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Loop soup (Lawler-Werner '04)

Let D C C be an open set. The loop soup is a Poisson point process of
loops with intensity given by c¢/2 times

/ / fIP’t (-)pt(x, x)dtdx,
xeD
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Loop soup (Lawler-Werner '04)

Let D C C be an open set. The loop soup is a Poisson point process of
loops with intensity given by c¢/2 times

/ / fIP’t )pe(x, x)dtdx,
xeD
where

e P () is the Brownian bridge probability measure, conditioned to
stay in D.

@ p:(x,x) is the transition density of a Brownian motion stopped the
first time it goes out of D.
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Loop soup c =1

Simulation by F. Camia, A. Gandolfi, and M. Kleban.
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Loop soup c =5

Simulation by F. Camia, A. Gandolfi, and M. Kleban.
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Loop soup clusters

Simulation by F. Camia, A. Gandolfi, and M. Kleban.
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Phase transition of loop soup clusters

Theorem (Sheffield-Werner "12)

o When c > 1, there is just one loop soup cluster.

A. Sepulveda (Université Lyon 1) Extremal distance of a CLE4 loop June 2019 8 /63



Phase transition of loop soup clusters

Theorem (Sheffield-Werner "12)

o When c > 1, there is just one loop soup cluster.
@ When c < 1, there are infinitely many loop soup clusters.
Furthermore, the outer boundaries of the outer-most cluster has the

law of a CLE ().
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Case c = 1: the CLE,

Simulation by D. Wilson.
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Plan

© Main result
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The CLE, loop surrounding the origin

CR(0,D\¢)
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Law of the conformal radius

Theorem (Schramm- Sheffield- Wilson ’09)
The law of — log CR(0,D\¥) is that of T. J

- T
0

v
—T
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Joint law

Theorem (Aru-Lupu-S. '19+)
The law of (2m ED(¢, D), — log CR(0,D\?)) is equal to that of (1, T). J

_ T
—Tr

®No natural coupling.
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Joint law

— log (CR(0, \D))

CR(0,D\()

2rED(0D,?)
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The cluster surrounding the origin
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The cluster surrounding the origin

e - - - -

ED(8D, ¢y)
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The cluster surrounding the origin

- - -

ED(0D, ¢;)
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The cluster surrounding the origin
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The Brownian loops soup cluster surrounding the
origin

Theorem (Aru,Lupu, S. '19+)
(271' ED((‘)ID), 61), - |og CR(O, D\fl), 27 ED(fl,fz), - Iog CR(O,D\@Q))) is

equal in law to (7, T,7, T).
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Joint law

{ED(0D, £,)

A. Sepilveda (Université Lyon 1)

Extremal distance of a CLE, loop

~ log(CR(0, D\,
7T ................
27’(’E‘l)(€17 éé)
DD, () L N
27TED(0D [1)
- —log(C'R(0,D\/s))
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The Brownian loops soup cluster surrounding the
origin

Theorem (Aru,Lupu, S. '19+)

(27 ED(AD), £1), 27 ED(£1, £3), 27 ED(AD, £5), — log CR(0, D\£2)) has the
same law as (7, 7,7+ T, T).
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Joint law

----- -

ED(D, 1)

2r ED(0D ()
o —log(C'R(0,D\f5))

{ED(0D, £,)
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Impossibility of the five joint laws

Remark

The joint law of (— log CR(0,D\¢1),27 ED(9D, ¢2))) cannot be obtained
from the same Brownian motion B.
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Proof

By contradiction.

—log(C'R(0,D\¢y))

{ED(0D, £,)

Then, a.s.
—log(CR(0,D\¢1)) < 2wED(0OD, 7).
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However...
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Plan

© Preliminaries
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Conformal radius

Let D be a simply connected domain and x € D. Take ¢ : D — D the
conformal map with ¢(x) =0 and ¢/(x) > 0. Then,

CR(x, D) = S0
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Extremal distance

Let D be a two-connected domain with boundaries 9,D and 9;D. Then,
ED(0,D,0;D) = oy
S b IVu(x)Pdx

where u is the harmonic function with values 0 in 9,D and 1 in 0;D.
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Example of extremal distance

When D = D\rD,
1
ED(OD, roD) = ~5 log r.
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Example of extremal distance

When D = D\rD,
1
ED(OD, roD) = ~5 log r.

Furthermore, as r - 0if £ C D

ED(OD, roD) — ED(¢, roD) — —2i log(CR(0,D\?)).
T
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The Gaussian free field

The Gaussian free field (GFF) is a centred Gaussian process with
covariance given by

E [®(x)®(y)] = Gp(x,y) “~ —log(||x — ylI)-
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The Gaussian free field

The Gaussian free field (GFF) is a centred Gaussian process with
covariance given by

E [®(x)®(y)] = Gp(x,y) “~ —log(||x — ylI)-

Gp(x, x) = ooll ®

The Gaussian free field, is defined as a random “generalised functions”
such that (®, f)f smooth is a centred Gaussian process with

E[(®,)(®,8)] = [[ f(x)Gb(x,y)g(y)dxdy.
DxD
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Weak Markov property

Let A be a closed set of D C C. Then there exist two independent
“generalized functions” ® 4 and ®A such that

Q &=+ A
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Weak Markov property

Let A be a closed set of D C C. Then there exist two independent
“generalized functions” ® 4 and ®A such that

Q &=+ A
@ &, is harmonic in D\A.

© dAisa GFFin D\A.
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Local set

A is a local set of @ if for all closed sets C C D

[AC C) e a(d).
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Strong Markov property

Let A be a local set of ®. Then there exist two conditionally independent
“generalised functions” ®4 and ®A such that conditionally on A

Q &=+ A
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Strong Markov property
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Construction of basic bounded type local sets

Let us see how to construct non-trivial local sets, based in theorems by
Schramm-Sheffield '13, Wang-Wu '17, Powell-Wu '17.
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Construction of basic bounded type local sets

Let us see how to construct non-trivial local sets, based in theorems by
Schramm-Sheffield '13, Wang-Wu '17, Powell-Wu '17.

Take A = 7/2 and u a bounded harmonic function.

X >
Y— <
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Where can we finish a level line?

Level lines can be finished, where a level line of —® — u can be started.

Y— <
Y >
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How do we parametrise level lines?

Theorem (Miller-Sheffield '16)

Let . a level line in D. Parametrise 1. so that

— log(CR(0, D\n¢)) = t.
Then,
®y.(0) + u(0)

has the law of a Brownian motion started from u(0).
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How do we parametrise level lines?

Proposition (Aru-Lupu-S. ’18)

Let n. a level line in the annulus D\ rD. Parametrise 7). so that
27 (ED(OD, roD) — ED(OD U n¢, roD)) = t.

Then,
ED(AD U 7, roD) / 8nPp,(2) + Bpuu(2)dz
roD

has the law of a Brownian bridge started from

ED(OD, roD) Onu(z)dz
roD

finishing at 0, with length 2w ED(OD, roD).
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Two-valued sets

Theorem (Aru-S.-Werner '16)

Take a,b > 0, such that a+ b > 2. There exists a unique local set A_, ,
such that ®,__, is a harmonic function constant in each connected
component taking values in {—a, b}.
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Simulation by B. Wernes.
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A )21 =CLE; (Miller-Sheffield)
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Constructing TVS A_) )
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Constructing TVS A_) )

s

K2
-
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Constructing TVS A_) ),

2)““",‘_-
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Conformal radius TVS

Theorem (Aru-S.-Werner'16)

The law of —log(CR(0,A_,)) is equal to the law of the first time a
Brownian motion exits [—a, b].
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What happens in non-simply connected domains?

Theorem (Aru-Lupu-S. '17)

Define A° , |, the connected component of the TVS in D\rD containing
OD. Then the law of

21(ED(D, rdD) — ED(A® , 5, roD))

is that of the first time a Brownian bridge from 0 to 0 of length
27ED(OD, roD) exits [—a, b].
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Image of TVS in an annulus
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Plan

O Proof
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Steps

© A reversibility statement.
© Characterisation of the joint law.

© Change of measure of TVS, for different boundary conditions.
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Reversibility
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Reversibility
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Reversibility
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Characterisation of the law

n TU
v
Y ,
oy L
—T
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Characterisation of the law

n T'I,'
v
Y ,
oy L
—T

It is enough that: for every v € R, there is a couple of random variables
(0v,5,€), with 0¥ + SV < L and £ € {—2),2)\}, such that

Q (0v,¢§), resp. (5Y,&), has same law as (7Y, Btv), resp. (TY, Brv).
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Characterisation of the law

n T'I,'
v
Y ,
oy L
—T

It is enough that: for every v € R, there is a couple of random variables
(0v,5,€), with 0¥ + SV < L and £ € {—2),2)\}, such that

Q (0v,¢§), resp. (5Y,&), has same law as (7Y, Btv), resp. (TY, Brv).

@ The conditional law of " given SY is the same as the conditional law
of o0 given S°.
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Checking the condition

We check the condition for the non-trivial loop of A3, ,,. To do that we
compute

dQ,
dQq’

where Q, is the law of Af&@ together with its harmonic function.
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Checking the condition

We check the condition for the non-trivial loop of A3, ,,. To do that we
compute

dQ,
dQq’

where Q, is the law of Afg)\,z)\ together with its harmonic function.

We show it does only depend on ED(A"3, ,, rdD) and its label and not
on v.
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And for the loop soup cluster?

Theorem (Aru-Lupu-S. '18)

Condlitionally on the outer boundary, the law of the cluster is that of

Ay = U A oy p.

neN
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End

Mercil
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