Extremal distance and conformal radius of a CLE₄ loop

Avelio Sepúlveda. Joint work with Juhan Aru and Titus Lupu.

Université Lyon 1

June 2019

Contents

1 About the loop soup

Plan

1 About the loop soup

2 Main result

Loop soup (Lawler-Werner '04)

Let $D \subseteq \mathbb{C}$ be an open set. The loop soup is a Poisson point process of loops with intensity given by c/2 times

$$\mu(\cdot) := \int_{x \in D} \int_0^\infty \frac{1}{t} \mathbb{P}_{x,x}^t(\cdot) p_t(x,x) dt dx,$$

Loop soup (Lawler-Werner '04)

Let $D \subseteq \mathbb{C}$ be an open set. The loop soup is a Poisson point process of loops with intensity given by c/2 times

$$\mu(\cdot) := \int_{x \in D} \int_0^\infty \frac{1}{t} \mathbb{P}_{x,x}^t(\cdot) p_t(x,x) dt dx,$$

where

• $\mathbb{P}_{x,x}^t(\cdot)$ is the Brownian bridge probability measure, conditioned to stay in D.

Loop soup (Lawler-Werner '04)

Let $D \subseteq \mathbb{C}$ be an open set. The loop soup is a Poisson point process of loops with intensity given by c/2 times

$$\mu(\cdot) := \int_{x \in D} \int_0^\infty \frac{1}{t} \mathbb{P}_{x,x}^t(\cdot) p_t(x,x) dt dx,$$

where

- $\mathbb{P}_{x,x}^{t}(\cdot)$ is the Brownian bridge probability measure, conditioned to stay in D.
- $p_t(x, x)$ is the transition density of a Brownian motion stopped the first time it goes out of D.

Loop soup c = 1

Simulation by F. Camia, A. Gandolfi, and M. Kleban.

Extremal distance of a CLE₄ loop

Loop soup c = 5

Simulation by F. Camia, A. Gandolfi, and M. Kleban.

Extremal distance of a CLE₄ loop

Loop soup clusters

Simulation by F. Camia, A. Gandolfi, and M. Kleban.

Extremal distance of a CLE_4 loop

Phase transition of loop soup clusters

Theorem (Sheffield-Werner '12)

• When c > 1, there is just one loop soup cluster.

Phase transition of loop soup clusters

Theorem (Sheffield-Werner '12)

- When c > 1, there is just one loop soup cluster.
- When c ≤ 1, there are infinitely many loop soup clusters. Furthermore, the outer boundaries of the outer-most cluster has the law of a CLE_{κ(c)}.

Case c = 1: the CLE₄

Simulation by D. Wilson.

The CLE₄ loop surrounding the origin

Law of the conformal radius

Theorem (Schramm- Sheffield- Wilson '09)

The law of $-\log CR(0, \mathbb{D} \setminus \ell)$ is that of T.

Joint law

Theorem (Aru-Lupu-S. '19+)

The law of $(2\pi \operatorname{ED}(\ell, \partial \mathbb{D}), -\log \operatorname{CR}(0, \mathbb{D} \setminus \ell))$ is equal to that of (τ, T) .

[☉]No natural coupling.

Extremal distance of a CLE₄ loop

Joint law

The Brownian loops soup cluster surrounding the origin

Theorem (Aru,Lupu, S. '19+)

 $(2\pi \operatorname{ED}(\partial \mathbb{D}, \ell_1), -\log \operatorname{CR}(0, \mathbb{D} \setminus \ell_1), 2\pi \operatorname{ED}(\ell_1, \ell_2), -\log \operatorname{CR}(0, \mathbb{D} \setminus \ell_2)))$ is equal in law to $(\tau, T, \overline{\tau}, \overline{T})$.

Joint law

The Brownian loops soup cluster surrounding the origin

Theorem (Aru,Lupu, S. '19+)

 $(2\pi \operatorname{ED}(\partial \mathbb{D}, \ell_1), 2\pi \operatorname{ED}(\ell_1, \ell_2), 2\pi \operatorname{ED}(\partial \mathbb{D}, \ell_2), -\log \operatorname{CR}(0, \mathbb{D} \setminus \ell_2))$ has the same law as $(\tau, \overline{\tau}, \overline{\tau} + T, \overline{T})$.

Joint law

Impossibility of the five joint laws

Remark

The joint law of $(-\log CR(0, \mathbb{D} \setminus \ell_1), 2\pi ED(\partial \mathbb{D}, \ell_2)))$ cannot be obtained from the same Brownian motion *B*.

Proof

By contradiction.

Then, a.s.

 $-\log(CR(0,\mathbb{D}\setminus\ell_1)) \leq 2\pi ED(\partial\mathbb{D},\ell_2).$

However...

Let D be a simply connected domain and $x \in D$. Take $\varphi : D \mapsto \mathbb{D}$ the conformal map with $\varphi(x) = 0$ and $\varphi'(x) > 0$. Then,

$$\mathsf{CR}(x,D) = rac{1}{arphi'(x)}.$$

Let D be a two-connected domain with boundaries $\partial_o D$ and $\partial_i D$. Then,

$$ED(\partial_o D, \partial_i D) = rac{1}{\int_D |\nabla u(x)|^2 dx},$$

where *u* is the harmonic function with values 0 in $\partial_o D$ and 1 in $\partial_i D$.

Example of extremal distance

When $D = \mathbb{D} \setminus r \mathbb{D}$,

$$ED(\partial \mathbb{D}, r\partial \mathbb{D}) = -\frac{1}{2\pi} \log r.$$

Example of extremal distance

When
$$D = \mathbb{D} \setminus r \mathbb{D}$$
,
 $ED(\partial \mathbb{D}, r \partial \mathbb{D}) = -\frac{1}{2\pi} \log r.$

Furthermore, as $r \to 0$ if $\ell \subseteq D$

$$ED(\partial \mathbb{D}, r\partial \mathbb{D}) - ED(\ell, r\partial \mathbb{D}) o -rac{1}{2\pi} \log(CR(0, \mathbb{D} ackslash \ell)).$$

The Gaussian free field

The Gaussian free field (GFF) is a centred Gaussian process with covariance given by

$$\mathbb{E}\left[\Phi(x)\Phi(y)\right] = G_D(x,y) \overset{x \to y}{\sim} - \log(\|x-y\|).$$

The Gaussian free field

The Gaussian free field (GFF) is a centred Gaussian process with covariance given by

$$\mathbb{E}\left[\Phi(x)\Phi(y)\right] = G_D(x,y) \overset{x \to y}{\sim} - \log(\|x-y\|).$$

$$G_D(x,x) = \infty !! \odot$$
The Gaussian free field

The Gaussian free field (GFF) is a centred Gaussian process with covariance given by

$$\mathbb{E}\left[\Phi(x)\Phi(y)\right] = G_D(x,y) \overset{x \to y}{\sim} - \log(\|x-y\|).$$

$G_D(x,x) = \infty !! \odot$

The Gaussian free field, is defined as a random "generalised functions" such that $(\Phi, f)_{f \text{ smooth}}$ is a centred Gaussian process with

$$\mathbb{E}\left[(\Phi,f)(\Phi,g)\right] = \iint_{D\times D} f(x)G_D(x,y)g(y)dxdy.$$

Profile picture

Let A be a closed set of $D \subseteq \mathbb{C}$. Then there exist two independent "generalized functions" Φ_A and Φ^A such that

$$\bullet = \Phi_A + \Phi^A$$

Let A be a closed set of $D \subseteq \mathbb{C}$. Then there exist two independent "generalized functions" Φ_A and Φ^A such that

$$\bullet = \Phi_A + \Phi^A$$

2 Φ_A is harmonic in $D \setminus A$.

Let A be a closed set of $D \subseteq \mathbb{C}$. Then there exist two independent "generalized functions" Φ_A and Φ^A such that

$$\bullet = \Phi_A + \Phi^A.$$

- **2** Φ_A is harmonic in $D \setminus A$.
- **③** Φ^A is a GFF in $D \setminus A$.

A is a local set of Φ if for all closed sets $C \subseteq D$

$$\{A \subseteq C\} \in \sigma(\Phi_C).$$

Let A be a local set of Φ . Then there exist two conditionally independent "generalised functions" Φ_A and Φ^A such that conditionally on A

$$\bullet \Phi = \Phi_A + \Phi^A$$

- Let A be a local set of Φ . Then there exist two conditionally independent "generalised functions" Φ_A and Φ^A such that conditionally on A
 - $\bullet \Phi = \Phi_A + \Phi^A.$
 - **2** Φ_A is harmonic in $D \setminus A$.

- Let A be a local set of Φ . Then there exist two conditionally independent "generalised functions" Φ_A and Φ^A such that conditionally on A
 - $\mathbf{0} \ \Phi = \Phi_{\mathbf{\Delta}} + \Phi^{\mathbf{A}}.$
 - **2** Φ_A is harmonic in $D \setminus A$.
 - **③** Φ^A is a GFF in $D \setminus A$.

Let us see how to construct non-trivial local sets, based in theorems by Schramm-Sheffield '13, Wang-Wu '17, Powell-Wu '17.

Let us see how to construct non-trivial local sets, based in theorems by Schramm-Sheffield '13, Wang-Wu '17, Powell-Wu '17.

Take $\lambda = \pi/2$ and u a bounded harmonic function.

Let us see how to construct non-trivial local sets, based in theorems by Schramm-Sheffield '13, Wang-Wu '17, Powell-Wu '17.

Take $\lambda = \pi/2$ and u a bounded harmonic function.

Let us see how to construct non-trivial local sets, based in theorems by Schramm-Sheffield '13, Wang-Wu '17, Powell-Wu '17.

Take $\lambda = \pi/2$ and u a bounded harmonic function.

Where can we finish a level line?

Level lines can be finished, where a level line of $-\Phi - u$ can be started.

How do we parametrise level lines?

Theorem (Miller-Sheffield '16)

Let η . a level line in \mathbb{D} . Parametrise η . so that

 $-\log(CR(0,D\backslash\eta_t))=t.$

Then,

 $\Phi_{\eta_t}(0)+u(0)$

has the law of a Brownian motion started from u(0).

How do we parametrise level lines?

Proposition (Aru-Lupu-S. '18)

Let η . a level line in the annulus $\mathbb{D} \setminus r\mathbb{D}$. Parametrise η . so that

$$2\pi(ED(\partial \mathbb{D}, r\partial \mathbb{D}) - ED(\partial \mathbb{D} \cup \eta_t, r\partial \mathbb{D})) = t.$$

Then,

$$\mathsf{ED}(\partial \mathbb{D} \cup \eta_t, r \partial \mathbb{D}) \int_{r \partial \mathbb{D}} \partial_n \Phi_{\eta_t}(z) + \partial_n u(z) dz$$

has the law of a Brownian bridge started from

$$ED(\partial \mathbb{D}, r\partial \mathbb{D}) \int_{r\partial \mathbb{D}} \partial_n u(z) dz$$

finishing at 0, with length $2\pi ED(\partial \mathbb{D}, r\partial \mathbb{D})$.

Two-valued sets

Theorem (Aru-S.-Werner '16)

Take $a, b \ge 0$, such that $a + b \ge 2\lambda$. There exists a unique local set $\mathbb{A}_{-a,b}$ such that $\Phi_{\mathbb{A}_{-a,b}}$ is a harmonic function constant in each connected component taking values in $\{-a, b\}$.

Simulation by B. Wernes.

$\mathbb{A}_{-2\lambda,2\lambda} = \textbf{CLE}_4 \text{ (Miller-Sheffield)}$

Constructing TVS $\mathbb{A}_{-\lambda,\lambda}$

Constructing TVS $\mathbb{A}_{-\lambda,\lambda}$

Constructing TVS $\mathbb{A}_{-\lambda,\lambda}$

Constructing TVS $\mathbb{A}_{-\lambda,2\lambda}$

Conformal radius TVS

Theorem (Aru-S.-Werner'16)

The law of $-\log(CR(0, \mathbb{A}_{-a,b}))$ is equal to the law of the first time a Brownian motion exits [-a, b].

What happens in non-simply connected domains?

Theorem (Aru-Lupu-S. '17)

Define $\mathbb{A}^{o}_{-a,b}$ the connected component of the TVS in $\mathbb{D}\setminus r\mathbb{D}$ containing $\partial\mathbb{D}$. Then the law of

$$2\pi(ED(\partial \mathbb{D}, r\partial \mathbb{D}) - ED(\mathbb{A}^{o}_{-a,b}, r\partial \mathbb{D}))$$

is that of the first time a Brownian bridge from 0 to 0 of length $2\pi ED(\partial \mathbb{D}, r\partial \mathbb{D})$ exits [-a, b].

Image of TVS in an annulus

About the loop soup

A. Sepúlveda (Université Lyon 1)

- A reversibility statement.
- Oharacterisation of the joint law.
- **③** Change of measure of TVS, for different boundary conditions.

Characterisation of the law

Characterisation of the law

It is enough that: for every $v \in \mathbb{R}$, there is a couple of random variables (σ^{v}, S^{v}, ξ) , with $\sigma^{v} + S^{v} \leq L$ and $\xi \in \{-2\lambda, 2\lambda\}$, such that

((σ^{ν}, ξ) , resp. (S^{ν}, ξ) , has same law as $(\tau^{\nu}, B_{T^{\nu}})$, resp. $(T^{\nu}, B_{T^{\nu}})$.
Characterisation of the law

It is enough that: for every $v \in \mathbb{R}$, there is a couple of random variables (σ^{v}, S^{v}, ξ) , with $\sigma^{v} + S^{v} \leq L$ and $\xi \in \{-2\lambda, 2\lambda\}$, such that

(σ^{ν}, ξ), resp. (S^{ν}, ξ) , has same law as $(\tau^{\nu}, B_{T^{\nu}})$, resp. $(T^{\nu}, B_{T^{\nu}})$.

2 The conditional law of σ^{ν} given S^{ν} is the same as the conditional law of σ^{0} given S^{0} .

Checking the condition

We check the condition for the non-trivial loop of $\mathbb{A}_{-2\lambda,2\lambda}^{\nu,o}.$ To do that we compute

 $\frac{d\mathbb{Q}_{v}}{d\mathbb{Q}_{0}},$

where \mathbb{Q}_{v} is the law of $\mathbb{A}_{-2\lambda,2\lambda}^{v,o}$ together with its harmonic function.

We check the condition for the non-trivial loop of $\mathbb{A}_{-2\lambda,2\lambda}^{\nu,o}.$ To do that we compute

 $\frac{d\mathbb{Q}_{v}}{d\mathbb{Q}_{0}},$

where \mathbb{Q}_{v} is the law of $\mathbb{A}_{-2\lambda,2\lambda}^{v,o}$ together with its harmonic function.

We show it does only depend on $ED(\mathbb{A}^{v,o}_{-2\lambda,2\lambda}, r\partial \mathbb{D})$ and its label and not on v.

And for the loop soup cluster?

Theorem (Aru-Lupu-S. '18)

Conditionally on the outer boundary, the law of the cluster is that of

$$\mathbb{A}_{-2\lambda} = \bigcup_{n \in \mathbb{N}} \mathbb{A}_{-2\lambda,n}.$$

Merci!