \widetilde{D}$ Borel. View (D, h) and $(\widetilde{D}, \widetilde{h})$ as different parameterizations of the same surface.

Jason Miller (Cambridge)

Definition of a Liouville quantum gravity metric

Suppose that h is an instance of the whole-plane GFF.
Suppose that *h* is an instance of the whole-plane GFF. A metric D_h coupled with *h* which is homeomorphic to the Euclidean metric on **C** is called a γ -Liouville quantum gravity metric if it satisfies the following:

Suppose that *h* is an instance of the whole-plane GFF. A metric D_h coupled with *h* which is homeomorphic to the Euclidean metric on **C** is called a γ -Liouville quantum gravity metric if it satisfies the following:

Axiom I: Length space. For all $z, w \in \mathbf{C}$ and $\epsilon > 0$ there exists a path *P* connecting z, w with D_h -length at most $D_h(z, w) + \epsilon$

Suppose that *h* is an instance of the whole-plane GFF. A metric D_h coupled with *h* which is homeomorphic to the Euclidean metric on **C** is called a γ -Liouville quantum gravity metric if it satisfies the following:

Axiom I: Length space. For all $z, w \in \mathbf{C}$ and $\epsilon > 0$ there exists a path P connecting z, w with D_h -length at most $D_h(z, w) + \epsilon$

Axiom II: Locality. For each $U \subseteq \mathbf{C}$ open, the internal metric induced by D_h on U is determined by $h|_U$

Suppose that *h* is an instance of the whole-plane GFF. A metric D_h coupled with *h* which is homeomorphic to the Euclidean metric on **C** is called a γ -Liouville quantum gravity metric if it satisfies the following:

Axiom I: Length space. For all $z, w \in \mathbf{C}$ and $\epsilon > 0$ there exists a path *P* connecting z, w with D_h -length at most $D_h(z, w) + \epsilon$

Axiom II: Locality. For each $U \subseteq \mathbf{C}$ open, the internal metric induced by D_h on U is determined by $h|_U$

Axiom III: Weyl scaling. For $\xi = \gamma/d_{\gamma}$ and each constant $C \in \mathbf{R}$ we have that

$$D_{h+C}(z,w)=e^{\xi C}D_h(z,w) \quad ext{for all} \quad z,w\in \mathbf{C}$$

Suppose that *h* is an instance of the whole-plane GFF. A metric D_h coupled with *h* which is homeomorphic to the Euclidean metric on **C** is called a γ -Liouville quantum gravity metric if it satisfies the following:

Axiom I: Length space. For all $z, w \in \mathbf{C}$ and $\epsilon > 0$ there exists a path *P* connecting z, w with D_h -length at most $D_h(z, w) + \epsilon$

Axiom II: Locality. For each $U \subseteq \mathbf{C}$ open, the internal metric induced by D_h on U is determined by $h|_U$

Axiom III: Weyl scaling. For $\xi = \gamma/d_{\gamma}$ and each constant $C \in \mathbf{R}$ we have that

$$D_{h+C}(z,w) = e^{\xi C} D_h(z,w)$$
 for all $z,w \in \mathbf{C}$

The same more generally holds for every continuous $f: \mathbf{C} \to \mathbf{R}$

Suppose that *h* is an instance of the whole-plane GFF. A metric D_h coupled with *h* which is homeomorphic to the Euclidean metric on **C** is called a γ -Liouville quantum gravity metric if it satisfies the following:

Axiom I: Length space. For all $z, w \in \mathbf{C}$ and $\epsilon > 0$ there exists a path *P* connecting z, w with D_h -length at most $D_h(z, w) + \epsilon$

Axiom II: Locality. For each $U \subseteq \mathbf{C}$ open, the internal metric induced by D_h on U is determined by $h|_U$

Axiom III: Weyl scaling. For $\xi = \gamma/d_{\gamma}$ and each constant $C \in \mathbf{R}$ we have that

$$D_{h+C}(z,w) = e^{\xi C} D_h(z,w)$$
 for all $z,w \in \mathbf{C}$

The same more generally holds for every continuous $f: \mathbf{C} \to \mathbf{R}$

Axiom IV: Compatibility with coordinate changes. For each α , $u \in C$ and $z, w \in C$

$$D_h(\alpha z + u, \alpha w + u) = D_{h(\alpha \cdot + u) + Q \log |\alpha|}(z, w)$$
 for $Q = \frac{2}{\gamma} + \frac{\gamma}{2}$.

Suppose that *h* is an instance of the whole-plane GFF. A metric D_h coupled with *h* which is homeomorphic to the Euclidean metric on **C** is called a γ -Liouville quantum gravity metric if it satisfies the following:

Axiom I: Length space. For all $z, w \in \mathbf{C}$ and $\epsilon > 0$ there exists a path *P* connecting z, w with D_h -length at most $D_h(z, w) + \epsilon$

Axiom II: Locality. For each $U \subseteq \mathbf{C}$ open, the internal metric induced by D_h on U is determined by $h|_U$

Axiom III: Weyl scaling. For $\xi = \gamma/d_{\gamma}$ and each constant $C \in \mathbf{R}$ we have that

$$D_{h+C}(z,w) = e^{\xi C} D_h(z,w)$$
 for all $z,w \in \mathbf{C}$

The same more generally holds for every continuous $f: \mathbf{C} \to \mathbf{R}$

Axiom IV: Compatibility with coordinate changes. For each α , $u \in \mathbf{C}$ and $z, w \in \mathbf{C}$

$$D_h(\alpha z + u, \alpha w + u) = D_{h(\alpha \cdot + u) + Q \log |\alpha|}(z, w)$$
 for $Q = \frac{2}{\gamma} + \frac{\gamma}{2}$.

Equivalent to an earlier definition of a γ -LQG metric by M.-Qian.

Step 1: Suppose that D_h , \widetilde{D}_h are two γ -LQG metrics. There exists $0 < C_1 \le C_2 < \infty$ **deterministic** so that D_h , \widetilde{D}_h are a.s. (C_1, C_2) -bi-Lipschitz equivalent:

 $C_1D_h(z,w) \leq \widetilde{D}_h(z,w) \leq C_2D_h(z,w) \quad \text{for all} \quad z,w \in \mathbf{C}.$

Step 1: Suppose that D_h , \widetilde{D}_h are two γ -LQG metrics. There exists $0 < C_1 \leq C_2 < \infty$ **deterministic** so that D_h , \widetilde{D}_h are a.s. (C_1, C_2) -bi-Lipschitz equivalent:

$$C_1D_h(z,w)\leq \widetilde{D}_h(z,w)\leq C_2D_h(z,w) \quad ext{for all} \quad z,w\in {f C}.$$

Goal: show that $C_1 = C_2$

Step 1: Suppose that D_h , \widetilde{D}_h are two γ -LQG metrics. There exists $0 < C_1 \leq C_2 < \infty$ **deterministic** so that D_h , \widetilde{D}_h are a.s. (C_1, C_2) -bi-Lipschitz equivalent:

$$C_1D_h(z,w) \leq \widetilde{D}_h(z,w) \leq C_2D_h(z,w) \quad ext{for all} \quad z,w \in \mathbf{C}.$$

Goal: show that $C_1 = C_2$

Step 2: If D_h is a γ -LQG metric and $z, w \in \mathbf{C}$, then it is a.s. the case that the geodesic from z to 0 merges with the geodesic from w to 0

Step 1: Suppose that D_h , \widetilde{D}_h are two γ -LQG metrics. There exists $0 < C_1 \le C_2 < \infty$ **deterministic** so that D_h , \widetilde{D}_h are a.s. (C_1, C_2) -bi-Lipschitz equivalent:

$$C_1 D_h(z,w) \leq \widetilde{D}_h(z,w) \leq C_2 D_h(z,w) \quad ext{for all} \quad z,w \in \mathbf{C}.$$

Goal: show that $C_1 = C_2$

Step 2: If D_h is a γ -LQG metric and $z, w \in \mathbf{C}$, then it is a.s. the case that the geodesic from z to 0 merges with the geodesic from w to 0

Implies there is a lot of "independence" along a geodesic because it is "stable" when resampling

Step 1: Suppose that D_h , \widetilde{D}_h are two γ -LQG metrics. There exists $0 < C_1 \le C_2 < \infty$ **deterministic** so that D_h , \widetilde{D}_h are a.s. (C_1, C_2) -bi-Lipschitz equivalent:

$$C_1 D_h(z,w) \leq \widetilde{D}_h(z,w) \leq C_2 D_h(z,w) \quad ext{for all} \quad z,w \in \mathbf{C}.$$

Goal: show that $C_1 = C_2$

Step 2: If D_h is a γ -LQG metric and $z, w \in \mathbf{C}$, then it is a.s. the case that the geodesic from z to 0 merges with the geodesic from w to 0

- Implies there is a lot of "independence" along a geodesic because it is "stable" when resampling
- Analogous statement to Le Gall's confluence of geodesics for the Brownian map

Step 1: Suppose that D_h , \widetilde{D}_h are two γ -LQG metrics. There exists $0 < C_1 \le C_2 < \infty$ **deterministic** so that D_h , \widetilde{D}_h are a.s. (C_1, C_2) -bi-Lipschitz equivalent:

$$\mathcal{C}_1 D_h(z,w) \leq \widetilde{D}_h(z,w) \leq \mathcal{C}_2 D_h(z,w) \quad ext{for all} \quad z,w \in \mathbf{C}.$$

Goal: show that $C_1 = C_2$

Step 2: If D_h is a γ -LQG metric and $z, w \in \mathbf{C}$, then it is a.s. the case that the geodesic from z to 0 merges with the geodesic from w to 0

- Implies there is a lot of "independence" along a geodesic because it is "stable" when resampling
- Analogous statement to Le Gall's confluence of geodesics for the Brownian map

Step 3: If (C_1, C_2) are the optimal bi-Lipschitz constants with $C_1 < C_2$, show that there are necessarily many \widetilde{D}_h shortcuts along a D_h geodesic to get a contradiction to the optimality of (C_1, C_2)

Step 1: Suppose that D_h , \widetilde{D}_h are two γ -LQG metrics. There exists $0 < C_1 \le C_2 < \infty$ **deterministic** so that D_h , \widetilde{D}_h are a.s. (C_1, C_2) -bi-Lipschitz equivalent:

$$\mathcal{C}_1 D_h(z,w) \leq \widetilde{D}_h(z,w) \leq \mathcal{C}_2 D_h(z,w) \quad ext{for all} \quad z,w \in \mathbf{C}.$$

Goal: show that $C_1 = C_2$

Step 2: If D_h is a γ -LQG metric and $z, w \in \mathbf{C}$, then it is a.s. the case that the geodesic from z to 0 merges with the geodesic from w to 0

- Implies there is a lot of "independence" along a geodesic because it is "stable" when resampling
- Analogous statement to Le Gall's confluence of geodesics for the Brownian map

Step 3: If (C_1, C_2) are the optimal bi-Lipschitz constants with $C_1 < C_2$, show that there are necessarily many \widetilde{D}_h shortcuts along a D_h geodesic to get a contradiction to the optimality of (C_1, C_2)

Step 4: Define γ -LQG metric on a domain $D \neq C$ using Markov property of GFF; prove conformal covariance of metric

Theorem (Gwynne-M.)

Suppose that h is a whole-plane GFF and D_h , \tilde{D}_h are two γ -LQG metrics. Then there exists $0 < C_1 \leq C_2 < \infty$ deterministic so that

$$C_1 D_h(z,w) \leq \widetilde{D}_h(z,w) \leq C_2 D_h(z,w) \quad \textit{for all} \quad z,w \in \mathbf{C}.$$

Theorem (Gwynne-M.)

Suppose that h is a whole-plane GFF and D_h , \tilde{D}_h are two γ -LQG metrics. Then there exists $0 < C_1 \leq C_2 < \infty$ deterministic so that

$$C_1 D_h(z,w) \leq \widetilde{D}_h(z,w) \leq C_2 D_h(z,w) \quad \textit{for all} \quad z,w \in \mathbf{C}.$$

Theorem (Gwynne-M.)

Suppose that h is a whole-plane GFF and D_h , \tilde{D}_h are two γ -LQG metrics. Then there exists $0 < C_1 \leq C_2 < \infty$ deterministic so that

$$C_1 D_h(z,w) \leq \widetilde{D}_h(z,w) \leq C_2 D_h(z,w) \quad \textit{for all} \quad z,w \in \mathbf{C}.$$

Proof sketch:

Say that an annulus $A = B(z, r) \setminus B(z, r/2)$ is C-good if the D_h distance from $\partial B(z, r)$ to $\partial B(z, r/2)$ is at least 1/C times the \widetilde{D}_h distance around and vice-versa

Theorem (Gwynne-M.)

Suppose that h is a whole-plane GFF and D_h , \tilde{D}_h are two γ -LQG metrics. Then there exists $0 < C_1 \leq C_2 < \infty$ deterministic so that

$$C_1 D_h(z,w) \leq \widetilde{D}_h(z,w) \leq C_2 D_h(z,w) \quad \textit{for all} \quad z,w \in {f C}.$$

- Say that an annulus $A = B(z, r) \setminus B(z, r/2)$ is C-good if the D_h distance from $\partial B(z, r)$ to $\partial B(z, r/2)$ is at least 1/C times the \widetilde{D}_h distance around and vice-versa
- By the scale and translation invariance assumption, the probability that A is C-good does not depend on z and r

Theorem (Gwynne-M.)

Suppose that h is a whole-plane GFF and D_h , \tilde{D}_h are two γ -LQG metrics. Then there exists $0 < C_1 \leq C_2 < \infty$ deterministic so that

$$C_1 D_h(z,w) \leq \widetilde{D}_h(z,w) \leq C_2 D_h(z,w) \quad \textit{for all} \quad z,w \in \mathbf{C}.$$

- Say that an annulus $A = B(z, r) \setminus B(z, r/2)$ is C-good if the D_h distance from $\partial B(z, r)$ to $\partial B(z, r/2)$ is at least 1/C times the \widetilde{D}_h distance around and vice-versa
- By the scale and translation invariance assumption, the probability that A is C-good does not depend on z and r
- Since D_h, D
 _h both induce the Euclidean topology, the probability that A is C-good tends to 1 as C → ∞

Theorem (Gwynne-M.)

Suppose that h is a whole-plane GFF and D_h , \tilde{D}_h are two γ -LQG metrics. Then there exists $0 < C_1 \leq C_2 < \infty$ deterministic so that

$$C_1 D_h(z,w) \leq \widetilde{D}_h(z,w) \leq C_2 D_h(z,w) \quad \textit{for all} \quad z,w \in {f C}.$$

- Say that an annulus $A = B(z, r) \setminus B(z, r/2)$ is C-good if the D_h distance from $\partial B(z, r)$ to $\partial B(z, r/2)$ is at least 1/C times the \widetilde{D}_h distance around and vice-versa
- By the scale and translation invariance assumption, the probability that A is C-good does not depend on z and r
- Since D_h , \widetilde{D}_h both induce the Euclidean topology, the probability that A is C-good tends to 1 as $C \to \infty$
- The behavior of h on disjoint annuli is approximately independent, so there is a large enough value of C so that all of space is covered by arbitrarily small C-good annuli

Theorem (Gwynne-M.)

Suppose that h is a whole-plane GFF and D_h , \tilde{D}_h are two γ -LQG metrics. Then there exists $0 < C_1 \leq C_2 < \infty$ deterministic so that

$$C_1 D_h(z,w) \leq \widetilde{D}_h(z,w) \leq C_2 D_h(z,w) \quad \textit{for all} \quad z,w \in {f C}.$$

- Say that an annulus $A = B(z, r) \setminus B(z, r/2)$ is C-good if the D_h distance from $\partial B(z, r)$ to $\partial B(z, r/2)$ is at least 1/C times the \widetilde{D}_h distance around and vice-versa
- By the scale and translation invariance assumption, the probability that A is C-good does not depend on z and r
- Since D_h , \widetilde{D}_h both induce the Euclidean topology, the probability that A is C-good tends to 1 as $C \to \infty$
- The behavior of h on disjoint annuli is approximately independent, so there is a large enough value of C so that all of space is covered by arbitrarily small C-good annuli
- Can cover a D_h-geodesic by small C-good annuli to see that its D_h length is at most C times its D_h-length and vice-versa

Suppose D_h , \widetilde{D}_h are two γ -LQG metrics. Let C_1 , C_2 be the optimal bi-Lipschitz constants. **Goal:** show $C_1 = C_2$.

Suppose D_h , \widetilde{D}_h are two γ -LQG metrics. Let C_1 , C_2 be the optimal bi-Lipschitz constants. **Goal:** show $C_1 = C_2$. **Strategy:** assume $C_1 < C_2$ and get a contradiction.

Suppose D_h , \widetilde{D}_h are two γ -LQG metrics. Let C_1 , C_2 be the optimal bi-Lipschitz constants. **Goal:** show $C_1 = C_2$. **Strategy:** assume $C_1 < C_2$ and get a contradiction.

Fix $z, w \in \mathbf{C}$ distinct

Suppose D_h , \widetilde{D}_h are two γ -LQG metrics. Let C_1 , C_2 be the optimal bi-Lipschitz constants. **Goal:** show $C_1 = C_2$. **Strategy:** assume $C_1 < C_2$ and get a contradiction.

- Fix $z, w \in \mathbf{C}$ distinct
- Want to get stretched-exponential decay of

$$\mathbf{P}\left[rac{\widetilde{D}_h(z,w)}{D_h(z,w)}\geq C_2-\epsilon
ight] \quad ext{as} \quad \epsilon o 0.$$

Suppose D_h , \widetilde{D}_h are two γ -LQG metrics. Let C_1 , C_2 be the optimal bi-Lipschitz constants. **Goal:** show $C_1 = C_2$. **Strategy:** assume $C_1 < C_2$ and get a contradiction.

Fix $z, w \in \mathbf{C}$ distinct

Want to get stretched-exponential decay of

$$\mathbf{P}\left[\frac{\widetilde{D}_h(z,w)}{D_h(z,w)} \geq C_2 - \epsilon\right] \quad \text{as} \quad \epsilon \to 0.$$

Since C₁ < C₂, there are points u, v at all scales so that D̃_h(u, v)/D(u, v) is bounded away from C₂ (D̃_h-shortcut)

Suppose D_h , D_h are two γ -LQG metrics. Let C_1 , C_2 be the optimal bi-Lipschitz constants. **Goal:** show $C_1 = C_2$. **Strategy:** assume $C_1 < C_2$ and get a contradiction.

Fix $z, w \in \mathbf{C}$ distinct

Want to get stretched-exponential decay of

$$\mathbf{P}\left[rac{\widetilde{D}_h(z,w)}{D_h(z,w)}\geq C_2-\epsilon
ight] \quad ext{as} \quad \epsilon o 0.$$

- Since C₁ < C₂, there are points u, v at all scales so that D̃_h(u, v)/D(u, v) is bounded away from C₂ (D̃_h-shortcut)
- Want to show that these D_h-shortcuts are present all over the geodesic from z to w

Suppose D_h , D_h are two γ -LQG metrics. Let C_1 , C_2 be the optimal bi-Lipschitz constants. **Goal:** show $C_1 = C_2$. **Strategy:** assume $C_1 < C_2$ and get a contradiction.

Fix $z, w \in \mathbf{C}$ distinct

Want to get stretched-exponential decay of

$$\mathbf{P}\left[rac{\widetilde{D}_h(z,w)}{D_h(z,w)}\geq C_2-\epsilon
ight] \quad ext{as} \quad \epsilon o 0.$$

- Since C₁ < C₂, there are points u, v at all scales so that D̃_h(u, v)/D(u, v) is bounded away from C₂ (D̃_h-shortcut)
- Want to show that these D_h-shortcuts are present all over the geodesic from z to w
- Have a positive chance of having a shortcut at a fixed place along a geodesic

Suppose D_h , D_h are two γ -LQG metrics. Let C_1 , C_2 be the optimal bi-Lipschitz constants. **Goal:** show $C_1 = C_2$. **Strategy:** assume $C_1 < C_2$ and get a contradiction.

Fix $z, w \in \mathbf{C}$ distinct

Want to get stretched-exponential decay of

$$\mathbf{P}\left[rac{\widetilde{D}_h(z,w)}{D_h(z,w)}\geq C_2-\epsilon
ight] \quad ext{as} \quad \epsilon o 0.$$

- Since C₁ < C₂, there are points u, v at all scales so that D̃_h(u, v)/D(u, v) is bounded away from C₂ (D̃_h-shortcut)
- Want to show that these D_h-shortcuts are present all over the geodesic from z to w
- Have a positive chance of having a shortcut at a fixed place along a geodesic
- Confluence implies that can resample the geodesic in many places without moving it much → shortcuts are everywhere

Subsequential limits of LFPP generated using a whole-plane GFF obviously define a metric which is a **length space**, satisfies **Weyl scaling**, and is **translation invariant**.

Subsequential limits of LFPP generated using a whole-plane GFF obviously define a metric which is a **length space**, satisfies **Weyl scaling**, and is **translation invariant**.

Not obvious that they define a metric which is **locally determined** by h and is **scale-invariant**.

Subsequential limits of LFPP generated using a whole-plane GFF obviously define a metric which is a **length space**, satisfies **Weyl scaling**, and is **translation invariant**.

Not obvious that they define a metric which is **locally determined** by h and is **scale-invariant**.

Bi-Lipschitz equivalence argument applies to show that any two subsequential limits of LFPP are bi-Lipschitz equivalent; Efron-Stein style argument shows that two conditionally independent samples of a subsequential limit must be equal hence determined by the GFF.

Subsequential limits of LFPP generated using a whole-plane GFF obviously define a metric which is a **length space**, satisfies **Weyl scaling**, and is **translation invariant**.

Not obvious that they define a metric which is **locally determined** by h and is **scale-invariant**.

Bi-Lipschitz equivalence argument applies to show that any two subsequential limits of LFPP are bi-Lipschitz equivalent; Efron-Stein style argument shows that two conditionally independent samples of a subsequential limit must be equal hence determined by the GFF.

Characterization of γ -LQG metrics does not require exact scale invariance.

Subsequential limits of LFPP generated using a whole-plane GFF obviously define a metric which is a **length space**, satisfies **Weyl scaling**, and is **translation invariant**.

Not obvious that they define a metric which is **locally determined** by h and is **scale-invariant**.

Bi-Lipschitz equivalence argument applies to show that any two subsequential limits of LFPP are bi-Lipschitz equivalent; Efron-Stein style argument shows that two conditionally independent samples of a subsequential limit must be equal hence determined by the GFF.

Characterization of γ -LQG metrics does not require exact scale invariance. Replacement:

Axiom IV': Tightness across scales. For each r > 0, there exists c_r deterministic so that $c_r^{-1}e^{-\xi h_r(0)}D_h(r, r, \cdot)$ for r > 0 is tight. Moreover, there exists $\Lambda > 0$ so that

$$\Lambda^{-1}\delta^{\Lambda} \leq rac{\mathcal{C}\delta r}{\mathcal{C}_r} \leq \Lambda\delta^{-\Lambda} \quad ext{for all} \quad \delta \in (0,1).$$

This property holds as a consequence of tightness; see paper by Dubédat, Falconet, Gwynne, Pfeffer, Sun.

Further questions

Metric for log correlated Gaussian fields higher dimensions?

Further questions

- Metric for log correlated Gaussian fields higher dimensions?
 - Proof uses planarity in two places: RSW arguments in tightness, proof of confluence of geodesics
- Metric for log correlated Gaussian fields higher dimensions?
 - Proof uses planarity in two places: RSW arguments in tightness, proof of confluence of geodesics
 - Does confluence of geodesics hold in higher dimensions?

- Metric for log correlated Gaussian fields higher dimensions?
 - Proof uses planarity in two places: RSW arguments in tightness, proof of confluence of geodesics
 - Does confluence of geodesics hold in higher dimensions?
 - Is there a strategy for tightness that does not rely on RSW arguments?

- Metric for log correlated Gaussian fields higher dimensions?
 - Proof uses planarity in two places: RSW arguments in tightness, proof of confluence of geodesics
 - Does confluence of geodesics hold in higher dimensions?
 - Is there a strategy for tightness that does not rely on RSW arguments?
- Can we show that e.g. the √2-LQG metric is the Gromov-Hausdorff scaling limit of spanning-tree decorated maps?
 - Limiting object constructed; discrete bijections do not encode distances

- Metric for log correlated Gaussian fields higher dimensions?
 - Proof uses planarity in two places: RSW arguments in tightness, proof of confluence of geodesics
 - Does confluence of geodesics hold in higher dimensions?
 - Is there a strategy for tightness that does not rely on RSW arguments?
- ► Can we show that e.g. the √2-LQG metric is the Gromov-Hausdorff scaling limit of spanning-tree decorated maps?
 - Limiting object constructed; discrete bijections do not encode distances
- What is the precise value of d_γ? Shown to be the dimension of γ-LQG metric by Gwynne-Pfeffer

- Metric for log correlated Gaussian fields higher dimensions?
 - Proof uses planarity in two places: RSW arguments in tightness, proof of confluence of geodesics
 - Does confluence of geodesics hold in higher dimensions?
 - Is there a strategy for tightness that does not rely on RSW arguments?
- Can we show that e.g. the \sqrt{2}-LQG metric is the Gromov-Hausdorff scaling limit of spanning-tree decorated maps?
 - Limiting object constructed; discrete bijections do not encode distances
- What is the precise value of d_γ? Shown to be the dimension of γ-LQG metric by Gwynne-Pfeffer
 - Watabiki prediction: $d_{\gamma} = 1 + \gamma^2/4 + \sqrt{(1 + \gamma^2/4)^2 + \gamma^2}$
 - Disproved for small γ > 0 by Ding, Goswami
 - Gwynne prediction: $d_{\gamma} = 2 + \gamma^2/2 + \gamma/\sqrt{6}$

- Metric for log correlated Gaussian fields higher dimensions?
 - Proof uses planarity in two places: RSW arguments in tightness, proof of confluence of geodesics
 - Does confluence of geodesics hold in higher dimensions?
 - Is there a strategy for tightness that does not rely on RSW arguments?
- Can we show that e.g. the \sqrt{2}-LQG metric is the Gromov-Hausdorff scaling limit of spanning-tree decorated maps?
 - Limiting object constructed; discrete bijections do not encode distances
- What is the precise value of d_γ? Shown to be the dimension of γ-LQG metric by Gwynne-Pfeffer
 - Watabiki prediction: $d_{\gamma} = 1 + \gamma^2/4 + \sqrt{(1 + \gamma^2/4)^2 + \gamma^2}$
 - Disproved for small $\gamma > 0$ by Ding, Goswami
 - Gwynne prediction: $d_{\gamma} = 2 + \gamma^2/2 + \gamma/\sqrt{6}$
- Are there exact formulas for anything related to the metric?

- Metric for log correlated Gaussian fields higher dimensions?
 - Proof uses planarity in two places: RSW arguments in tightness, proof of confluence of geodesics
 - Does confluence of geodesics hold in higher dimensions?
 - Is there a strategy for tightness that does not rely on RSW arguments?
- Can we show that e.g. the \sqrt{2}-LQG metric is the Gromov-Hausdorff scaling limit of spanning-tree decorated maps?
 - Limiting object constructed; discrete bijections do not encode distances
- What is the precise value of d_γ? Shown to be the dimension of γ-LQG metric by Gwynne-Pfeffer
 - Watabiki prediction: $d_{\gamma} = 1 + \gamma^2/4 + \sqrt{(1 + \gamma^2/4)^2 + \gamma^2}$
 - Disproved for small $\gamma > 0$ by Ding, Goswami
 - Gwynne prediction: $d_{\gamma} = 2 + \gamma^2/2 + \gamma/\sqrt{6}$
- Are there exact formulas for anything related to the metric?
- $\triangleright \gamma = 2?$

Thanks!