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Ricci Flow [Hamilton'81]: intrinsic evolution of a Riemannian metric g = g(t):
8tg = 72Rg
Modified (normalized) flow

Otg = —2Rg — 2)\g
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Ricci Flow [Hamilton'81]: intrinsic evolution of a Riemannian metric g = g(t):
0ig = 2R,
Modified (normalized) flow
0:g = —2R; — 2)\g
On surfaces: Fix a ref.metric go. Let g = €®?gy (¢ called a conformal factor).
DA =e0y A=A
2D Ricci flow preserves conformal class: i.e. we can write the flow for ¢:
O = e 2" Nop —e > Ko — A
———
Dgdh
Area form: The evolution for the area form A, = e*? Ag

DeAg = 2800 Ay — 2KoAg — 2X Ag
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Ricci flow as a gradient flow
“Determinant of Laplacian”: det A, = ij;éo Aj (formally).

Polyakov formula: under conformal change g = €*?gy
log detA, — logdetA L /|V B|*dA ! /K(bdA +lo Ag
g g g 0= 12 £ 0 — 67r . 0 0 ng

where A, is total area of g i.e. Ay = [ e**dAo; Ko is Gauss curvature of go.

This is essentially Liouville: let V(g) = — logdetAg + log Ag + 13- A

6m(V(g) — Vigo)) + %VO - /z (%|vgo¢|2 + Koo + %e2¢> dAo
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Ricci flow as a gradient flow
“Determinant of Laplacian”: det A, = ij;éo Aj (formally).

Polyakov formula: under conformal change g = €*?gy
log detA, — logdetA L /|V B|*dA ! /K(bdA +lo Ag
g g g 0= 12 £ 0 — 67r . 0 0 g Ao
where A, is total area of g i.e. Ay = [ e**dAo; Ko is Gauss curvature of go.

This is essentially Liouville: let V(g) = — log detA, + log Ag + %

™

Ag
A 1 2 A 2
6m(V(g) — V(go)) + 5 Vo = (§|Vgo¢| + Ko+ Se ) dAo
b
Calabi metric on infinite dimensional space of metrics M = {g : g = €**go}
(6,60) T, = / S 01p dAg
b

Gradient flow w.r.t. Calabi metric is the RF 0;¢ = e_2¢A0¢ —e 2Ky — A

[Osgood-Phillips-Sarnak'88]: Extremals of det A, (Uniformization theorem)
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(Formal) stochastic Ricci flow

Q: add an “intrinsic” noise to Ricci flow?
Fix torus T = C/(Z + 7Z) with flat metric go (so that Ko = 0)
White noise (w.r.t. go): E([ fé&dAo)® = [ f2dAo

White noise w.r.t. g? E([ féedAg)? = [ f2dAg. We should have &, := e &
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(Formal) stochastic Ricci flow

Q: add an “intrinsic” noise to Ricci flow?
Fix torus T = C/(Z + 77) with flat metric go (so that Ko = 0)
White noise (w.r.t. go): E([ fé&dAo)® = [ f2dAo
White noise w.r.t. g? E([ fé;dAg)* = [ F2dAg. We should have &, := e “&
Stochastic Ricci flow for ¢ (where A, o € R)

Orp=Dgdp— A+ 0& =e PNp—A+0e “&
Translating to flow in terms of g and A, = e*® Ay

Org = —2Rg — 2)0g + 20&,8

BeAg = 200 Ao — 2NAg + 206, A,

(compare with stochastic heat equation 9:¢p = A¢ + &o. In 2D solution ¢ is distribution)
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Gaussian multiplicative chaos (GMC) and Liouville CFT (LCFT)

2
Myx := lim Mc(X) = lim e” exp(1X:(x)) dx ~v € (0,2)

Earlier: Hgegh-Krohn'71, Kahane'85 etc.

More recent: Duplantier-Sheffield'11 (a.s. converge); Shamov'16 (more approx.schemes)
Shift property: Fix f € H' (Cameron-Martin space), My, x = €’ My a.s.

Inversion: [Berestycki-Sheffield-Sun’14]: X is measurable w.r.t. Mx. Namely
inverse mapping Mx — X is a.e. defined.
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Gaussian multiplicative chaos (GMC) and Liouville CFT (LCFT)

2
Myx := lim Mc(X) = lim e” exp(1X:(x)) dx ~v € (0,2)

Earlier: Hgegh-Krohn'71, Kahane'85 etc.
More recent: Duplantier-Sheffield'11 (a.s. converge); Shamov'16 (more approx.schemes)

Shift property: Fix f € H' (Cameron-Martin space), My, x = €’ My a.s.

Inversion: [Berestycki-Sheffield-Sun’14]: X is measurable w.r.t. Mx. Namely
inverse mapping Mx — X is a.e. defined.

Geometer’s vs Probabilists’ conventions:

—/ S|Vl A 2¢) 4i/ (|VX|2+47meVX)dx

by changing variables ¢ = 1.X, o = /7y, A = muy’.

In geometer convention: “L? regime” o < v/2m; “L' regime” o < 2y/7
[David-Kupiainen-Rhodes-Vargas] (sphere), [David-Rhodes-Vargas| (complex tori), [Guillarmou-Rhodes-Vargas]
(higher genus), [Huang-Rhodes-Vargas] (disk), [Remy] (annulus),etc.
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Main result

O = e A — A+ ce %%
OA =200 Ay — 2)\A+20e P6 A
Observation: Write A(f) = [; f(x)A(dx). Then A:(f) should satisfy SDE:

dA(F) = 2(Ao(qu5t) )\At(f)) dt+20 (Ad(f?))? dBf B is 1d standard BM
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Main result

O = e A — A+ ce %%
A =200 Ao — 20\A + 206 & A
Observation: Write A(f) = [; f(x)A(dx). Then A:(f) should satisfy SDE:
1

dA(F) = 2(Ao(qu5t) )\At(f)) dt+20 (A(F))2 dBf B is 1d standard BM
State space for A

X := {finite positive Borel meas.} \ {0} (: {Borel prob.meas.} x (0,00))
equipped with the metrizable topology of weak convergence.
Theorem For A > 0, o < 0,1 = 2/7, there exists a Markov diffusion process
A ={Q,F,(At)t>0,(Pz)zex} on X, s.t. Vf € C*°, A(f) satisfies the above
SDE with initial condition z(f) where ¢; = M™A; as. (M_1 is the BSS map)

Corollary. dA:(1) =20/ A:(1)dB: — 2AA:(1)dt (Cont.state branching process)
If A =0, it is Square Bessel process of dimension 0
= Total area A;(1) is a.s. absorbed at 0 in finite time.
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Stochastic quantization

®* model: [3|Vo] + 1¢*dx = 0ip=Ap— ¢ +¢

2D: [Albeverio-Réckner'91] (Dirichlet forms); [Da Prato-Debusshe’03] (PDE arguments,local
solution); [Mourrat-Weber'15] (PDE arguments,global solution)

3D: Local solution: [Hairer'13](Reg.Stru.) [Catellier-Chouk'13](Paracontrol) [Kupiainen'14](RG);
Global solution: [Mourrat-Weber'16] (Paracontrol) [Moinat-Weber'16] (Reg.Stru.)

Sine-Gordon in 2D: [ 1[V¢[* + 1¢* dx = 0:¢ = A¢ +sin(Be) + £
[Hairer-Shen'14]: g < 1% [Chandra-Hairer-Shen'18]: V3 € (0, 87) (Reg.Stru.)

Higgs model: [ |dAJ* + |Da®|* dx [Shen'18] (Reg.Stru.)

3D Yang-Mills: [ ||Fall* + |Da®|? dx [Chandra-Hairer-Shen](in progress)

Liouville CFT (on torus): [ |Vé|*> + Xe?® dx

[Garban'18] 8;¢ = A¢ — Ae?? + &; [Debédat-Shen'19](this talk): dr¢p = e 2P Adp — A + oe~?¢
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Strong solution methods for Quasilinear singular SPDE
O = e PN — A+ e ¢

[Otto-Weber'18](rough paths)
Oru = a(u)d2u + o(u)f  for random f € C*?(a > 2/3)
(o = 1 is borderline for products a(u) - 8?u and o(u) - f to have classical meaning.)

Similar results by Furlan-Gubinelli'18, Bailleul-Debussche-Hofmanova'18 also
for v > 2 (paracontrolled)

Gerencsér-Hairer (existing reg.struc. adapted to quasilinear), applied to above
equation with o > 1. Otto-Sauer-Smith-Weber'19+ (twisted version of
regularity structure) for a > 1.

With extra work, one may expect to push the regularity down to a > % by
building more “perturbative” information so that 4 + (o — 2) > 0. But this
would eventually cease to work at aw = 0.

SRF should be as singular as the two-dimensional GFF, i.e. « < 0. Therefore
we will only seek for weak solution, using the theory of Dirichlet forms
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Brief introduction to Dirichlet forms

Example: dX = V/(X) dt + dW in H = L?[0,1] invariant under v = e~ V¥ dX
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Brief introduction to Dirichlet forms
Example: dX = V/(X) dt + dW in H = L?[0,1] invariant under v = e~ V¥ dX

Integration by parts: e.g. fD,cG(X = ,fc )Dr V (X)v(dX)
for functionals e.g. G(X) =g fo fl(x)X fo fi(x) X (x)dx)
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Brief introduction to Dirichlet forms
Example: dX = V/(X) dt + dW in H = L?[0,1] invariant under v = e~ V¥ dX

Integration by parts: e.g. fD,cG(X = ,fc )Dr V (X)v(dX)
for functionals e.g. G(X) =g fo fl(x)X fo fi(x) X (x)dx)

Dirichlet form: (G, F) = [,(DG,DF)ndv =" [, De,G DeF dv

There is a Markov diffusion (Q, F, (X(t))es0, (P?).en) associated to &, with
generator L satisfying [, (DG, DF)udv = — [, (LG, F)udv

Page 9/16



Brief introduction to Dirichlet forms
Example: dX = V/(X) dt + dW in H = L?[0,1] invariant under v = e~ V¥ dX

Integration by parts: e.g. fD,cG(X = ,fc )Dr V (X)v(dX)
for functionals e.g. G(X) =g fo fl(x)X fo fi(x) X (x)dx)

Dirichlet form: (G, F) = [,(DG,DF)ndv =" [, De,G DeF dv
There is a Markov diffusion (2, F, (X(t))¢>0, (P?)zeH) associated to £, with
generator L satisfying [, (DG, DF)udv = — [, (LG, F)udv

Fukishima decomposition
G(X:) — G(Xo) = M + N
where (M) = [*(DG(X:), DG(Xs))uds, and NI = [ LGds,

Take Gk(X) = (ex, X)n, we have above decomposition for Gi; we should find
what M[G*] and N[Gk] really are.

E(Gi, F) = [, (ex, DF)udv = [,, DoF dv'Z — [ F DoV dv = LG, = Do,V
and (MEGk] = fo ek, ek)uds =t = /\/IEG* is 1d BM.
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Integration by parts

Liouville CFT measure dv(¢) = exp ( — 23 My(T))d/i(¢) where
dii(¢) = dc ® du(gpo) is GFF (mean zero + constant, Cov(¢o) = %Z(fA)fl)

Dynamic for area form 0;A = 2A¢ Ay — 2\A + 20e~ %&£y A with 1d projections

dA(F) = 2(dAo(FAG.) — AA(F)) dt + 20 (Ac(F)) ? dB!
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Integration by parts

Liouville CFT measure dv(¢) = exp ( — 23 My(T))d/i(¢) where
dii(¢) = dc ® du(gpo) is GFF (mean zero + constant, Cov(¢o) = %Z(fA)fl)

Dynamic for area form 8;A = 2A¢ Ay — 2XA + 20e~%& A with 1d projections
1
dA:(f) = 2(dAo(FAge) — NA(F)) dt + 20 (A(f*))? d;
We will frequently use the follow map and its inverse (i.e. [BSS])

¢ — X
¢ — My = e dx:
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Integration by parts

Liouville CFT measure dv(¢) = exp ( — 23 My(T))d/i(¢) where
dii(¢) = dc ® du(gpo) is GFF (mean zero + constant, Cov(¢o) = %Z(fA)fl)

Dynamic for area form 0;A = 2A¢ Ay — 2\A + 20e~ %&£y A with 1d projections
2N\ 3 of
dA:(f) = 2(dAo(fAge) — MA(f))dt + 20 (Ac(F?))? dp;
We will frequently use the follow map and its inverse (i.e. [BSS])

¢ — X
¢ — My = e dx:

Proposition. For functionals G(¢) = q(My(f), Me(f), ..., Ms(fc)) we have

piep: 2 [ DuG@de) = [ 6(0)(Th Ton(do)

For this ji-IBP we can deduce the v-IBP for above functionals
2
[ 6(6)v o, Thdn(s) = [ (% Dr6(6) ~ AG(O)Ma(h)) (o)
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Proof of Integration by parts
Lemma. dv(¢) = exp ( — %M¢(T))dﬂ(¢) is o-finite. In particular Ve € (0, 1),

v({p:e < My(T) <e '}) < oo.

Moreover ¢ — (f, Ag)1;. .—1)(Mg(T)) is in LP(2) N LP(v), Vp > L.
Finally Va > 0, ¢ - exp (a|(V, VF)|) 1. .1 (My(T)) is in L*(j2) N L' (v).

Lemma. By Shift property My,r = ez'fMd> a.s., we compute
k
DiG(¢) =2 iq(Ms(h)..... My(£)) - Mo(fih)
Under suitable conditions on q, f;, h, we have D, G is bounded.

[i-1BP: For functionals G(¢) = q(My(f), Ms(f), ..., Ms(fc)) we have

2
% [ i6(@)itde) = [ Go)(Th va)ids)

Proof: Use Cameron-Martin formula to shift ¢ — ¢ + h
2

/G(¢+ thydj = / G(6) exp (t<v¢,w> 2 (Vh,Vh))dﬂ
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Proof of the main theorem

Define the Dirichlet form on {¢}
2

£6.F) = % [(DG(). DF (@) zu,dv(0)

This induces a Dirichlet form on X = {A} via the GMC map, still denoted by £.
There is a Markov diffusion {Q, F, (At)e>0, (Pz)zex} on X, associated with €

Remark. For d:¢ = Ad + o, £(G, F) = [(D°G, DF) 12(yydpicrr
For [Garban'18] d:¢ = A¢ — €7 + &, E(G, F) = [(D°G, DF) 24y dviorr
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Proof of the main theorem

Define the Dirichlet form on {¢}

£(6.F) =% [ (D6(6), DF(9)) 0, 1(9)

This induces a Dirichlet form on X = {A} via the GMC map, still denoted by £.
There is a Markov diffusion {Q, F, (At)e>0, (Pz)zex} on X, associated with €

Remark. For d:¢ = Ad + o, £(G, F) = [(D°G, DF) 12(yydpicrr
For [Garban'18] d:¢ = A¢ — €7 + &, E(G, F) = [(D°G, DF) 24y dviorr

Using IBP we can find generator £ s.t. £(G, F) = — [ F(¢)LG(¢)dv(¢)
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Proof of the main theorem

Define the Dirichlet form on {¢}

£(6.F) =% [ (D6(6), DF(9)) 0, 1(9)

This induces a Dirichlet form on X = {A} via the GMC map, still denoted by £.
There is a Markov diffusion {Q, F, (At)e>0, (Pz)zex} on X, associated with €

Remark. For d:¢ = Ad + o, £(G, F) = [(D°G, DF) 12(yydpicrr
For [Garban'18] d:¢ = A¢ — €7 + &, E(G, F) = [(D°G, DF) 24y dviorr

Using IBP we can find generator £ s.t. £(G, F) = — [ F(¢)LG(¢)dv(¢)
Decomposition G(A:) — G(Ao) = M + NI for G(A) = q(A(h), ..., A(K))

For G(A) = A(f), we can compute (M) = 5 1DG( XS)H2 ,)ds and
NI = fo LGds so that A(f) indeed satisfies the desired SDE (1d projection)

dA(f) = 2(dAo(fA¢t) - )\At(f))dt+2o. () ds!
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General compact surfaces

Recall from Polyakov formula f): (%|Vg0¢\2 + Kogp + %ew’) dAo

Gradient flow, perturbed by & = e™%¢&

Orp =€ *"Nop — e ’Ko — A+ 0&g (1)
8tAg = 2A0¢ Ao — 2KpAg — 2\ Ag + 20’§gAg (2)

When o = 0, they're invariant under conformal change of ref.metric, i.e. if
8o = €®¥°gy, then ¢ — )y, A, satisfy same equation (“Ag, Ko" given from &)
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General compact surfaces

Recall from Polyakov formula f): (%|Vg0¢\2 + Kogp + %ew’) dAo

Gradient flow, perturbed by & = e™%¢&

Orp =€ *"Nop — e ’Ko — A+ 0&g (1)
8tAg = 2A0¢ Ao — 2KpAg — 2\ Ag + 20’§gAg (2)

When o = 0, they're invariant under conformal change of ref.metric, i.e. if

8o = €®¥°gy, then ¢ — )y, A, satisfy same equation (“Ag, Ko" given from &)
2
Orp =e D¢ — (1+ ’I)e*”’KO — A+ o0&, (3)
2
0:Ag = 200 Ag — (2 + ’E)KOAO — 20 Ag + 208, A (4)

When o # 0, these are the “right” equation having above invariance. Why?

Recall our construction:

(1) Fix ref.metric gop on £  (2) LCFT measure duvg,(¢) and IBP

(3) Dirichlet form w.r.t. vg and push-forward to X = {A} via GMC map
(4) Generate dynamic in X
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(Guillarmou Rhodes Vargas'16)

Let go = €*¥°gy be another reference metric. GMC anomalous scaling:

Mg = e(2+-y2/2)11)0 - ME namely ,\/I)g<oic)w0 =M® (Q= % +

)

20

Conformal anomaly: for Q = 3 +

20

[ FX)drz () o [ FOX = Quo)dig (X)

Therefore letting m be the pushforward of vg by X — M5 does not depend
(up to multiplicative constant) on the choice of reference metric go.
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SRF with marked points <+ vertex operators of LCFT

Fix x1,...,xk € £, aa,...,ax € R. RF w/conical sing. 9:g = —2R; + Za,—éxi
dvg = Hﬁ;l . e*X9) . du, corresponds to SRF with k marked points:
K

A = L ApAy — @ a0 — LYPA + YV 2EnA + Z aidy,
27 27

i=1
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SRF with marked points <+ vertex operators of LCFT

Fix x1,...,xk € £, aa,...,ax € R. RF w/conical sing. 9:g = —2R; + Za,—dxi
dvg = Hf:l . e*X9) . du, corresponds to SRF with k marked points:

k

A = L ApAy — @ a0 — LYPA + YV 2EnA + Z aidy,
27 27

i=1

Total area A(1) of surface ¥ (noting Gauss-Bonnet [; KoAo = 2m)
dAL(1) = v/ Ac(1)dB: — pr* A1) dt + 7 () i — Qx)

~ square Bessel process of dimension § = %(Z ai — Qx)

e If § > 2, total area process does not hit 0.

e If 6 € (0,2), total area process hits 0, but can be continued.

e If § <0, total area process is absorbed by 0 in finite time.

Note that > a; > Qx is precisely Seiberg bound!
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Summary and possible directions

O0:d = e °Np— A+ oe %&
OrAg = 20 Ao — 20\Ag + 208 A
Coupled dynamic (¢, A;) via Dirichlet forms?
Strong solutions?
Approximation / Scaling limit results?

Perturbation theory? ¢ = > 0'¢; where d;¢pp = e > Agpp — A
(Takhtajan'06 for Liouville CFT)

Thank you!
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