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Liouville quantum gravity

I Want to make sense of the canonical model for a
random two-dimensional Riemannian manifold

I Polyakov (1980s): should be formally given by the
metric tensor

eγh(z)(dx2 + dy 2), z = x + iy , γ ∈ (0, 2]

where h is an instance of the Gaussian free field
(GFF) on a planar domain D

I cov(h(x), h(y)) = G(x , y) ∼ − log |x − y | as x → y
where G is the Green’s function for ∆ on D

I Ill-defined mathematically since h is a distribution
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One motivation: scaling limits of random planar maps

γ-Liouville quantum gravity (LQG)

eγh(z)(dx2 + dy 2), γ ∈ (0, 2]

has long been conjectured to describe the
scaling limits of random planar maps (RPM)

I γ =
√

8/3 uniformly random

I γ =
√

2 spanning-tree decorated

I γ =
√

3 Ising model decorated

I
...

Versions of these types of statements have

been proved. Require interpretation since

γ-LQG and RPM possess different type of

structure.

This talk is about putting a metric space structure on LQG, which is the natural

structure on a RPM (graph distance)
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Liouville quantum gravity volume form

I Every two-dimensional Riemannian manifold has a

I volume form and a
I distance function

I To construct the volume form for eγh(z)(dx2 + dy 2), h a GFF, can

I regularize the GFF by considering the average hε(z) of h on ∂B(z , ε) and set

I µγh = limε→0 ε
γ2/2eγhε(z)dz where dz is Lebesgue measure

I Since var(hε(z)) = log 1
ε

+ O(1) as ε→ 0, the factor εγ
2/2 is necessary to get a

non-trivial limit

I Appears in works of Hoegh-Krohn, Kahane, Duplantier-Sheffield, etc...
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Liouville quantum gravity metric
Previously, metric only constructed for γ =

√
8/3 (M.-Sheffield) using SLE-based

techniques by constructing a growth process (a version of the Eden model, called
QLE(8/3, 0)) which corresponds to metric balls

Natural to try an approach analogous to the volume form construction to define the
distance function:

Dε
h(x , y) = inf

P:x→y

∫
|P ′(s)|eξhε(P(s))ds.

Approximations are referred to as Liouville first passage percolation (LFPP)

Exponent ξ is given by γ/dγ where dγ is the volume growth exponent for γ-LQG
constructed by Ding-Gwynne

Tightness results for these types of approximations (where Dε
h normalized using median

distance):

I Ding-Dunlap, (LFPP) small γ > 0

I Dubédat-Falconet, (LFPP) small γ > 0

I Ding-Dunlap, (Liouville graph distance) all γ ∈ (0, 2)

I Ding-Dubédat-Dunlap-Falconet, (LFFP) all γ ∈ (0, 2). (See Hugo F’s talk next
week.)
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Simulation of an LFPP metric ball for γ =
√

8/3
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Plot of ξ = γ/dγ for γ ∈ (0, 2) where dγ is the volume growth exponent

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

8

3

2 3

ξ(
√

2) ≈ 0.39, ξ(
√

8/3) ≈ 0.41, ξ(
√

3) ≈ 0.41. Value of dγ not explicitly known.
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Main theorem

Theorem (Gwynne-M.)
Suppose that h is an instance of the GFF and γ ∈ (0, 2).

I The approximations Dε
h converge in probability as ε→ 0 to a metric Dh

I Dh is characterized by certain natural axioms (locally determined by h,
homeomorphic to Euclidean space, transforms properly when applying conformal
maps)

I For γ =
√

8/3, Dh is equivalent to the metric constructed with QLE(8/3, 0)

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 8 / 17



Comparison with the case γ =
√

8/3

The
√

8/3-LQG metric (M.-Sheffield) was constructed by building a version of the Eden
growth model using SLE6 processes

I Proof hinges on certain special symmetries that SLE6 has with
√

8/3-LQG and also
the presence of exact formulas coming from Lévy processes

I Exact formulas are what make it possible to prove its equivalence with the
Brownian map

In contrast, the construction for γ ∈ (0, 2) makes no use of SLE and there are no known
exact formulas; based entirely on “elementary” GFF techniques

I Starting point is a definition of a γ-LQG metric, which contains a minimal list of
properties that any metric naturally associated with γ-LQG should satisfy

I Do not have an alternative simple construction of metric space trying to build using
the GFF (e.g., the Brownian map)

Does not supersede the previous
√

8/3-LQG metric construction because exact formulas

for γ =
√

8/3 and connection to the Brownian map only emerge using SLE6-based tools
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I Exact formulas are what make it possible to prove its equivalence with the
Brownian map

In contrast, the construction for γ ∈ (0, 2) makes no use of SLE and there are no known
exact formulas; based entirely on “elementary” GFF techniques

I Starting point is a definition of a γ-LQG metric, which contains a minimal list of
properties that any metric naturally associated with γ-LQG should satisfy

I Do not have an alternative simple construction of metric space trying to build using
the GFF (e.g., the Brownian map)

Does not supersede the previous
√

8/3-LQG metric construction because exact formulas

for γ =
√

8/3 and connection to the Brownian map only emerge using SLE6-based tools

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 9 / 17



Comparison with the case γ =
√

8/3

The
√

8/3-LQG metric (M.-Sheffield) was constructed by building a version of the Eden
growth model using SLE6 processes

I Proof hinges on certain special symmetries that SLE6 has with
√

8/3-LQG and also
the presence of exact formulas coming from Lévy processes
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Coordinate change formula
Recall that the γ-LQG volume form µγh is given by the limit

µγh = lim
ε→0

εγ
2/2eγhε(z)dz for γ ∈ (0, 2).

As a consequence of the normalization factor εγ
2/2, the measures µγh satisfy a modified

version of the standard change of variables formula.

Suppose that ψ : D̃ → D is a conformal transformation and h is a GFF on D and
Q = 2

γ
+ γ

2

h
h̃ = h ◦ ψ +Q log |ψ′|

ψ

DD̃

Then µγh (ψ(A)) = µγ
h̃

(A) for all A ⊆ D̃ Borel. View (D, h) and (D̃, h̃) as different
parameterizations of the same surface.

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 10 / 17
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Suppose that ψ : D̃ → D is a conformal transformation and h is a GFF on D and
Q = 2

γ
+ γ

2

h
h̃ = h ◦ ψ +Q log |ψ′|

ψ

DD̃

Then µγh (ψ(A)) = µγ
h̃

(A) for all A ⊆ D̃ Borel. View (D, h) and (D̃, h̃) as different
parameterizations of the same surface.
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Definition of a Liouville quantum gravity metric
Suppose that h is an instance of the whole-plane GFF.

A metric Dh coupled with h
which is homeomorphic to the Euclidean metric on C is called a γ-Liouville quantum
gravity metric if it satisfies the following:

Axiom I: Length space. For all z ,w ∈ C and ε > 0 there exists a path P connecting
z ,w with Dh-length at most Dh(z ,w) + ε

Axiom II: Locality. For each U ⊆ C open, the internal metric induced by Dh on U is
determined by h|U

Axiom III: Weyl scaling. For ξ = γ/dγ and each constant C ∈ R we have that

Dh+C (z ,w) = eξCDh(z ,w) for all z ,w ∈ C

The same more generally holds for every continuous f : C→ R

Axiom IV: Compatibility with coordinate changes. For each α, u ∈ C and z ,w ∈ C

Dh(αz + u, αw + u) = Dh(α·+u)+Q log |α|(z ,w) for Q =
2

γ
+
γ

2
.

Equivalent to an earlier definition of a γ-LQG metric by M.-Qian.
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Proof steps

Step 1: Suppose that Dh, D̃h are two γ-LQG metrics. There exists 0 < C1 ≤ C2 <∞
deterministic so that Dh, D̃h are a.s. (C1,C2)-bi-Lipschitz equivalent:

C1Dh(z ,w) ≤ D̃h(z ,w) ≤ C2Dh(z ,w) for all z ,w ∈ C.

Goal: show that C1 = C2

Step 2: If Dh is a γ-LQG metric and z ,w ∈ C, then it is a.s. the case that the geodesic
from z to 0 merges with the geodesic from w to 0

I Implies there is a lot of “independence” along a geodesic because it is “stable”
when resampling

I Analogous statement to Le Gall’s confluence of geodesics for the Brownian map

Step 3: If (C1,C2) are the optimal bi-Lipschitz constants with C1 < C2, show that there

are necessarily many D̃h shortcuts along a Dh geodesic to get a contradiction to the
optimality of (C1,C2)

Step 4: Define γ-LQG metric on a domain D 6= C using Markov property of GFF; prove
conformal covariance of metric
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Bi-Lipschitz equivalence

Theorem (Gwynne-M.)
Suppose that h is a whole-plane GFF and Dh, D̃h are two γ-LQG metrics. Then there
exists 0 < C1 ≤ C2 <∞ deterministic so that

C1Dh(z ,w) ≤ D̃h(z ,w) ≤ C2Dh(z ,w) for all z ,w ∈ C.

Proof sketch:

I Say that an annulus A = B(z , r) \ B(z , r/2) is C -good if the Dh distance from

∂B(z , r) to ∂B(z , r/2) is at least 1/C times the D̃h distance around and vice-versa

I By the scale and translation invariance assumption, the probability that A is
C -good does not depend on z and r

I Since Dh, D̃h both induce the Euclidean topology, the probability that A is C -good
tends to 1 as C →∞

I The behavior of h on disjoint annuli is approximately independent, so there is a large
enough value of C so that all of space is covered by arbitrarily small C -good annuli

I Can cover a D̃h-geodesic by small C -good annuli to see that its Dh length is at
most C times its D̃h-length and vice-versa
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Shortcuts and independence along a geodesic
Suppose Dh, D̃h are two γ-LQG metrics. Let C1,C2 be the optimal bi-Lipschitz

constants. Goal: show C1 = C2.

Strategy: assume C1 < C2 and get a contradiction.

I Fix z ,w ∈ C distinct

I Want to get stretched-exponential decay of

P

[
D̃h(z ,w)

Dh(z ,w)
≥ C2 − ε

]
as ε→ 0.

I Since C1 < C2, there are points u, v at all
scales so that D̃h(u, v)/D(u, v) is bounded

away from C2 (D̃h-shortcut)

I Want to show that these D̃h-shortcuts are
present all over the geodesic from z to w

I Have a positive chance of having a
shortcut at a fixed place along a geodesic

I Confluence implies that can resample the
geodesic in many places without moving it
much → shortcuts are everywhere
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Finishing the proof

Subsequential limits of LFPP generated using a whole-plane GFF obviously define a
metric which is a length space, satisfies Weyl scaling, and is translation invariant.

Not obvious that they define a metric which is locally determined by h and is
scale-invariant.

Bi-Lipschitz equivalence argument applies to show that any two subsequential limits of
LFPP are bi-Lipschitz equivalent; Efron-Stein style argument shows that two
conditionally independent samples of a subsequential limit must be equal hence
determined by the GFF.

Characterization of γ-LQG metrics does not require exact scale invariance. Replacement:

Axiom IV’: Tightness across scales. For each r > 0, there exists cr deterministic so
that c−1

r e−ξhr (0)Dh(r ·, r , ·) for r > 0 is tight. Moreover, there exists Λ > 0 so that

Λ−1δΛ ≤ cδr
cr
≤ Λδ−Λ for all δ ∈ (0, 1).

This property holds as a consequence of tightness; see paper by Dubédat, Falconet,

Gwynne, Pfeffer, Sun.
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Further questions

I Metric for log correlated Gaussian fields higher dimensions?

I Proof uses planarity in two places: RSW arguments in tightness, proof of
confluence of geodesics

I Does confluence of geodesics hold in higher dimensions?
I Is there a strategy for tightness that does not rely on RSW arguments?

I Can we show that e.g. the
√

2-LQG metric is the Gromov-Hausdorff scaling limit of
spanning-tree decorated maps?

I Limiting object constructed; discrete bijections do not encode distances

I What is the precise value of dγ? Shown to be the dimension of γ-LQG metric by
Gwynne-Pfeffer

I Watabiki prediction: dγ = 1 + γ2/4 +
√

(1 + γ2/4)2 + γ2

I Disproved for small γ > 0 by Ding, Goswami

I Gwynne prediction: dγ = 2 + γ2/2 + γ/
√

6

I Are there exact formulas for anything related to the metric?

I γ = 2?
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Thanks!
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