Existence and uniqueness of the
Liouville quantum gravity metric for

v€(0,2)

Jason Miller

Cambridge

Ewain Gwynne (Cambridge)

June 14, 2019

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 1/17



Liouville quantum gravity

» Want to make sense of the canonical model for a
random two-dimensional Riemannian manifold

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019



Liouville quantum gravity

» Want to make sense of the canonical model for a
random two-dimensional Riemannian manifold

» Polyakov (1980s): should be formally given by the
metric tensor

"(dx’ +dy?), z=x+iy, y€(0,2]

where h is an instance of the Gaussian free field
(GFF) on a planar domain D

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 2/17



Liouville quantum gravity

» Want to make sense of the canonical model for a
random two-dimensional Riemannian manifold

» Polyakov (1980s): should be formally given by the
metric tensor
"(dx’ +dy?), z=x+iy, y€(0,2]
where h is an instance of the Gaussian free field
(GFF) on a planar domain D

> cov(h(x), h(y)) = G(x,y) ~ —log|x —y| as x = y
where G is the Green's function for A on D

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 2/17



Liouville quantum gravity

» Want to make sense of the canonical model for a
random two-dimensional Riemannian manifold

» Polyakov (1980s): should be formally given by the
metric tensor
"(dx’ +dy?), z=x+iy, y€(0,2]
where h is an instance of the Gaussian free field
(GFF) on a planar domain D

> cov(h(x), h(y)) = G(x,y) ~ —log|x —y| as x = y
where G is the Green's function for A on D

» lll-defined mathematically since h is a distribution
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One motivation: scaling limits of random planar maps
~-Liouville quantum gravity (LQG)
"D (dx® + dy?), v € (0,2]

has long been conjectured to describe the
scaling limits of random planar maps (RPM)

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 3/17



L
One motivation: scaling limits of random planar maps
~-Liouville quantum gravity (LQG)
"D (dx® + dy?), v € (0,2]

has long been conjectured to describe the
scaling limits of random planar maps (RPM)

» v = ,/8/3 uniformly random

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 3/17



L
One motivation: scaling limits of random planar maps
~-Liouville quantum gravity (LQG)
"D (dx® + dy?), v € (0,2]

has long been conjectured to describe the
scaling limits of random planar maps (RPM)

» ~ = 4/8/3 uniformly random
> ~ = /2 spanning-tree decorated

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 3/17



L
One motivation: scaling limits of random planar maps
~-Liouville quantum gravity (LQG)
"D (dx® + dy?), v € (0,2]

has long been conjectured to describe the
scaling limits of random planar maps (RPM)

» v = ,/8/3 uniformly random
> ~ = /2 spanning-tree decorated
> v = /3 Ising model decorated

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 3/17



L
One motivation: scaling limits of random planar maps
~-Liouville quantum gravity (LQG)
"D (dx® + dy?), v € (0,2]

has long been conjectured to describe the
scaling limits of random planar maps (RPM)

> v = \/% uniformly random

> ~ = /2 spanning-tree decorated

> ~ = /3 Ising model decorated

>
Versions of these types of statements have
been proved. Require interpretation since

v-LQG and RPM possess different type of
structure.
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L
One motivation: scaling limits of random planar maps
~-Liouville quantum gravity (LQG)
"D (dx® + dy?), v € (0,2]

has long been conjectured to describe the
scaling limits of random planar maps (RPM)

> v = \/% uniformly random

> ~ = /2 spanning-tree decorated

> ~ = /3 Ising model decorated

>
Versions of these types of statements have
been proved. Require interpretation since

v-LQG and RPM possess different type of
structure.

This talk is about putting a metric space structure on LQG, which is the natural
structure on a RPM (graph distance)
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Liouville quantum gravity volume form

» Every two-dimensional Riemannian manifold has a

» volume form and a
» distance function

> To construct the volume form for e7"®)(dx? + dy?), h a GFF, can
> regularize the GFF by considering the average hc(z) of h on B(z,¢) and set
> NZ = lime_o e"’z/ZeWhe(z)dz where dz is Lebesgue measure
> Since var(he(z)) = log 1 + O(1) as € — 0, the factor s necessary to get a
non-trivial limit

» Appears in works of Hoegh-Krohn, Kahane, Duplantier-Sheffield, etc...
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Liouville quantum gravity metric

Previously, metric only constructed for v = 1/8/3 (M.-Sheffield) using SLE-based
techniques by constructing a growth process (a version of the Eden model, called
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techniques by constructing a growth process (a version of the Eden model, called
QLE(8/3,0)) which corresponds to metric balls

Natural to try an approach analogous to the volume form construction to define the
distance function:
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Approximations are referred to as Liouville first passage percolation (LFPP)

Exponent ¢ is given by 7/d, where d, is the volume growth exponent for v-LQG
constructed by Ding-Gwynne

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 5/17



Liouville quantum gravity metric

Previously, metric only constructed for v = 1/8/3 (M.-Sheffield) using SLE-based
techniques by constructing a growth process (a version of the Eden model, called
QLE(8/3,0)) which corresponds to metric balls

Natural to try an approach analogous to the volume form construction to define the
distance function:

Dixy) = inf [ 1P/(5)|e* "
Approximations are referred to as Liouville first passage percolation (LFPP)

Exponent ¢ is given by 7/d, where d, is the volume growth exponent for v-LQG
constructed by Ding-Gwynne

Tightness results for these types of approximations (where Dj normalized using median
distance):

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 5/17



Liouville quantum gravity metric

Previously, metric only constructed for v = 1/8/3 (M.-Sheffield) using SLE-based
techniques by constructing a growth process (a version of the Eden model, called
QLE(8/3,0)) which corresponds to metric balls

Natural to try an approach analogous to the volume form construction to define the
distance function:

Dixy) = inf [ 1P/(5)|e* "
Approximations are referred to as Liouville first passage percolation (LFPP)

Exponent ¢ is given by 7/d, where d, is the volume growth exponent for v-LQG
constructed by Ding-Gwynne

Tightness results for these types of approximations (where Dj normalized using median
distance):

» Ding-Dunlap, (LFPP) small v > 0

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 5/17



Liouville quantum gravity metric

Previously, metric only constructed for v = 1/8/3 (M.-Sheffield) using SLE-based
techniques by constructing a growth process (a version of the Eden model, called
QLE(8/3,0)) which corresponds to metric balls

Natural to try an approach analogous to the volume form construction to define the
distance function:

Dixy) = inf [ 1P/(5)|e* "

Approximations are referred to as Liouville first passage percolation (LFPP)

Exponent ¢ is given by 7/d, where d, is the volume growth exponent for v-LQG
constructed by Ding-Gwynne

Tightness results for these types of approximations (where Dj normalized using median
distance):

» Ding-Dunlap, (LFPP) small v > 0
» Dubédat-Falconet, (LFPP) small v > 0

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 5/17



Liouville quantum gravity metric

Previously, metric only constructed for v = 1/8/3 (M.-Sheffield) using SLE-based
techniques by constructing a growth process (a version of the Eden model, called
QLE(8/3,0)) which corresponds to metric balls

Natural to try an approach analogous to the volume form construction to define the
distance function:

Dixy) = inf [ 1P/(5)|e* "

Approximations are referred to as Liouville first passage percolation (LFPP)

Exponent ¢ is given by 7/d, where d, is the volume growth exponent for v-LQG
constructed by Ding-Gwynne

Tightness results for these types of approximations (where Dj normalized using median
distance):

» Ding-Dunlap, (LFPP) small v > 0
» Dubédat-Falconet, (LFPP) small v > 0
» Ding-Dunlap, (Liouville graph distance) all v € (0, 2)

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 5/17



Liouville quantum gravity metric

Previously, metric only constructed for v = 1/8/3 (M.-Sheffield) using SLE-based
techniques by constructing a growth process (a version of the Eden model, called
QLE(8/3,0)) which corresponds to metric balls

Natural to try an approach analogous to the volume form construction to define the
distance function:

Dixy) = inf [ 1P/(5)|e* "

Approximations are referred to as Liouville first passage percolation (LFPP)

Exponent ¢ is given by 7/d, where d, is the volume growth exponent for v-LQG
constructed by Ding-Gwynne

Tightness results for these types of approximations (where Dj normalized using median
distance):

» Ding-Dunlap, (LFPP) small v > 0

» Dubédat-Falconet, (LFPP) small v > 0

» Ding-Dunlap, (Liouville graph distance) all v € (0, 2)
>

Ding-Dubédat-Dunlap-Falconet, (LFFP) all v € (0,2). (See Hugo F's talk next
week.)
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Simulation of an LFPP metric ball for v = 4/8/3
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Plot of £ = v/d, for v € (0,2) where d, is the volume growth exponent

&(v2) = 0.39, £(+/8/3) =~ 0.41, £(+/3) ~ 0.41. Value of d, not explicitly known.
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Main theorem

Theorem (Gwynne-M.)
Suppose that h is an instance of the GFF and ~y € (0, 2).

» The approximations Dy, converge in probability as ¢ — 0 to a metric Dy,

» Dy, is characterized by certain natural axioms (locally determined by h,
homeomorphic to Euclidean space, transforms properly when applying conformal

maps)
» Fory = +/8/3, Dy is equivalent to the metric constructed with QLE(8/3,0)

June 14, 2019
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BN
Comparison with the case v = 1/8/3

The 1/8/3-LQG metric (M.-Sheffield) was constructed by building a version of the Eden
growth model using SLEs processes
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BN
Comparison with the case v = 1/8/3

The 1/8/3-LQG metric (M.-Sheffield) was constructed by building a version of the Eden
growth model using SLEs processes

» Proof hinges on certain special symmetries that SLE¢ has with 1/8/3-LQG and also
the presence of exact formulas coming from Lévy processes

» Exact formulas are what make it possible to prove its equivalence with the
Brownian map

In contrast, the construction for v € (0,2) makes no use of SLE and there are no known
exact formulas; based entirely on “elementary” GFF techniques

» Starting point is a definition of a v-LQG metric, which contains a minimal list of
properties that any metric naturally associated with v-LQG should satisfy

» Do not have an alternative simple construction of metric space trying to build using
the GFF (e.g., the Brownian map)

Does not supersede the previous 1/8/3-LQG metric construction because exact formulas
for v = 1/8/3 and connection to the Brownian map only emerge using SLE¢-based tools
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Coordinate change formula
Recall that the 4-LQG volume form y is given by the limit

= lim 2@ dz for v € (0,2).

e—0
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Coordinate change formula
Recall that the 4-LQG volume form y is given by the limit

= lim ez for g€ (0,2).

e—0

S 2 . g
As a consequence of the normalization factor €7/, the measures u; satisfy a modified
version of the standard change of variables formula.
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Coordinate change formula
Recall that the 4-LQG volume form y is given by the limit

= lim ez for g€ (0,2).

e—0

S 2 . g
As a consequence of the normalization factor €7/, the measures u; satisfy a modified
version of the standard change of variables formula.

Suppose that ¥: D — D is a conformal transformation and h is a GFF on D and
Q= 2 + 2
y 2

h=hoy+Qlogly|

Then 1) (¥(A)) = 11 (A) for all AC D Borel. View (D, h) and (D, h) as different
parameterizations of the same surface.
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Definition of a Liouville quantum gravity metric

Suppose that h is an instance of the whole-plane GFF.
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which is homeomorphic to the Euclidean metric on C is called a y-Liouville quantum
gravity metric if it satisfies the following:
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Definition of a Liouville quantum gravity metric

Suppose that h is an instance of the whole-plane GFF. A metric Dy coupled with h
which is homeomorphic to the Euclidean metric on C is called a y-Liouville quantum
gravity metric if it satisfies the following:

Axiom I: Length space. For all z,w € C and € > 0 there exists a path P connecting
z,w with Dp-length at most Dy(z, w) + ¢
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which is homeomorphic to the Euclidean metric on C is called a y-Liouville quantum
gravity metric if it satisfies the following:

Axiom I: Length space. For all z,w € C and € > 0 there exists a path P connecting
z,w with Dp-length at most Dy(z, w) + ¢

Axiom Il: Locality. For each U C C open, the internal metric induced by Dy on U is
determined by h|y

Axiom Ill: Weyl scaling. For £ = v/d, and each constant C € R we have that
Dhic(z,w) = 5 Dy(z,w) forall z,weC

The same more generally holds for every continuous f: C — R

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 11/17



Definition of a Liouville quantum gravity metric

Suppose that h is an instance of the whole-plane GFF. A metric Dy coupled with h
which is homeomorphic to the Euclidean metric on C is called a y-Liouville quantum
gravity metric if it satisfies the following:

Axiom I: Length space. For all z,w € C and € > 0 there exists a path P connecting
z,w with Dp-length at most Dy(z, w) + ¢

Axiom Il: Locality. For each U C C open, the internal metric induced by Dy on U is
determined by h|y

Axiom Ill: Weyl scaling. For £ = v/d, and each constant C € R we have that
Dhic(z,w) = 5 Dy(z,w) forall z,weC

The same more generally holds for every continuous f: C — R

Axiom IV: Compatibility with coordinate changes. For each o, u € C and z,w € C

7

2
Dh(CMZ +u,aw + U) = Dh(a-+u)+Q|og\a|(Za W) for Q= ; + >

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 11/17



Definition of a Liouville quantum gravity metric

Suppose that h is an instance of the whole-plane GFF. A metric Dy coupled with h
which is homeomorphic to the Euclidean metric on C is called a y-Liouville quantum
gravity metric if it satisfies the following:

Axiom I: Length space. For all z,w € C and € > 0 there exists a path P connecting
z,w with Dp-length at most Dy(z, w) + ¢

Axiom Il: Locality. For each U C C open, the internal metric induced by Dy on U is
determined by h|y

Axiom Ill: Weyl scaling. For £ = v/d, and each constant C € R we have that
Dhic(z,w) = 5 Dy(z,w) forall z,weC

The same more generally holds for every continuous f: C — R

Axiom IV: Compatibility with coordinate changes. For each o, u € C and z,w € C

7

2
Dh(CMZ +u,aw + U) = Dh(a-+u)+Q|og\a|(Za W) for Q= ; + >

Equivalent to an earlier definition of a v-LQG metric by M.-Qian.

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 11/17



Proof steps

Step 1: Suppose that Dy, QN;, are two 7-LQG metrics. There exists 0 < G; < G < 00
deterministic so that Dy, Dy are a.s. (Ci, G)-bi-Lipschitz equivalent:

CiDh(z,w) < Dn(z,w) < GDy(z,w) forall zweC.
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Proof steps

Step 1: Suppose that Dy, QN;, are two 7-LQG metrics. There exists 0 < G; < G < 00
deterministic so that Dy, Dy are a.s. (Ci, G)-bi-Lipschitz equivalent:

CiDh(z,w) < Dn(z,w) < GDy(z,w) forall zweC.

Goal: show that GG = G

Step 2: If Dy is a v-LQG metric and z, w € C, then it is a.s. the case that the geodesic
from z to 0 merges with the geodesic from w to 0

» Implies there is a lot of “independence”’ along a geodesic because it is “stable”
when resampling

» Analogous statement to Le Gall's confluence of geodesics for the Brownian map
Step 3: If (G, () are the optimal bi-Lipschitz constants with C; < C,, show that there

are necessarily many D, shortcuts along a Dy, geodesic to get a contradiction to the
optimality of (G, 2)
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Proof steps

Step 1: Suppose that Dy, QN;, are two 7-LQG metrics. There exists 0 < G; < G < 00
deterministic so that Dy, Dy are a.s. (Ci, G)-bi-Lipschitz equivalent:

CiDh(z,w) < Dn(z,w) < GDy(z,w) forall zweC.

Goal: show that GG = G

Step 2: If Dy is a v-LQG metric and z, w € C, then it is a.s. the case that the geodesic
from z to 0 merges with the geodesic from w to 0

» Implies there is a lot of “independence”’ along a geodesic because it is “stable”
when resampling

» Analogous statement to Le Gall's confluence of geodesics for the Brownian map

Step 3: If (G, () are the optimal bi-Lipschitz constants with C; < C,, show that there

are necessarily many D, shortcuts along a Dy, geodesic to get a contradiction to the
optimality of (G, 2)

Step 4: Define v-LQG metric on a domain D # C using Markov property of GFF; prove
conformal covariance of metric
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Bi-Lipschitz equivalence

Theorem (Gwynne-M.)

Suppose that h is a whole-plane GFF and Dy, Dy, are two v-LQG metrics. Then there
exists 0 < (; < (3 < oo deterministic so that

CiDw(z, w) < Dh(z,w) < GoDy(z,w) forall z,w € C.
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» By the scale and translation invariance assumption, the probability that A is
C-good does not depend on z and r
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Bi-Lipschitz equivalence

Theorem (Gwynne-M.)
Suppose that h is a whole-plane GFF and Dy, Dy, are two v-LQG metrics. Then there
exists 0 < (; < (3 < oo deterministic so that

CiDw(z, w) < Dh(z,w) < GoDy(z,w) forall z,w € C.

Proof sketch:

» Say that an annulus A = B(z,r) \ B(z,r/2) is C-good if the Dy distance from
0B(z,r) to 0B(z,r/2) is at least 1/C times the D distance around and vice-versa

» By the scale and translation invariance assumption, the probability that A is
C-good does not depend on z and r

> Since Dy, Dy both induce the Euclidean topology, the probability that A is C-good
tendsto 1 as C — oo

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 13 /17



L
Bi-Lipschitz equivalence

Theorem (Gwynne-M.)
Suppose that h is a whole-plane GFF and Dy, Dy, are two v-LQG metrics. Then there
exists 0 < (; < (3 < oo deterministic so that

CiDw(z, w) < Dh(z,w) < GoDy(z,w) forall z,w € C.

Proof sketch:
» Say that an annulus A = B(z,r) \ B(z,r/2) is C-good if the Dy distance from
0B(z,r) to 0B(z,r/2) is at least 1/C times the D distance around and vice-versa

» By the scale and translation invariance assumption, the probability that A is
C-good does not depend on z and r

> Since Dy, Dy both induce the Euclidean topology, the probability that A is C-good
tendsto 1 as C — oo

» The behavior of h on disjoint annuli is approximately independent, so there is a large
enough value of C so that all of space is covered by arbitrarily small C-good annuli

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 13 /17



L
Bi-Lipschitz equivalence

Theorem (Gwynne-M.)
Suppose that h is a whole-plane GFF and Dy, Dy, are two v-LQG metrics. Then there
exists 0 < (; < (3 < oo deterministic so that

CiDw(z, w) < Dh(z,w) < GoDy(z,w) forall z,w € C.

Proof sketch:

» Say that an annulus A = B(z,r) \ B(z,r/2) is C-good if the Dy distance from
0B(z,r) to 0B(z,r/2) is at least 1/C times the D distance around and vice-versa

» By the scale and translation invariance assumption, the probability that A is
C-good does not depend on z and r

> Since Dy, Dy both induce the Euclidean topology, the probability that A is C-good
tendsto 1 as C — oo

» The behavior of h on disjoint annuli is approximately independent, so there is a large
enough value of C so that all of space is covered by arbitrarily small C-good annuli

» Can cover a 5h—ge~odesic by small C-good annuli to see that its Dy length is at
most C times its Dy-length and vice-versa
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Shortcuts and independence along a geodesic
Suppose Dy, Dy, are two v-LQG metrics. Let Ci, C; be the optimal bi-Lipschitz
constants. Goal: show C; = G,.
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Shortcuts and independence along a geodesic
Suppose Dy, Dy, are two v-LQG metrics. Let Ci, C; be the optimal bi-Lipschitz
constants. Goal: show C; = C,. Strategy: assume C; < (, and get a contradiction.

» Fix z, w € C distinct w
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Shortcuts and independence along a geodesic
Suppose Dy, Dy, are two v-LQG metrics. Let Ci, C; be the optimal bi-Lipschitz
constants. Goal: show C; = C,. Strategy: assume C; < (, and get a contradiction.

» Fix z, w € C distinct w

» Want to get stretched-exponential decay of

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 14 /17



Shortcuts and independence along a geodesic
Suppose Dy, Dy, are two v-LQG metrics. Let Ci, C; be the optimal bi-Lipschitz
constants. Goal: show C; = C,. Strategy: assume C; < (, and get a contradiction.

» Fix z, w € C distinct w

» Want to get stretched-exponential decay of

> Since (i < G, there are points u, v at all
scales so that Dy(u, v)/D(u,v) is bounded

away from G, (Ds-shortcut) .)
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Shortcuts and independence along a geodesic
Suppose Dy, Dy, are two v-LQG metrics. Let Ci, C; be the optimal bi-Lipschitz
constants. Goal: show C; = C,. Strategy: assume C; < (, and get a contradiction.

» Fix z, w € C distinct w

» Want to get stretched-exponential decay of

> Since (i < G, there are points u, v at all
scales so that Dy(u, v)/D(u,v) is bounded

away from G, (Ds-shortcut) .)

» Want to show that these 5h-sh0rtcuts are
present all over the geodesic from z to w {"

» Have a positive chance of having a
shortcut at a fixed place along a geodesic
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Shortcuts and independence along a geodesic

Suppose Dy, Dy, are two v-LQG metrics. Let Ci, C; be the optimal bi-Lipschitz

constants. Goal: show C; = C,. Strategy: assume C; < (, and get a contradiction.
» Fix z, w € C distinct

w
» Want to get stretched-exponential decay of
Dy(z, w)
> G- —0
Dh(z,w)* 2 — € as € ('

> Since (i < G, there are points u, v at all
scales so that Dy(u, v)/D(u,v) is bounded

away from G, (Ds-shortcut) .)

» Want to show that these 5h-sh0rtcuts are
present all over the geodesic from z to w {"

» Have a positive chance of having a
shortcut at a fixed place along a geodesic

» Confluence implies that can resample the
geodesic in many places without moving it~ »
much — shortcuts are everywhere
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BN
Finishing the proof

Subsequential limits of LFPP generated using a whole-plane GFF obviously define a
metric which is a length space, satisfies Weyl scaling, and is translation invariant.

Jason Miller (Cambridge) Existence and uniqueness of the LQG metric June 14, 2019 15 /17



BN
Finishing the proof
Subsequential limits of LFPP generated using a whole-plane GFF obviously define a

metric which is a length space, satisfies Weyl scaling, and is translation invariant.

Not obvious that they define a metric which is locally determined by h and is
scale-invariant.

Jason Miller (Cambridge)

Existence and uniqueness of the LQG metric

June 14, 2019 15 /17



BN
Finishing the proof

Subsequential limits of LFPP generated using a whole-plane GFF obviously define a
metric which is a length space, satisfies Weyl scaling, and is translation invariant.

Not obvious that they define a metric which is locally determined by h and is
scale-invariant.

Bi-Lipschitz equivalence argument applies to show that any two subsequential limits of
LFPP are bi-Lipschitz equivalent; Efron-Stein style argument shows that two
conditionally independent samples of a subsequential limit must be equal hence
determined by the GFF.
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BN
Finishing the proof

Subsequential limits of LFPP generated using a whole-plane GFF obviously define a
metric which is a length space, satisfies Weyl scaling, and is translation invariant.

Not obvious that they define a metric which is locally determined by h and is
scale-invariant.

Bi-Lipschitz equivalence argument applies to show that any two subsequential limits of
LFPP are bi-Lipschitz equivalent; Efron-Stein style argument shows that two
conditionally independent samples of a subsequential limit must be equal hence
determined by the GFF.

Characterization of 7-LQG metrics does not require exact scale invariance. Replacement:

Axiom IV’: Tightness across scales. For each r > 0, there exists ¢, deterministic so
that ¢, te ¢"©Dy(r- r,-) for r > 0 is tight. Moreover, there exists A > 0 so that

AN < Cci <A™ forall §e(0,1).
This property holds as a consequence of tightness; see paper by Dubédat, Falconet,
Gwynne, Pfeffer, Sun.
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Further questions

» Metric for log correlated Gaussian fields higher dimensions?
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spanning-tree decorated maps?

> Limiting object constructed; discrete bijections do not encode distances
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» Proof uses planarity in two places: RSW arguments in tightness, proof of
confluence of geodesics
» Does confluence of geodesics hold in higher dimensions?
> Is there a strategy for tightness that does not rely on RSW arguments?
» Can we show that e.g. the v/2-LQG metric is the Gromov-Hausdorff scaling limit of
spanning-tree decorated maps?

> Limiting object constructed; discrete bijections do not encode distances

> What is the precise value of dy? Shown to be the dimension of v-LQG metric by
Gwynne-Pfeffer

> Watabiki prediction: d, =14 ~%/4 + /(1 +12/4)2 + ~2

> Disproved for small v > 0 by Ding, Goswami
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Further questions

» Metric for log correlated Gaussian fields higher dimensions?

» Proof uses planarity in two places: RSW arguments in tightness, proof of
confluence of geodesics

» Does confluence of geodesics hold in higher dimensions?

> Is there a strategy for tightness that does not rely on RSW arguments?

» Can we show that e.g. the v/2-LQG metric is the Gromov-Hausdorff scaling limit of
spanning-tree decorated maps?

> Limiting object constructed; discrete bijections do not encode distances

> What is the precise value of dy? Shown to be the dimension of v-LQG metric by
Gwynne-Pfeffer

> Watabiki prediction: d, =14 ~%/4 + /(1 +12/4)2 + ~2

> Disproved for small v > 0 by Ding, Goswami
> Gwynne prediction: d, =2 +~%/2 +~/v/6
» Are there exact formulas for anything related to the metric?

» fy:2?
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