Stochastic Ricci Flow on Compact Surfaces

Julien Dubédat (Columbia), Hao Shen (Wisconsin)

June 13, 2019

Ricci Flow [Hamilton'81]: intrinsic evolution of a Riemannian metric g = g(t):

$$\partial_t g = -2R_g$$

Modified (normalized) flow

$$\partial_t g = -2R_g - 2\lambda g$$

Ricci Flow [Hamilton'81]: intrinsic evolution of a Riemannian metric g = g(t):

$$\partial_t g = -2R_g$$

Modified (normalized) flow

$$\partial_t g = -2R_g - 2\lambda g$$

On surfaces: Fix a ref.metric g_0 . Let $g=e^{2\phi}g_0$ (ϕ called a conformal factor).

$$\Delta_g = e^{-2\phi} \Delta_0 \qquad A_g = e^{2\phi} A_0$$

2D Ricci flow preserves conformal class: i.e. we can write the flow for ϕ :

$$\partial_t \phi = \underbrace{e^{-2\phi}\Delta_0\phi}_{\Delta_g\phi} - e^{-2\phi}K_0 - \lambda$$

Area form: The evolution for the area form $A_g=e^{2\phi}A_0$

$$\partial_t A_g = 2\Delta_0 \phi A_0 - 2K_0 A_0 - 2\lambda A_g$$

Ricci flow as a gradient flow

"Determinant of Laplacian": $\det \Delta_{g} = \prod_{\lambda_{i} \neq 0} \lambda_{j}$ (formally).

Polyakov formula: under conformal change $g=e^{2\phi}g_0$

$$\label{eq:detDelta} \log \text{det} \Delta_g - \log \text{det} \Delta_0 = -\frac{1}{12\pi} \int_{\Sigma} |\nabla_{g_0} \phi|^2 \text{d} A_0 - \frac{1}{6\pi} \int_{\Sigma} \mathcal{K}_0 \phi \, \text{d} A_0 + \log \frac{\mathcal{A}_g}{\mathcal{A}_0}$$

where A_g is total area of g i.e. $A_g = \int_{\Sigma} e^{2\phi} dA_0$; K_0 is Gauss curvature of g_0 .

This is essentially Liouville: let
$$V(g) = -\log \det \Delta_g + \log \mathcal{A}_g + rac{\lambda}{12\pi} \mathcal{A}_g$$

$$6\pi(V(g)-V(g_0))+\frac{\lambda}{2}V_0=\int_{\Sigma}\left(\frac{1}{2}|\nabla_{g_0}\phi|^2+K_0\phi+\frac{\lambda}{2}e^{2\phi}\right)dA_0$$

Ricci flow as a gradient flow

"Determinant of Laplacian": $\det \Delta_g = \prod_{\lambda_i \neq 0} \lambda_j$ (formally).

Polyakov formula: under conformal change $g=e^{2\phi}g_0$

$$\label{eq:detDelta} \log \text{det} \Delta_g - \log \text{det} \Delta_0 = -\frac{1}{12\pi} \int_{\Sigma} |\nabla_{g_0} \phi|^2 \text{d} A_0 - \frac{1}{6\pi} \int_{\Sigma} \mathcal{K}_0 \phi \, \text{d} A_0 + \log \frac{\mathcal{A}_g}{\mathcal{A}_0}$$

where A_g is total area of g i.e. $A_g = \int_{\Sigma} e^{2\phi} dA_0$; K_0 is Gauss curvature of g_0 .

This is essentially Liouville: let $V(g)=-\log\det\Delta_g+\log\mathcal{A}_g+rac{\lambda}{12\pi}\mathcal{A}_g$

$$6\pi(V(g)-V(g_0))+\frac{\lambda}{2}V_0=\int_{\Sigma}\left(\frac{1}{2}|\nabla_{g_0}\phi|^2+\textit{K}_0\phi+\frac{\lambda}{2}e^{2\phi}\right)\textit{dA}_0$$

Calabi metric on infinite dimensional space of metrics $\mathcal{M}=\{g:g=e^{2\phi}g_0\}$

$$\langle \delta \varphi, \delta \psi \rangle_{T_{\mathsf{g}}\mathcal{M}} = \int_{\Sigma} \delta \varphi \, \delta \psi \, d\mathsf{A}_{\mathsf{g}}$$

Gradient flow w.r.t. Calabi metric is the RF $\partial_t \phi = e^{-2\phi} \Delta_0 \phi - e^{-2\phi} K_0 - \lambda$

[Osgood-Phillips-Sarnak'88]: Extremals of det Δ_g (Uniformization theorem)

(Formal) stochastic Ricci flow

Q: add an "intrinsic" noise to Ricci flow?

Fix torus
$$\mathbf{T}=\mathbb{C}/(\mathbb{Z}+\tau\mathbb{Z})$$
 with flat metric g_0 (so that $K_0=0$)

White noise (w.r.t.
$$g_0$$
): $\mathbf{E}(\int f \xi_0 dA_0)^2 = \int f^2 dA_0$

White noise w.r.t. g?
$$\mathbf{E}(\int f \xi_g dA_g)^2 = \int f^2 dA_g$$
. We should have $\xi_g := e^{-\phi} \xi_0$

(Formal) stochastic Ricci flow

Q: add an "intrinsic" noise to Ricci flow?

Fix torus
$$\mathbf{T} = \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$$
 with flat metric g_0 (so that $K_0 = 0$)

White noise (w.r.t.
$$g_0$$
): $\mathbf{E}(\int f\xi_0 dA_0)^2 = \int f^2 dA_0$

White noise w.r.t. g?
$$\mathbf{E}(\int f \xi_g dA_g)^2 = \int f^2 dA_g$$
. We should have $\xi_g := e^{-\phi} \xi_0$

Stochastic Ricci flow for ϕ (where $\lambda, \sigma \in \mathbf{R}$)

$$\partial_t \phi = \Delta_g \phi - \lambda + \sigma \xi_g = e^{-2\phi} \Delta \phi - \lambda + \sigma e^{-\phi} \xi_0$$

Translating to flow in terms of g and $A_g=e^{2\phi}A_0$

$$\partial_t g = -2R_g - 2\lambda g + \frac{2\sigma \xi_g g}{2}$$

$$\partial_t A_g = 2\Delta\phi A_0 - 2\lambda A_g + \frac{2\sigma\xi_g}{A_g} A_g$$

(compare with stochastic heat equation $\partial_t \phi = \Delta \phi + \xi_0$. In 2D solution ϕ is distribution)

Gaussian multiplicative chaos (GMC) and Liouville CFT (LCFT)

$$M_X := \lim_{\varepsilon} M_{\varepsilon}(X) = \lim_{\varepsilon} \varepsilon^{\frac{\gamma^2}{2}} \exp(\gamma X_{\varepsilon}(x)) dx \qquad \gamma \in (0,2)$$

Earlier: Høegh-Krohn'71, Kahane'85 etc.

More recent: Duplantier-Sheffield'11 (a.s. converge); Shamov'16 (more approx.schemes)

Shift property: Fix $f \in H^1$ (Cameron-Martin space), $M_{f+X} = e^{\gamma f} M_X$ a.s.

Inversion: [Berestycki-Sheffield-Sun'14]: X is measurable w.r.t. M_X . Namely inverse mapping $M_X \mapsto X$ is a.e. defined.

Gaussian multiplicative chaos (GMC) and Liouville CFT (LCFT)

$$M_X := \lim_{\varepsilon} M_{\varepsilon}(X) = \lim_{\varepsilon} \varepsilon^{\frac{\gamma^2}{2}} \exp(\gamma X_{\varepsilon}(x)) dx \qquad \gamma \in (0,2)$$

Earlier: Høegh-Krohn'71, Kahane'85 etc.

More recent: Duplantier-Sheffield'11 (a.s. converge); Shamov'16 (more approx.schemes)

Shift property: Fix $f \in H^1$ (Cameron-Martin space), $M_{f+X} = e^{\gamma f} M_X$ a.s.

Inversion: [Berestycki-Sheffield-Sun'14]: X is measurable w.r.t. M_X . Namely inverse mapping $M_X \mapsto X$ is a.e. defined.

Geometer's vs Probabilists' conventions:

$$\frac{2}{\sigma^2} \int_{\mathbf{T}} \left(\frac{1}{2} |\nabla \phi|^2 + \frac{\lambda}{2} e^{2\phi} \right) dx = \frac{1}{4\pi} \int_{\mathbf{T}} \left(|\nabla X|^2 + 4\pi \mu e^{\gamma X} \right) dx$$

by changing variables $\phi=\frac{\gamma}{2}X$, $\sigma=\sqrt{\pi}\gamma$, $\lambda=\pi\mu\gamma^2$.

In geometer convention: " L^2 regime" $\sigma < \sqrt{2\pi}$; " L^1 regime" $\sigma < 2\sqrt{\pi}$

[David-Kupiainen-Rhodes-Vargas] (sphere), [David-Rhodes-Vargas] (complex tori), [Guillarmou-Rhodes-Vargas] (higher genus), [Huang-Rhodes-Vargas] (disk), [Remy] (annulus), etc.

Main result

$$\partial_t \phi = e^{-2\phi} \Delta \phi - \lambda + \sigma e^{-\phi} \xi_0$$
$$\partial_t A = 2\Delta \phi A_0 - 2\lambda A + 2\sigma e^{-\phi} \xi_0 A$$

Observation: Write $A(f) = \int_{\mathbb{T}} f(x)A(dx)$. Then $A_t(f)$ should satisfy SDE:

$$dA_t(f) = 2\Big(A_0(f\Delta\phi_t) - \lambda A_t(f)\Big)dt + 2\sigma\left(A_t(f^2)\right)^{\frac{1}{2}}d\beta_t^f \qquad \beta^f \text{ is 1d standard BM}$$

Main result

$$\partial_t \phi = e^{-2\phi} \Delta \phi - \lambda + \sigma e^{-\phi} \xi_0$$

 $\partial_t A = 2\Delta \phi A_0 - 2\lambda A + 2\sigma e^{-\phi} \xi_0 A$

Observation: Write $A(f) = \int_{T} f(x)A(dx)$. Then $A_t(f)$ should satisfy SDE:

$$dA_t(f) = 2\Big(A_0(f\Delta\phi_t) - \lambda A_t(f)\Big)dt + 2\sigma\left(A_t(f^2)\right)^{\frac{1}{2}}d\beta_t^f$$
 is 1d standard BM

State space for A

 $\mathcal{X} := \{ \text{finite positive Borel meas.} \} \setminus \{0\} \ \bigg(= \{ \text{Borel prob.meas.} \} \times (0, \infty) \bigg)$

equipped with the metrizable topology of weak convergence.

Theorem For $\lambda \geq 0$, $\sigma < \sigma_{L^1} = 2\sqrt{\pi}$, there exists a Markov diffusion process $\mathbf{A} = \{\Omega, \mathcal{F}, (A_t)_{t \geq 0}, (P_z)_{z \in \mathcal{X}}\}$ on \mathcal{X} , s.t. $\forall f \in C^{\infty}$, $A_t(f)$ satisfies the above SDE with initial condition z(f) where $\phi_t = \mathbf{M}^{-1}A_t$ a.s. $(\mathbf{M}^{-1}$ is the BSS map)

Corollary. $dA_t(1) = 2\sigma \sqrt{A_t(1)}d\beta_t - 2\lambda A_t(1)dt$ (Cont.state branching process) If $\lambda = 0$, it is Square Bessel process of dimension 0 \Longrightarrow Total area $A_t(1)$ is a.s. absorbed at 0 in finite time.

Stochastic quantization

$$\Phi^4$$
 model: $\int \frac{1}{2} |\nabla \phi|^2 + \frac{1}{4} \phi^4 dx \implies \partial_t \phi = \Delta \phi - \phi^3 + \xi$

2D: [Albeverio-Röckner'91] (Dirichlet forms); [Da Prato-Debusshe'03] (PDE arguments,local solution); [Mourrat-Weber'15] (PDE arguments,global solution)

 $3D: Local \ solution: \ [Hairer'13] (Reg. Stru.) \ [Catellier-Chouk'13] (Paracontrol) \ [Kupiainen'14] (RG);$

Global solution: [Mourrat-Weber'16] (Paracontrol) [Moinat-Weber'16] (Reg.Stru.)

Sine-Gordon in 2D:
$$\int \frac{1}{2} |\nabla \phi|^2 + \frac{1}{4} \phi^4 dx \implies \partial_t \phi = \Delta \phi + \sin(\beta \phi) + \xi$$

[Hairer-Shen'14]:
$$\beta < \frac{16\pi}{3}$$
 [Chandra-Hairer-Shen'18]: $\forall \beta \in (0, 8\pi)$ (Reg.Stru.)

Higgs model:
$$\int |dA|^2 + |D_A\Phi|^2 dx$$
 [Shen'18] (Reg.Stru.)

3D Yang-Mills:
$$\int ||F_A||^2 + |D_A\Phi|^2 dx$$
 [Chandra-Hairer-Shen](in progress)

Liouville CFT (on torus):
$$\int |\nabla \phi|^2 + \lambda e^{\gamma \phi} dx$$

[Garban'18]
$$\partial_t \phi = \Delta \phi - \lambda e^{\gamma \phi} + \xi$$
; [Debédat-Shen'19](this talk): $\partial_t \phi = e^{-2\phi} \Delta \phi - \lambda + \sigma e^{-\phi} \xi$

Strong solution methods for Quasilinear singular SPDE

$$\partial_t \phi = e^{-2\phi} \Delta \phi - \lambda + e^{-\phi} \xi$$

[Otto-Weber'18] (rough paths)

$$\partial_t u = a(u)\partial_x^2 u + \sigma(u)f$$
 for random $f \in C^{\alpha-2}(\alpha > 2/3)$

($\alpha=1$ is borderline for products $a(u)\cdot\partial_x^2u$ and $\sigma(u)\cdot f$ to have classical meaning.)

Similar results by Furlan-Gubinelli'18, Bailleul-Debussche-Hofmanova'18 also for $\alpha > \frac{2}{3}$ (paracontrolled)

Gerencsér-Hairer (existing reg.struc. adapted to quasilinear), applied to above equation with $\alpha>\frac{1}{2}$. Otto-Sauer-Smith-Weber'19+ (twisted version of regularity structure) for $\alpha>\frac{1}{2}$.

With extra work, one may expect to push the regularity down to $\alpha>\frac{2}{5}$ by building more "perturbative" information so that $4\alpha+(\alpha-2)>0$. But this would eventually cease to work at $\alpha=0$.

SRF should be as singular as the two-dimensional GFF, i.e. $\alpha <$ 0. Therefore we will only seek for weak solution, using the theory of Dirichlet forms

Example: dX = V'(X) dt + dW in $H = L^2[0,1]$ invariant under $\nu = e^{-V(X)} dX$

Example: dX = V'(X) dt + dW in $H = L^2[0,1]$ invariant under $\nu = e^{-V(X)} dX$

Integration by parts: e.g.
$$\int D_f G(X) \nu(dX) = -\int G(X) D_f V(X) \nu(dX)$$
 for functionals e.g. $G(X) = q(\int_0^1 f_1(x) X(x) dx, \cdots, \int_0^1 f_k(x) X(x) dx)$

Example: dX = V'(X) dt + dW in $H = L^2[0,1]$ invariant under $\nu = e^{-V(X)} dX$

Integration by parts: e.g. $\int D_f G(X) \nu(dX) = -\int G(X) D_f V(X) \nu(dX)$ for functionals e.g. $G(X) = q(\int_0^1 f_1(x) X(x) dx, \cdots, \int_0^1 f_k(x) X(x) dx)$

Dirichlet form: $\mathcal{E}(G,F) = \int_H \langle DG,DF \rangle_H d\nu = \sum_{k=1}^\infty \int_H D_{e_k} G \ D_{e_k} F \ d\nu$ There is a Markov diffusion $(\Omega,\mathcal{F},(X(t))_{t\geq 0},(P^z)_{z\in H})$ associated to \mathcal{E} , with generator \mathcal{L} satisfying $\int_H \langle DG,DF \rangle_H d\nu = -\int_H \langle \mathcal{L}G,F \rangle_H d\nu$

Example: dX = V'(X) dt + dW in $H = L^2[0,1]$ invariant under $\nu = e^{-V(X)} dX$

Integration by parts: e.g.
$$\int D_f G(X) \nu(dX) = -\int G(X) D_f V(X) \nu(dX)$$
 for functionals e.g. $G(X) = q(\int_0^1 f_1(x) X(x) dx, \cdots, \int_0^1 f_k(x) X(x) dx)$

Dirichlet form: $\mathcal{E}(G,F) = \int_H \langle DG,DF \rangle_H d\nu = \sum_{k=1}^\infty \int_H D_{e_k} G \ D_{e_k} F \ d\nu$ There is a Markov diffusion $(\Omega,\mathcal{F},(X(t))_{t\geq 0},(P^z)_{z\in H})$ associated to \mathcal{E} , with generator \mathcal{L} satisfying $\int_H \langle DG,DF \rangle_H d\nu = -\int_H \langle \mathcal{L}G,F \rangle_H d\nu$

Fukishima decomposition

$$G(X_t) - G(X_0) = M_t^{[G]} + N_t^{[G]}$$

where
$$\langle M_t^{[G]} \rangle = \int_0^t \langle DG(X_s), DG(X_s) \rangle_H ds$$
, and $N_t^{[G]} = \int_0^t \mathcal{L}Gds$,

Take $G_k(X) = \langle e_k, X \rangle_H$, we have above decomposition for G_k ; we should find what $M_t^{[G_k]}$ and $N_t^{[G_k]}$ really are.

$$\begin{array}{l} \mathcal{E}(G_k,F) = \int_H \langle e_k,DF \rangle_H d\nu = \int_H D_{e_k} F \ d\nu \stackrel{\mathit{IBP}}{=} - \int F \ D_{e_k} V \ d\nu \Rightarrow \mathcal{L} G_k = D_{e_k} V \\ \mathsf{and} \ \langle M_t^{[G_k]} \rangle = \int_0^t \langle e_k,e_k \rangle_H ds = t \quad \Rightarrow \quad M_t^{[G_k]} \ \text{is 1d BM}. \end{array}$$

Integration by parts

Liouville CFT measure
$$d\nu(\phi)=\exp\left(-\frac{\lambda}{\sigma^2}M_\phi(\mathbf{T})\right)d\hat{\mu}(\phi)$$
 where $d\hat{\mu}(\phi)=dc\otimes d\mu(\phi_0)$ is GFF (mean zero + constant, $Cov(\phi_0)=\frac{\sigma^2}{2}(-\Delta)^{-1})$

Dynamic for area form $\partial_t A = 2\Delta\phi\,A_0 - 2\lambda A + 2\sigma e^{-\phi}\xi_0\,A$ with 1d projections

$$dA_t(f) = 2(dA_0(f\Delta\phi_t) - \lambda A_t(f))dt + 2\sigma (A_t(f^2))^{\frac{1}{2}} d\beta_t^f$$

Integration by parts

Liouville CFT measure $d\nu(\phi)=\exp\left(-\frac{\lambda}{\sigma^2}M_\phi(\mathbf{T})\right)d\hat{\mu}(\phi)$ where $d\hat{\mu}(\phi)=dc\otimes d\mu(\phi_0)$ is GFF (mean zero + constant, $Cov(\phi_0)=\frac{\sigma^2}{2}(-\Delta)^{-1}$)

Dynamic for area form $\partial_t A = 2\Delta\phi A_0 - 2\lambda A + 2\sigma e^{-\phi} \xi_0 A$ with 1d projections

$$dA_t(f) = 2 \left(dA_0(f\Delta\phi_t) - \lambda A_t(f) \right) dt + 2\sigma \left(A_t(f^2) \right)^{\frac{1}{2}} d\beta_t^f$$

We will frequently use the follow map and its inverse (i.e. [BSS])

$$\Phi \longrightarrow \mathcal{X}$$

$$\phi \longmapsto M_{\phi} = :e^{2\phi} dx:$$

Integration by parts

Liouville CFT measure $d\nu(\phi)=\exp\left(-\frac{\lambda}{\sigma^2}M_\phi(\mathbf{T})\right)d\hat{\mu}(\phi)$ where $d\hat{\mu}(\phi)=dc\otimes d\mu(\phi_0)$ is GFF (mean zero + constant, $Cov(\phi_0)=\frac{\sigma^2}{2}(-\Delta)^{-1}$)

Dynamic for area form $\partial_t A = 2\Delta\phi A_0 - 2\lambda A + 2\sigma e^{-\phi} \xi_0 A$ with 1d projections

$$dA_t(f) = 2 \left(dA_0(f\Delta\phi_t) - \lambda A_t(f) \right) dt + 2\sigma \left(A_t(f^2) \right)^{\frac{1}{2}} d\beta_t^f$$

We will frequently use the follow map and its inverse (i.e. [BSS])

$$\Phi \longrightarrow \mathcal{X}$$

$$\phi \longmapsto M_{\phi} = :e^{2\phi} dx:$$

Proposition. For functionals $G(\phi) = q(M_{\phi}(f_0), M_{\phi}(f_1), \dots, M_{\phi}(f_k))$ we have

$$\hat{\mu}$$
-IBP: $\frac{\sigma^2}{2}\int D_h G(\phi)\hat{\mu}(d\phi) = \int G(\phi)\langle \nabla h, \nabla \phi \rangle \hat{\mu}(d\phi)$

For this $\hat{\mu}$ -IBP we can deduce the ν -IBP for above functionals

$$\int G(\phi)\langle \nabla \phi, \nabla h \rangle d\nu(\phi) = \int \left(\frac{\sigma^2}{2} D_h G(\phi) - \lambda G(\phi) M_{\phi}(h)\right) d\nu(\phi)$$

Proof of Integration by parts

Lemma. $d\nu(\phi) = \exp\left(-\frac{\lambda}{\sigma^2}M_\phi(\mathbf{T})\right)d\hat{\mu}(\phi)$ is σ -finite. In particular $\forall \varepsilon \in (0,1)$,

$$\nu(\{\phi: \varepsilon < M_{\phi}(\mathbf{T}) < \varepsilon^{-1}\}) < \infty.$$

Moreover $\phi \mapsto \langle f, \Delta \phi \rangle 1_{[\varepsilon, \varepsilon^{-1}]}(M_{\phi}(\mathbf{T}))$ is in $L^{p}(\hat{\mu}) \cap L^{p}(\nu)$, $\forall p \geq 1$. Finally $\forall a > 0$, $\phi \mapsto \exp\left(a |\langle \nabla \phi, \nabla f \rangle|\right) 1_{[\varepsilon, \varepsilon^{-1}]}(M_{\phi}(\mathbf{T}))$ is in $L^{1}(\hat{\mu}) \cap L^{1}(\nu)$.

Lemma. By Shift property $M_{\phi+f}=e^{2f}M_{\phi}$ a.s., we compute

$$D_hG(\phi)=2\sum\nolimits_{i=0}^k\partial_iq(M_\phi(f_0),\ldots,M_\phi(f_k))\cdot M_\phi(f_ih)$$

Under suitable conditions on q, f_i, h , we have D_hG is bounded.

 $\hat{\mu}$ -IBP: For functionals $G(\phi) = q(M_{\phi}(f_0), M_{\phi}(f_1), \dots, M_{\phi}(f_k))$ we have

$$rac{\sigma^2}{2}\int D_h G(\phi) \hat{\mu}(d\phi) = \int G(\phi) \langle \nabla h, \nabla \phi \rangle \hat{\mu}(d\phi)$$

Proof: Use Cameron-Martin formula to shift $\phi \rightarrow \phi + h$

$$\int G(\phi+th)d\hat{\mu}=\int G(\phi)\exp\left(t\langle
abla\phi,
abla h
angle-rac{t^2}{2}\langle
abla h,
abla h
angle
ight)d\hat{\mu}$$

Proof of the main theorem

Define the Dirichlet form on $\{\phi\}$

$$\mathcal{E}(G,F) = \frac{\sigma^2}{2} \int \langle DG(\phi), DF(\phi) \rangle_{L^2(M_{\phi})} d\nu(\phi)$$

This induces a Dirichlet form on $\mathcal{X} = \{A\}$ via the GMC map, still denoted by \mathcal{E} . There is a Markov diffusion $\{\Omega, \mathcal{F}, (A_t)_{t\geq 0}, (P_z)_{z\in\mathcal{X}}\}$ on \mathcal{X} , associated with \mathcal{E}

Remark. For
$$\partial_t \phi = \Delta \phi + \xi_0$$
, $\mathcal{E}(G,F) = \int \langle D^0 G, D^0 F \rangle_{L^2(\mathbf{dx})} d\mu_{GFF}$
For [Garban'18] $\partial_t \phi = \Delta \phi - e^{\gamma \phi} + \xi_0$, $\mathcal{E}(G,F) = \int \langle D^0 G, D^0 F \rangle_{L^2(\mathbf{dx})} d\nu_{LQFT}$

Proof of the main theorem

Define the Dirichlet form on $\{\phi\}$

$$\mathcal{E}(G,F) = \frac{\sigma^2}{2} \int \langle DG(\phi), DF(\phi) \rangle_{L^2(M_{\phi})} d\nu(\phi)$$

This induces a Dirichlet form on $\mathcal{X} = \{A\}$ via the GMC map, still denoted by \mathcal{E} . There is a Markov diffusion $\{\Omega, \mathcal{F}, (A_t)_{t>0}, (P_z)_{z\in\mathcal{X}}\}$ on \mathcal{X} , associated with \mathcal{E}

Remark. For
$$\partial_t \phi = \Delta \phi + \xi_0$$
, $\mathcal{E}(G,F) = \int \langle D^0 G, D^0 F \rangle_{L^2(dx)} d\mu_{GFF}$
For [Garban'18] $\partial_t \phi = \Delta \phi - e^{\gamma \phi} + \xi_0$, $\mathcal{E}(G,F) = \int \langle D^0 G, D^0 F \rangle_{L^2(dx)} d\nu_{LQFT}$

Using IBP we can find generator \mathcal{L} s.t. $\mathcal{E}(G,F) = -\int F(\phi)\mathcal{L}G(\phi)d\nu(\phi)$

Proof of the main theorem

Define the Dirichlet form on $\{\phi\}$

$$\mathcal{E}(G,F) = \frac{\sigma^2}{2} \int \langle DG(\phi), DF(\phi) \rangle_{L^2(M_{\phi})} d\nu(\phi)$$

This induces a Dirichlet form on $\mathcal{X} = \{A\}$ via the GMC map, still denoted by \mathcal{E} . There is a Markov diffusion $\{\Omega, \mathcal{F}, (A_t)_{t>0}, (P_z)_{z\in\mathcal{X}}\}$ on \mathcal{X} , associated with \mathcal{E}

Remark. For
$$\partial_t \phi = \Delta \phi + \xi_0$$
, $\mathcal{E}(G,F) = \int \langle D^0 G, D^0 F \rangle_{L^2(dx)} d\mu_{GFF}$
For [Garban'18] $\partial_t \phi = \Delta \phi - e^{\gamma \phi} + \xi_0$, $\mathcal{E}(G,F) = \int \langle D^0 G, D^0 F \rangle_{L^2(dx)} d\nu_{LQFT}$

Using IBP we can find generator $\mathcal L$ s.t. $\mathcal E(G,F)=-\int F(\phi)\mathcal LG(\phi)d\nu(\phi)$

Decomposition
$$G(A_t) - G(A_0) = M_t^{[G]} + N_t^{[G]}$$
 for $G(A) = q(A(f_0), \dots, A(f_k))$

For G(A)=A(f), we can compute $\langle M_t^{[G]}\rangle=\int_0^t\|DG(X_s)\|_{L^2(M_\phi)}^2ds$ and $N_t^{[G]}=\int_0^t\mathcal{L}G\,ds$ so that A(f) indeed satisfies the desired SDE (1d projection)

$$dA_t(f) = 2\Big(dA_0(f\Delta\phi_t) - \lambda A_t(f)\Big)dt + 2\sigma\left(A_t(f^2)\right)^{\frac{1}{2}}d\beta_t^f$$

General compact surfaces Σ

Recall from Polyakov formula
$$\int_{\Sigma} \left(\frac{1}{2} |\nabla_{g_0} \phi|^2 + K_0 \phi + \frac{\lambda}{2} e^{2\phi} \right) dA_0$$

Gradient flow, perturbed by $\xi_{\it g}=e^{-\phi}\xi_0$

$$\partial_t \phi = e^{-2\phi} \Delta_0 \phi - e^{-2\phi} K_0 - \lambda + \sigma \xi_g \tag{1}$$

$$\partial_t A_g = 2\Delta_0 \phi A_0 - 2K_0 A_0 - 2\lambda A_g + 2\sigma \xi_g A_g \tag{2}$$

When $\sigma=0$, they're invariant under conformal change of ref.metric, i.e. if $\hat{g}_0=e^{2\psi_0}g_0$, then $\phi-\psi_0,A_g$ satisfy same equation (" Δ_0,K_0 " given from \hat{g}_0)

General compact surfaces Σ

Recall from Polyakov formula $\int_{\Sigma} \left(\frac{1}{2} |\nabla_{g_0} \phi|^2 + K_0 \phi + \frac{\lambda}{2} e^{2\phi} \right) dA_0$

Gradient flow, perturbed by $\xi_{\it g}=e^{-\phi}\xi_0$

$$\partial_t \phi = e^{-2\phi} \Delta_0 \phi - e^{-2\phi} K_0 - \lambda + \sigma \xi_g \tag{1}$$

$$\partial_t A_g = 2\Delta_0 \phi A_0 - 2K_0 A_0 - 2\lambda A_g + 2\sigma \xi_g A_g \tag{2}$$

When $\sigma=0$, they're invariant under conformal change of ref.metric, i.e. if $\hat{g}_0=e^{2\psi_0}g_0$, then $\phi-\psi_0,A_g$ satisfy same equation (" Δ_0,K_0 " given from \hat{g}_0)

$$\partial_t \phi = e^{-2\phi} \Delta \phi - (1 + \frac{\gamma^2}{4}) e^{-2\phi} K_0 - \lambda + \sigma \xi_g$$
 (3)

$$\partial_t A_g = 2\Delta_0 \phi A_0 - \frac{(2 + \frac{\gamma^2}{2}) K_0 A_0 - 2\lambda A_g + 2\sigma \xi_g A_g}{4}$$

When $\sigma \neq 0$, these are the "right" equation having above invariance. Why?

Recall our construction:

- (1) Fix ref.metric g_0 on Σ (2) LCFT measure $d\nu_{g_0}(\phi)$ and IBP
- (3) Dirichlet form w.r.t. ν_{g_0} and push-forward to $\mathcal{X} = \{A\}$ via GMC map
- (4) Generate dynamic in ${\mathcal X}$

(Guillarmou Rhodes Vargas'16)

Let $\widehat{g_0}=e^{2\psi_0}g_0$ be another reference metric. GMC anomalous scaling:

$$M_X^{\widehat{g_0}}=\mathrm{e}^{(2+\gamma^2/2)\psi_0}\cdot M_X^{g_0}$$
 namely $M_{X-Q\psi_0}^{\widehat{g_0}}=M_X^{g_0}$ $(Q=rac{\gamma}{2}+rac{2}{\gamma})$

Conformal anomaly: for $Q=rac{\gamma}{2}+rac{2}{\gamma}$

$$\int F(X)d
u_{\widehat{g_0}}(X) \propto \int F(X-Q\psi_0)d
u_{g_0}(X)$$

Therefore letting **m** be the pushforward of ν_{g_0} by $X \mapsto M_X^{g_0}$ does not depend (up to multiplicative constant) on the choice of reference metric g_0 .

SRF with marked points ↔ vertex operators of LCFT

Fix $x_1, \ldots, x_k \in \Sigma$, $\alpha_1, \ldots, \alpha_k \in \mathbf{R}$. RF w/conical sing. $\partial_t g = -2R_g + \sum \alpha_i \delta_{x_i}$

$$d\nu_{g_0}^{\alpha}=\prod_{i=1}^k:e^{\alpha_iX(\mathbf{x}_i)}:_{g_0}d\nu_{g_0}$$
 corresponds to SRF with k marked points:

$$\partial_t A = \frac{\gamma}{2\pi} \Delta \phi A_0 - \frac{Q\gamma}{2\pi} K_0 A_0 - \mu \gamma^2 A + \gamma \sqrt{2} \xi_A A + \gamma \sum_{i=1}^k \alpha_i \delta_{x_i}$$

SRF with marked points ↔ vertex operators of LCFT

Fix $x_1, \ldots, x_k \in \Sigma$, $\alpha_1, \ldots, \alpha_k \in \mathbf{R}$. RF w/conical sing. $\partial_t g = -2R_g + \sum \alpha_i \delta_{x_i}$

 $d\nu_{g_0}^{\alpha} = \prod_{i=1}^k : e^{\alpha_i X(x_i)} :_{g_0} d\nu_{g_0}$ corresponds to SRF with k marked points:

$$\partial_t A = \frac{\gamma}{2\pi} \Delta \phi A_0 - \frac{Q\gamma}{2\pi} K_0 A_0 - \mu \gamma^2 A + \gamma \sqrt{2} \xi_A A + \gamma \sum_{i=1}^k \alpha_i \delta_{x_i}$$

Total area A(1) of surface Σ (noting Gauss-Bonnet $\int_{\Sigma} K_0 A_0 = 2\pi \chi$)

$$dA_t(1) = \gamma \sqrt{A_t(1)} d\beta_t - \mu \gamma^2 A_t(1) dt + \gamma (\sum \alpha_i - Q\chi)$$

 \approx square Bessel process of dimension $\delta = \frac{2}{\gamma} (\sum \alpha_i - Q\chi)$

- If $\delta \geq 2$, total area process does not hit 0.
- If $\delta \in (0,2)$, total area process hits 0, but can be continued.
- ullet If $\delta \leq$ 0, total area process is absorbed by 0 in finite time.

Note that $\sum \alpha_i > Q\chi$ is precisely Seiberg bound!

Summary and possible directions

$$\begin{split} \partial_t \phi &= e^{-2\phi} \Delta \phi - \lambda + \sigma e^{-\phi} \xi_0 \\ \partial_t A_g &= 2\Delta \phi \, A_0 - 2\lambda A_g + 2\sigma \xi_g \, A_g \end{split}$$

Coupled dynamic (ϕ_t, A_t) via Dirichlet forms?

Strong solutions?

Approximation / Scaling limit results?

Perturbation theory?
$$\phi=\sum_{i=0}^{\infty}\sigma^i\phi_i$$
 where $\partial_t\phi_0=e^{-2\phi_0}\Delta\phi_0-\lambda$ (Takhtajan'06 for Liouville CFT)

Thank you!