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SCALING LIMITS OF

CRITICAL

2D LATTICE MODELS

— CONFORMAL FIELD THEORY ?
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CRITICAL LATTICE MODELS IN 2D STATISTICAL PHYSICS

e models on discrete grids in the plane, e.g. Z?
@ phase transitions = critical phenomena
o critical exponents: observables have power law behavior
o self-similarity: fractal behavior
o universality conjecture: microscopic details irrelevant
e scaling limits: conformal field theories ??? 87,60
[Belavin, Polyakov & Zamolodchikov '84; Cardy '84]

. i

random walks, percolation, Ising model, Potts model, dimer model, 6-vertex model,

random cluster model, Gaussian free field, O(n) spin and loop models, ...



CONFORMAL INVARIANCE CONJECTURE FOR CRITICAL MODELS

o lattice (local) fields = CFT fields

@ interfaces (explorations, loops)
= random conformally invariant
curves (e.g. SLE, CLE)

@ observables (correlations, crossing probas)
= CFT correlation functions

There are many open problems... J
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Tools to understand scaling limits:

o discrete complex analysis

@ Schramm-Loewner evolutions,
Conformal loop ensembles

@ discrete / continuum symmetries
(lattice symmetries, Virasoro, quantum groups, ...) 3



ISING MODEL
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ISING MODEL: FERROMAGNETIC PHASE TRANSITION

[Lenz & Ising 20s, Peierls 30’s, Kramers, Wannier, Onsager 40’s —]
@ random spins o, = %1 at vertices x of a graph
. . s 1
@ nearest neighbor interaction: P [config.] oc exp (T Dix~y ax(ry)
@ phase transition at critical temperature T = T,

look at correlation of a pair of spins at x and y
C(x,y) =E[o,0y] -E[o,] E[oy] when |[x —y|>>1:

T<T, T=T, T.<T
C(x,y) ~ const. Clx,y) ~ |x -y Clx,y) ~ L
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[Lenz & Ising 20s, Peierls 30’s, Kramers, Wannier, Onsager 40’s —]
@ random spins o, = %1 at vertices x of a graph
. . s 1
@ nearest neighbor interaction: P [config.] oc exp (T Dix~y ax(ry)
@ phase transition at critical temperature T = T,

look at correlation of a pair of spins at x and y
C(x,y) =E[o,0y] -E[o,] E[oy] when |[x —y|>>1:

T<T, T=T, T.<T
C(x,y) ~ const. Clx,y) ~ |x -y Clx,y) ~ L

@ scaling limit at critical temperature T.: conformal invariance



CONFORMAL INVARIANCE IN TERMS OF OBSERVABLES

interfaces: random curves Eloyos,]
- 2 )
- +
- +
- +
B 4 O/
_ i correlations (e.g. between spins)
- +
Xt+++++++++++ 1
Scaling limit 6 — 0
at critical temperature 7 =T,
= conformal invariance
~» conformal field theory (?) xo I

probabilities of topological events



CONFORMAL INVARIANCE OF CRITICAL 2D ISING MODEL

Predictions:
[Belavin, Polyakov, Zamolodchikov '84; Cardy '84]

Rigorous proofs:

@ spin correlations [Chelkak, Hongler, Izyurov 15]
@ energy correlations [Hongler, Smirnov '13]
@ mixed correlations [Chelkak, Hongler, Izyurov (et. al.) 13 —]

~ 0—0
0 2’1/8E[0'x10'x2"'0-x2n] — F('xl’XZ""’XZ'l)

where F(xi,...,X2,) is a conformally covariant function
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CONFORMAL INVARIANCE OF CRITICAL 2D ISING MODEL

Predictions:

[Belavin, Polyakov, Zamolodchikov '84; Cardy '84]

Rigorous proofs:

@ spin correlations [Chelkak, Hongler, Izyurov 15]
@ energy correlations [Hongler, Smirnov '13]
@ mixed correlations [Chelkak, Hongler, Izyurov (et. al.) 13 —]

~ 0—0
1) 2n/8E[0'x10'x2"'0-x2n] — F('xl’XZ""’XZ'l)

where F(xi,...,X2,) is a conformally covariant function

o interfaces converge to SLE3 curves [Chelkak, Duminil-Copin,
Hongler, Kemppainen, Smirnov '14; Izyurov '15; Beffara, P., Wu 18]

o loops converge to CLE3 [Benoist, Hongler '16]
o spin field converges to CFT field [Camia, Garban, Newman '15]

@ crossing probabilities converge to BCFT correlation functions
[lzyurov '15; P., Wu 18] (Pr2(x1) - - - pr2(x2n))



2D CONFORMAL FIELD THEORY
(CFT)

— SOME IDEAS FROM PHYSICS
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@ consider a 2D quantum field theory with “fields” ¢(z)
@ [Belavin, Polyakov, Zamolodchikov 847:
impose conformal symmetry
= fields ¢(z) carry action of Virasoro algebra Vix
o Vir: Lie algebra generated by (L,).en and central element C

C
Ly, L] = (n = m)Lyyym + ﬁn(n2 =D 6pimo,  [CLI=0

e central element C acts as a scalar = central charge c
o In this talk, we are concerned with CFT having ¢ <1

= relation with critical statistical physics models

@ correlation functions {(¢1(z1) - ¢n(z)) = F(21,...,2n)
encode physical information

@ “primary fields” have conformally covariant correlations:
/ —A;
F(f@)seoos f@) = [ [1F @™ x P,z

ey
where A; € R are conformal weights (f = conformal map) 7



2D CONFORMAL FIELD THEORY (CFT) — OPE AND BOOTSTRAP

[Belavin, Polyakov, Zamolodchikov '84]:

o fields should form “operator algebra”

e “multiplication” = operator product expansion: as z, w — &,
k

C;
(6i(2) pj(w)--+) ~ Zw (Be(®) )

where Cf.‘j € R are structure constants (“fusion™)
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SINGULAR VECTORS ¢~ NULL FIELDS = PDEs

What is the Bir -action on a field ¢(z)?

4

Idea: primary field ¢(z) generates a Bir-module My = Bir.¢(z)
My is isomorphic to a quotient of some Verma module V:
d(2) & [vgl Task: determine N «» “null fields”
elements generating N are called singular vectors

v="PL_y: meN)vy € N = [v] =[0] € V/N

= P(L-p: meN).¢(2) =

where P is a polynomial in the Virasoro generators L_,,
singular vector gives rise to PDE with D@ = P(E(Z) m € N)

DN (2)p1(z1) - - pulzn)) = O J
1- ,
where ﬁ(_Z;,),:—Z( ! i+( m)h¢’)
9

P (zj—z)m 1oz (zj—z)"




“NULL-FIELD” (BPZ) PARTIAL DIFFERENTIAL EQUATIONS

@ classification of Virasoro singular vectors
= PDEs for correlation functions containing fields whose
conformal weights are of certain type ( k., in the Kac table )
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“NULL-FIELD” (BPZ) PARTIAL DIFFERENTIAL EQUATIONS

@ classification of Virasoro singular vectors
= PDEs for correlation functions containing fields whose
conformal weights are of certain type ( k., in the Kac table )

@ e.g. correlation functions in Liouville theory satisfy such PDEs
[rigorous for 2nd order case: (David,) Kupiainen, Rhodes & Vargas '15]

o easy example: hjg = 62;,(’(, field @12 (or ¢21):

F(z,215 5 2n) = {P12(2)P1(21) - - - Du(zn))
must satisfy the PDE
{K # ( 2 9 2hs®

S+ — - ,
202 Hi\zi—z0z (z-2f

)}F(Z,Zh...,zn) =0
with parameter « > 0 and central charge ¢ = i(SK —8)(6 — k)
o NB: these 2nd order PDEs are important for SLE,

= classification of multiple SLE,

[Cardy 84’; Bauer & Bernard '02; Bauer, Bernard, Kytola '05;

Dubédat '06; Kozdron & Lawler '07; Beffara, P. & Wu 18] 10



CROSSING PROBABILITIES

GENERALLY NOT KNOWN IN DISCRETE SETUP...

BUT CAN FIND SCALING LIMITS!

10

>  CFT CORRELATION FUNCTIONS
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o take marked points xi,...,xoy on the boundary
@ impose alternating &/ boundary conditions

= N macroscopic interfaces connect the marked points pairwise
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CROSSING PROBABILITIES IN THE CRITICAL ISING MODEL

@ consider critical Ising model on a graph (e.g. square grid)
o take marked points xi,...,xoy on the boundary
@ impose alternating &/ boundary conditions

= N macroscopic interfaces connect the marked points pairwise

@ possible connectivities labeled by planar pair partitions o € LPy

What are the probabilities of the various connectivities? J

1



LLATTICE INTERFACES >

> CONFORMALLY INVARIANT RANDOM CURVES

. 0—0
One interface — SLE,

[Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov '14]

. . 0—0 .
Multiple interfaces — multiple SLE,
[Izyurov 15; Beffara, P. & Wu 18] 12



CROSSING PROBABILITIES — HEURISTICS

@ interfaces in critical planar models —> variants of SLE,
(3k=8)(6—K)
2K

@ scaling limit theory: CFT with central charge c(x) =
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@ interfaces in critical planar models —> variants of SLE,
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In particular, for any « corresponding to some model:
e interfaces with alternating b.c. =3 multiple SLE,
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multiple SLE, curves
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2dt
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CROSSING PROBABILITIES — HEURISTICS

@ interfaces in critical planar models —> variants of SLE,
(3k=8)(6—K)
2K

@ scaling limit theory: CFT with central charge c(x) =
In particular, for any « corresponding to some model:
e interfaces with alternating b.c. =3 multiple SLE,
@ crossing probabilities (E)) probabilities of connectivities of
multiple SLE, curves

@ encoded in multiple SLE, partition functions Z

_2dt
CVi-wW,
@ [Cardy 847 Bauer & Bernard '02]: partition functions Z should be

dW, = Vk dB, + kdilog Z (W, VA V2, ... .VvN)dr,  dV]

correlations of CFT primary fields ¢12(x1),. .., ¢12(xan) 3



CROSSING PROBABILITIES
FOR CRITICAL 2D ISING MODEL

-
*
*
*
Iy
+
+
-
&

6-6-0-0-0-0-0-0 -0
|

®-0-0-0-0-0-0-0--0
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CROSSING PROBABILITIES OF MULTIPLE ISING INTERFACES

@ discrete polygons (Q‘S, X]seees 2N) Q° c 572
0—0
o (Q%x,...,x5) — (Qixy,...,xzy) in the Carathéodory sense
Thm. [P. & Wu ’18]

For the critical Ising model on Q° with alternating boundary
conditions, for all connectivities @ € LPy, we have

28 x, ..., xow)

Iqmg(Q Xl - - s X2N)

%iII(l)P[ connectivity of interfaces = @] =
—

N =3) in H
ZI(SLT)lg : ZQELPN ZL(I/K -

° {ZC(YKZS) .« € LPy} “pure partition functions”,

pf ((xj - Xi)_l)A .

L]

BCFT correlation functions




CROSSING PROBABILITIES OF MULTIPLE ISING INTERFACES

e discrete polygons (Q°; x ,...,ng) Q° c 672
6—0
o (Q%x,...,x5) — (Qixy,...,xzy) in the Carathéodory sense
Thm. [P. & Wu 18]

For the critical Ising model on Q° with alternating boundary
conditions, for all connectivities @ € LPy, we have

=3
Z8(Qs xq, . . ., XoN)

N
I(qlrig(g Xl eves xZN)

%iII(l)P[ connectivity of interfaces = @] =
—

N 3) inl ]HI _
ZI(SLT)lg : ZQELPN Z(K ) f((Xj - xi) 1)i,j

° {ZC(YKZS) .« € LPy} “pure partition functions”,

BCFT correlation functions
Main inputs to the proof:

@ convergence of interfaces to multiple SLE3
@ good control of the martingale Z,/ Ziging

14



MULTIPLE SLE PARTITION FUNCTIONS A LA LAWLER, DUBEDAT

Thm. [Flores & Kleban 15, Kytola & P. 15, P. & Wu 17, Wu 18]
(Proved so far for x € (0,6].) There exists a unique collection {Z,}
of functions with properties PDE, COV, ASY, and a growth bound.

Pure partition functions form a basis {Z,}qcrp, for space Soly:
smooth positive functions of 2N real variables x; < -+ < Xay,
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(Proved so far for x € (0,6].) There exists a unique collection {Z,}
of functions with properties PDE, COV, ASY, and a growth bound.

Pure partition functions form a basis {Z,}qcrp, for space Soly:
smooth positive functions of 2N real variables x; < -+ < Xay,

(PDE): system of 2N partial differential equations (null-field eqns)

kK 0° 2 0 6/k—1
-2 E i Z(xq,... =0 V1< j<2N
{2 8)(3 * (X,' -x;0x;  (x —Xj)2 )} (41 o) =J=

i#]

(COV): conformal covariance
Z(f(x), ..., f(xan)) = 1_[

J

h1,2(k)

f/(x_/)

X Z(Xq, ..., Xon)
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MULTIPLE SLE PARTITION FUNCTIONS A LA LAWLER, DUBEDAT

Thm. [Flores & Kleban 15, Kytola & P. 15, P. & Wu 17, Wu 18]
(Proved so far for x € (0,6].) There exists a unique collection {Z,}
of functions with properties PDE, COV, ASY, and a growth bound.

Pure partition functions form a basis {Z,}qcrp, for space Soly:
smooth positive functions of 2N real variables x; < -+ < Xay,

(PDE): system of 2N partial differential equations (null-field eqns)

2 —
{Ka +Z( 2 i_ 6/k 1)}Z(x1,...,x2N):() VISjSZN

2 8x3 Xi—x; 0% (% —x;)?

i)
(COV): conformal covariance
Z(f(x), ..., f(xan)) = 1_[

f /(x_/-)
(ASY): specific asymptotics ' (fusion)

h1,2(x)
X Z(X], ey xZN)

|Xj+1 - x_j|7Zhl'2(K) Z,(X1, ..., Xon)
Xj,Xjr1 & Z(y\(j,_/'+l)(x1’ s X1, Xjg, e sxan) f{jj+lea ﬂ%—
—
0 G+l ga RN

15



How DO THE FUNCTIONS LOOK LIKE?

Algebraic solutions (in general, only for ¢ =1, -2):

@ Dubédat '06
forc=1«k=4 n(x,- - x))*?
@ Karrila, Kytold & P. 17 i<j
@ P, Wu 17 forc=-2, k=2 det[K(x;, x;)] i even
J odd

16



How DO THE FUNCTIONS LOOK LIKE?

Algebraic solutions (in general, only for ¢ =1, -2):

@ Dubédat ‘06
forc=1 k=4 n(x,- - x/-)il/2
@ Karrila, Kytold & P. 17 i<j
@ P, Wu 17 forc=-2, k=2 det[K(x;, x;)] i even
Jj odd

Construction of solutions in integral form (Coulomb gas):
Feigin & Fuchs (unpubl.)

Dotsenko & Fateev ‘84

Felder & Wiezerkowski 91 l_[(xi _ xj)Z/Kf l_[ H(Wr _ xj)—4/»< H(Wr —wy)Bdw
Dubédat ‘06 i<j Fomrm r<s

Flores & Kleban 15 where I', are certain integration surfaces

Kytola & P. '15; P. 16
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How DO THE FUNCTIONS LOOK LIKE?

Algebraic solutions (in general, only for ¢ =1, -2):

@ Dubédat ‘06
forc=1 k=4 n(x,- - x/-)il/2
@ Karrila, Kytold & P. 17 i<j
@ P, Wu 17 forc=-2, k=2 det[K(x;, x;)] i even
Jj odd

Construction of solutions in integral form (Coulomb gas):
Feigin & Fuchs (unpubl.)

Dotsenko & Fateev ‘84

Felder & Wiezerkowski 91 l_[(xi _ xj)Z/Kf l_[ H(Wr _ xj)—4/»< H(Wr —wy)Bdw
Dubédat ‘06 i<j Fomrm r<s

Flores & Kleban 15 where I', are certain integration surfaces

Kytola & P. '15; P. 16

Quantum group symmetry: U,(slz)-action (q = eVVx ¢ e™Q)
In this special case, take M = 2-dim. simple module. Then,

Soly = {(veM®* |Ev=0,Kv=v) c M®¥ [Kytola & P. '14]
16



CROSSING PROBABILITIES OF MULTIPLE ISING INTERFACES

e discrete polygons (Q°; x ,...,ng) Q° c 672
6—0
o (Q%x,...,x5) — (Qixy,...,xzy) in the Carathéodory sense
Thm. [P. & Wu 18]

For the critical Ising model on Q° with alternating boundary
conditions, for all connectivities @ € LPy, we have

=3
Z8(Qs xq, . . ., XoN)

N
I(qlrig(g Xl eves xZN)

%iII(l)P[ connectivity of interfaces = @] =
—

N 3) inl ]HI _
ZI(SLT)lg : ZQELPN Z(K ) f((Xj - xi) 1)i,j

° {ZC(YKZS) .« € LPy} “pure partition functions”,

BCFT correlation functions
Main inputs to the proof:

@ convergence of interfaces to multiple SLE3
@ good control of the martingale Z,/ Ziging

17



REMARKS ON PREVIOUS WORK: CERTAIN EVENTS IN FK-IsING

Izyurov studied certain percolation events in the FK-Ising model

Corollary (“Cardy’s formula for Ising”) N = 2 [Izyurov '11]

(l$in(1)P[ there exists a left-right @ crossing ]

1 2/3(1 — 5)2/3 -1 1 g2/13(1 — 5)23
= —ds ——ds
o 1—s+s2 o 1-—s+s2

Proof: multi-point discrete holomorphic observable + FK-duality

(x1)—¢(x2)

@(x3)—p(x2)

@ predictions: [Cardy '80’s; Bauer, Bernard, Kytwla '05]
[Flores, Kleban, Simmons, Ziff 18]

@ here ¢: Q — H, ¢(x4) = o0, and A =

X9 - X3
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REMARKS ON PREVIOUS WORK: CERTAIN EVENTS IN FK-IsING

Izyurov studied certain percolation events in the FK-Ising model

Corollary (“Cardy’s formula for Ising”) N = 2 [Izyurov '11]

%in(l) P[ there exists a left-right @ crossing ]

1 2/3(1 — 5)2/3 -1 1 g2/13(1 — 5)23
= —ds ——ds
o 1—s+s2 o 1-—s+s2

X1pg

Proof: multi-point discrete holomorphic observable + FK-duality

(x1)—¢(x2)

@(x3)—p(x2)

@ predictions: [Cardy '80’s; Bauer, Bernard, Kytwla '05]
[Flores, Kleban, Simmons, Ziff 18]

@ here ¢: Q — H, ¢(x4) = o0, and A =

X2 X3

2N-1 connectivity events for the Ising model

@ [Izyurov '15]: get
@ Ising minimal model: 2N-1 conf. blocks [Burkhardt & Guim 93]
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REMARKS ON PREVIOUS WORK: CERTAIN EVENTS IN FK-IsING

Izyurov studied certain percolation events in the FK-Ising model

Corollary (“Cardy’s formula for Ising”) N = 2 [Izyurov '11]

%in(l) P[ there exists a left-right @ crossing ]

1 2/3(1 — 5)2/3 -1 1 g2/13(1 — 5)23
= —ds ——ds
o 1—s+s2 o 1-—s+s2

Proof: multi-point discrete holomorphic observable + FK-duality X

 here ¢: © = H, plxy) = oo, and 2 = 32005

@ predictions: [Cardy '80’s; Bauer, Bernard, Kytwla '05]

[Flores, Kleban, Simmons, Ziff ‘18] P '
X2 X3

2N-1 connectivity events for the Ising model

@ [Izyurov '15]: get

@ Ising minimal model: 2N-1 conf. blocks [Burkhardt & Guim 93]
N .

@ BUT there are Cy := ﬁ(%{,\’ ) ~ NSA}T\/E events in total

Are conformal blocks of minimal models hiding information? 18



ANOTHER PERSPECTIVE:

SLE, VARIANTS
& PARTITION FUNCTIONS
dW, = Vk dB, + kdilog Z (W, VA, VP, ..., V2Y) dt

18



SCALING LIMIT OF AN ISING INTERFACE

Dobrushin boundary conditions: 0Q° = {® segment} | J{© segment}

ﬁjﬁmﬁ

Thm. [Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov '14]

. . §-0 .
interface of Ising model — Schramm-Loewner evolution, SL.Es

(for square lattice / isoradial graphs — now also “general” graphs [Chelkak '19+])

Proof: tightness (RSW type estimates) + discrete holomorphic observable
19



SCHRAMM-].OEWNER EVOLUTION

[Schramm '00]

E A! one-parameter family (SLE, )0
of probability measures on chordal
curves with conformal invariance

and domain Markov property

@ encode SLE, random curves in

random conformal maps (g;):>0

8t

-
o
2

X: = g(y(0)
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SCHRAMM-].OEWNER EVOLUTION

[Schramm '00]

A! one-parameter family (SLE, )0
of probability measures on chordal
curves with conformal invariance

and domain Markov property

@ encode SLE, random curves in

random conformal maps (g;):>0

@ driving process = image of the tip:

8t
X; = lim g/(2) = VkB;
=y()
e g, H\ v[0,] —» H solutions to
Loewner equation:
X, = g(y(1)) 4= —2 =1
8@ o) - X, go0(2)

20



SCALING LIMITS OF MULTIPLE ISING INTERFACES (I)

X5

@ fix discrete domain data (Q‘S;xf, ... ,ng)

@ consider critical Ising model in

Q° c 6§72 with alternating ®/S b.c.

o let (Qd;x‘f,...,x‘;N) ﬂ) (Q; x1,...,X9N)

in the Carathéodory sense

21



SCALING LIMITS OF MULTIPLE ISING INTERFACES (I)

X5

@ fix discrete domain data (Q‘S;xf, ... ,ng)

@ consider critical Ising model in
Q° c 6§72 with alternating ®/S b.c.

0—0
o let (Qd;x‘f,...,x‘;N) — (;x1,...,Xxn)
in the Carathéodory sense

@ condition on the event that the

interfaces connect the boundary points

according to a given connectivity «
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SCALING LIMITS OF MULTIPLE ISING INTERFACES (I)

X5

@ fix discrete domain data (Q‘S;xf, ... ,ng)
@ consider critical Ising model in
Q° c 6§72 with alternating ®/S b.c.
0—0
o let (Qd;x‘f,...,x‘;N) — (;x1,...,Xxn)
in the Carathéodory sense

@ condition on the event that the
interfaces connect the boundary points

according to a given connectivity «

[Beffara, P. & Wu ’18]

The law of the N macroscopic interfaces of the critical Ising model

converges in the scaling limit 6 — 0 to the N-SLE, with x = 3.

Wu [arXiv:1703.02022] Proof: convergence for N =1 and
Beffara, P. & Wu [arXiv:1801.07699] classification of multiple SLE3
21



SCALING LIMITS OF MULTIPLE ISING INTERFACES (I)

@ consider critical Ising model in
Q° c §7? with alternating ®/© b.c.

@ condition on having given connectivity «a

[Beffara, P. & Wu ’18]

. . 0—0 .
Ising interfaces — N-SLEj3 associated to «
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SCALING LIMITS OF MULTIPLE ISING INTERFACES (I)

@ consider critical Ising model in
Q° c §7? with alternating ®/© b.c.

@ condition on having given connectivity «a

[Beffara, P. & Wu ’18]

. . 0—0 .
Ising interfaces — N-SLEj3 associated to «

e On (H; xy,...,xon) the marginal law of the curve starting from
x1 is given by the Loewner chain with driving process

V3dB, +3dilog Z, (W, VE Ve, .VAV)dr,  Wo=x
2ds
Vi-w,’

dWw;

dvi = Vi =x, foriz#l
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SCALING LIMITS OF MULTIPLE ISING INTERFACES (I)

@ consider critical Ising model in
Q° c §7? with alternating ®/© b.c.

@ condition on having given connectivity «a

[Beffara, P. & Wu ’18]

. . 0—0 .
Ising interfaces — N-SLEj3 associated to «

e On (H; xy,...,xon) the marginal law of the curve starting from
x1 is given by the Loewner chain with driving process

dW, = V3 dB, +3dilog Z, (W, V2, V2, . VIN)dt,  Wo=x
S 2dr :
dV) = ————, Vo =xi, fori#l
Vi- W,

@ Almost surely generated by a continuous transient curve,
which hits the boundary only at its endpoint, determined by a.

P. & Wu [arXiv:1703.00898]  Proof: control drift + compare with chordal SLE o9



LOEWNER CHAIN WITH PARTITION FUNCTION Z

@ encode (local) SLE, random curves in
random conformal maps (g;)r>0

@ driving process = image of the tip:

W, = lim g,(z)
=y(1)
X1
@ g,: H\ y[0,t] - H solutions to
Loewner equation:

d 2
8t — 7)) = ——, 7)) =12

G Ry AR ()
Wi = g:(y(0)
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LOEWNER CHAIN WITH PARTITION FUNCTION Z

@ encode (local) SLE, random curves in
random conformal maps (g;)r>0

@ driving process = image of the tip:

W, = lim g,(z)

X1 =)
@ g,: H\ y[0,t] - H solutions to
Loewner equation:
d 2
8t — 7)) = ——, 7)) =12
TG e A
@ Loewner chain with partition function Z:
W, = Vk dB, + kdilog Z (W, VAV, VAN)di
W, = t . 2dt ;
+=&0(0) dV) = ——, Vo=xi, fori#l, Wy=x
Vi-W;

23



SCALING LIMITS OF MULTIPLE ISING INTERFACES (II)

X5

@ consider critical Ising model in

Q° c §7? with alternating ®/© b.c.
0—0
o let (Q‘S;x‘f,...,x‘;N) — (;x1,...,Xx9n)

@ allow any connectivity of the interfaces

6—0
Ising interfaces — (local) multiple SLE3

X2 Proof: multi-point holomorphic observable

24



SCALING LIMITS OF MULTIPLE ISING INTERFACES (II)

X5

@ consider critical Ising model in
Q° c §7? with alternating ®/© b.c.

o let (Q‘S;x‘f,...,x‘;N) 6:9 (Q; x1,...,X9N)

@ allow any connectivity of the interfaces

6—0
Ising interfaces — (local) multiple SLE3

X2 Proof: multi-point holomorphic observable

Scaling limit of the interface starting from x; is given by
the Loewner chain with driving process

dW, = V3 dB, + 3dilog Zigng (W V2 V2. . VEY)dt,  Wo=x
S 2dr ,
dV) = — , Vo=x;, fori#l
Vi- W,

LOCAL: A priori, holds only before blow-up 24



SCALING LIMITS OF MULTIPLE ISING INTERFACES (II)

X5

@ consider critical Ising model in

Q° c §7? with alternating ®/© b.c.
0—0
o let (Q‘S;x‘f,...,x‘;N) — (;x1,...,Xx9n)

@ allow any connectivity of the interfaces

6—0
Ising interfaces — (local) multiple SLE3

X2 Proof: multi-point holomorphic observable

Scaling limit of the interface starting from x; is given by
the Loewner chain with driving process

dW, = V3 dB, + 3dilog Zigng (W V2 V2. . VEY)dt,  Wo=x
Lemma [P. & Wu ’17]

; 2dt i
dV) = ——, Vo=x;, fori#l
Vi-Ww,

ZIsing = Z Za
LOCAL: A priori, holds only before blow-up @




SCALING LIMITS OF MULTIPLE ISING INTERFACES (II)

@ consider critical Ising model in
Q° c §7? with alternating ®/© b.c.

@ allow any connectivity of the interfaces

60—0
Ising interfaces — (local) multiple SLE3

Proof: multi-point holomorphic observable

Prop. “Globality of the scaling limit” [P. & Wu 18]

@ Convergence holds also in the space of curves.

© Scaling limit is a.s. a continuous transient curve, that hits
the boundary only at its endpoint = one of the marked points.

Proof: 1. RSW bounds by [Chelkak, Duminil-Copin & Hongler 16]
+ results of [Aizenman & Burchard '99; Kemppainen & Smirnov ‘17]

2. control drift + compare with chordal SLE [arXiv:1808.09438]
25



UPSHOT: HEURISTICS SEEMS TO WORK...

o—

@ crossing probabilities — probabilities of connectivities of

multiple SLE, curves
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UPSHOT: HEURISTICS SEEMS TO WORK...

o—

@ crossing probabilities — probabilities of connectivities of

multiple SLE, curves

e encoded in multiple SLE, partition functions Z
2dr
Vi-w,

dW, = Vk dB, + kdilog Z (W, V2 V2, .VvAN)d,  dVi=
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UPSHOT: HEURISTICS SEEMS TO WORK...

o—

@ crossing probabilities — probabilities of connectivities of

multiple SLE, curves
e encoded in multiple SLE, partition functions Z

; 2dt
dW, = Vk dB, + kdilog Z (W, V2 V2, .VvAN)d,  dVi= T
r t
o Idea: discrete crossing probabilities — partition functions:
Zo(X15 - -+, Xon)

lim P [interfaces form connectivity a] =
=0 DaeLpy Za(Xts ...y Xoy)
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UPSHOT: HEURISTICS SEEMS TO WORK...

-0
@ crossing probabilities —> probabilities of connectivities of

multiple SLE, curves

encoded in multiple SLE, partition functions Z

; 2dt
dW, = Vk dB, + kdilog Z (W, V2 V2, .VvAN)d,  dVi= T
r t
o Idea: discrete crossing probabilities — partition functions:
Zo(X15 - -+, Xon)

lim P [interfaces form connectivity a] =
=0 DaeLpy Za(Xts ...y Xoy)

@ OK for xk = 2,3,4,6, probably also 16/3
[Kenyon & Wilson 11, Izyurov ‘15, Miller & Werner 17, P. & Wu 18]
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UPSHOT: HEURISTICS SEEMS TO WORK...

-0
@ crossing probabilities —> probabilities of connectivities of

multiple SLE, curves
e encoded in multiple SLE, partition functions Z

; 2dt
dW, = Vk dB, + kdilog Z (W, V2 V2, .VvAN)d,  dVi= T
r t
o Idea: discrete crossing probabilities — partition functions:
Zo(X15 - -+, Xon)

lim P [interfaces form connectivity a] =
=0 DaeLpy Za(Xts ...y Xoy)

@ OK for xk = 2,3,4,6, probably also 16/3
[Kenyon & Wilson 11, Izyurov ‘15, Miller & Werner 17, P. & Wu 18]

@ [Cardy 847 Bauer & Bernard '02]: partition functions Z should be
correlations of CFT primary fields ¢12(x1),. .., ¢12(xan)

@ When k <4, Z is a “total mass” of the multiple SLE 26



