
Yang–Mills for mathematicians

Sourav Chatterjee

Sourav Chatterjee Yang–Mills for mathematicians



What is this talk about?

I I am going to give you a heavily compressed exposition of a
very long story, and some open problems.

I There will be reading references at the end, if you want to
learn more about it.

I Physicists are generally familiar with most of what I’m going
to say, but mathematicians are not. This talk is for
mathematicians.

Sourav Chatterjee Yang–Mills for mathematicians



What is this talk about?

I I am going to give you a heavily compressed exposition of a
very long story, and some open problems.

I There will be reading references at the end, if you want to
learn more about it.

I Physicists are generally familiar with most of what I’m going
to say, but mathematicians are not. This talk is for
mathematicians.

Sourav Chatterjee Yang–Mills for mathematicians



What is this talk about?

I I am going to give you a heavily compressed exposition of a
very long story, and some open problems.

I There will be reading references at the end, if you want to
learn more about it.

I Physicists are generally familiar with most of what I’m going
to say, but mathematicians are not. This talk is for
mathematicians.

Sourav Chatterjee Yang–Mills for mathematicians



Quantum field theories

I Quantum field theories explain interactions between
elementary particles and make predictions about their
behaviors.

I Encapsulated by the Standard Model.

I Yang–Mills theories are certain kinds of important quantum
field theories that constitute the standard model.

I What is a QFT? — This is an open question, not only in
mathematics, but also in physics.

I Remarkably, physicists can calculate and make surprisingly
accurate predictions using QFTs, without really understanding
what these objects are!

I The mathematical construction of quantum field theories —
more specifically Yang–Mills theories — is one of the seven
millennium problems posed by the Clay Institute.
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QFT basics

I Spacetime: R4. Restricted Lorentz transforms: A group of
linear transformations of R4.

I Poincaré group P consists of all (a,Λ), where Λ is a restricted
Lorentz transformation and a ∈ R4.

I P acts on R4 as (a,Λ)x = a + Λx .
I Special relativity: The laws of physics remain invariant under

change of coordinates by the action of the Poincaré group.
I A quantum field theory models the behavior of a physical

system (e.g. a collection of elementary particles) using:
I a Hilbert space H, and
I a (projective) unitary representation U of P in H.

I Assumptions:
I To an observer, the state of the system appears as some vector
ψ ∈ H. If ψ is known, we can compute probabilities of events.

I To a different observer, who is using a coordinate system
obtained by the action of (a,Λ) on the coordinate system of
the first observer, the state appears as U(a,Λ)ψ.
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I A quantum field theory models the behavior of a physical

system (e.g. a collection of elementary particles) using:
I a Hilbert space H, and
I a (projective) unitary representation U of P in H.

I Assumptions:
I To an observer, the state of the system appears as some vector
ψ ∈ H. If ψ is known, we can compute probabilities of events.

I To a different observer, who is using a coordinate system
obtained by the action of (a,Λ) on the coordinate system of
the first observer, the state appears as U(a,Λ)ψ.

Sourav Chatterjee Yang–Mills for mathematicians



Time evolution

I Suppose a stationary observer at spatial location (0, 0, 0)
observes the physical system in state ψ at time 0.

I After time t, the system will appear to the observer as being
in state U((−t, 0, 0, 0), Id.)ψ.

I It can be proved that there is a self-adjoint operator H on H
so that for any t, U((−t, 0, 0, 0), Id.)ψ = e−itHψ.

I H is called the Hamiltonian.

I Important to note: (H,U) describes the behavior of not just
one particle, but a system of various kinds of particles, where
even the number of particles may not fixed over time. Useful
for predicting the outcomes of scattering experiments, for
example.
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Quantum field

I Suppose we are given H and U.

I A quantum field ϕ is a hypothetical function on R4, which
when integrated against a smooth test function on R4, yields
an operator on H.

I To put it more succinctly, it is an operator-valued distribution.

I The quantum field ϕ related to our physical system is a field
that satisfies

ϕ(a + Λx) = U(a,Λ)ϕ(x)U(a,Λ)−1.

I The field ϕ is used for calculating probabilities of events and
expected values of various observables. In fact, it becomes the
central object of interest in the study of the system.
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Wightman axioms

I The most popular approach to giving a fully rigorous definition
of a quantum field theory is via the Wightman axioms.

I These axioms are essentially a more precise version of what I
described in the previous slides.

I They include some additional conditions (such as ‘locality’)
that must be satisfied by H, U and ϕ, and some assumptions
about the existence and properties of a unique vacuum state
Ω ∈ H of our system. (This the lowest eigenstate of H.)

I The axioms give the bare minimum conditions required to
avoid physical inconsistencies.

I It has been possible to construct certain simple QFTs, known
as free fields, which satisfy the Wightman axioms.

I Free fields describe trivial systems of particles that do not
interact with each other.

I No one has been able to rigorously construct a nontrivial
(interacting) QFT in 4D satisfying the Wightman axioms.
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Calculations???

I If we cannot even define the theory, how can we calculate?

I Physicists get around this problem by doing perturbative
expansions around free fields.

I That is, they assume that the desired QFT is a ‘small
perturbation’ of the free field (which is well-defined), and do a
kind of Taylor expansion around it.

I The calculations involve Feynman diagrams and
renormalization.

I However, there is a rigorous theorem due to Haag, which says
that the Hilbert space for an interacting theory cannot be the
same as the Hilbert space for a non-interacting theory.

I So it is not clear how one can justify such a perturbative
expansion. In fact, in most cases it is not clear what the new
Hilbert space is!

I And yet, in many cases, these calculations yield results that
match experiments to remarkable degrees of accuracy.
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The probabilistic approach (Constructive QFT)

I There is a probabilistic approach to constructing QFTs that
satisfy the Wightman axioms. It goes as follows:

I First, construct a random field ξ on R4 whose probability law
is related to the desired QFT in a certain way. Usually this is a
random distribution, and not a random function.

I ξ is called a Euclidean QFT.
I Show that ξ satisfies a set of conditions known as the

Osterwalder–Schrader axioms.
I If this is true, then there is a reconstruction theorem that

allows us to construct the desired QFT (i.e., H, U, ϕ and Ω.)
I In general, the QFT is nontrivial if and only if the field ξ is

non-Gaussian.

I The program, initiated in the 60s, was successful in
constructing nontrivial QFTs when the dimension of spacetime
was reduced from 4 to 2 or 3 — but not yet in dimension 4.

I Notable achievements were the constructions of ϕ4
2 and ϕ4

3

theories (in spacetime dimensions 2 and 3, respectively).
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Yang–Mills theories

I ϕ4 theories are mathematically interesting, but describe no
real physical system.

I To venture into the real world, one has to consider 4D
Yang–Mills theories.

I These are QFTs that describe interactions between real
elementary particles.

I The question is completely settled in 2D.

I There was a tremendous amount of work on rigorously
constructing Yang–Mills theories in 3D and 4D, by Ba laban
and others.

I However, the investigation was inconclusive and the question
is still considered to be open.

I Even the first step in the probabilistic approach, namely, the
construction of a random field, remains open. We will now
talk about that.
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Euclidean Yang–Mills theories

I Recall that the first step in the probabilistic approach to
constructing QFTs is the construction of a suitable random
field, known as a Euclidean QFT.

I For Yang–Mills theories, these random fields are called
Euclidean Yang–Mills theories.

I These have not yet been constructed in spacetime dimensions
3 and 4.

I Euclidean Yang–Mills theories are supposed to be scaling
limits of lattice gauge theories, which are well-defined discrete
probabilistic objects, which I will now discuss.
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Lattice gauge theories

I Let d = dimension of spacetime, and G be a matrix Lie
group. (Most important: d = 4 and G = SU(2) or SU(3).)

I The lattice gauge theory with gauge group G on a finite set
Λ ⊆ Zd is defined as follows.

I Suppose that for any two adjacent vertices x , y ∈ Λ, we have
a group element U(x , y) ∈ G , with U(y , x) = U(x , y)−1.

I Let G (Λ) denote the set of all such configurations.
I A square bounded by four edges is called a plaquette. Let

P(Λ) denote the set of all plaquettes in Λ.
I For a plaquette p ∈ P(Λ) with vertices x1, x2, x3, x4 in

anti-clockwise order, and a configuration U ∈ G (Λ), define

Up := U(x1, x2)U(x2, x3)U(x3, x4)U(x4, x1).

I The Wilson action of U is defined as

SW(U) :=
∑

p∈P(Λ)

Re(Tr(I − Up)).
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Definition of lattice gauge theory contd.

I Let σΛ be the product Haar measure on G (Λ).

I Given β > 0, let µΛ,β be the probability measure on G (Λ)
defined as

dµΛ,β(U) :=
1

Z
e−βSW(U)dσΛ(U),

where Z is the normalizing constant.

I This probability measure is called the lattice gauge theory on
Λ for the gauge group G , with inverse coupling strength β.

I An infinite volume limit of the theory is a weak limit of the
above probability measures as Λ ↑ Zd (may not be unique).
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I An infinite volume limit of the theory is a weak limit of the
above probability measures as Λ ↑ Zd (may not be unique).
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Open problem #1: Yang–Mills existence

I To define the scaling limit of a lattice gauge theory, one has to
first define it on the scaled lattice εZd and then send ε→ 0.

I To obtain an interesting limit, one has to vary the parameter
β as ε→ 0.

I In dimension 3, it is believed β has to scale like a multiple of
ε−1, and in dimension 4, it is believed that β has to scale like
a multiple of log(1/ε).

I The most interesting gauge groups are non-Abelian Lie groups
like SU(2) and SU(3).

I It is not clear what the scaling limit should look like, or what
space it should belong to.

I Even if one is able to somehow obtain a scaling limit, it is
important to prove that it is nontrivial — meaning that it is a
non-Gaussian field (on whatever space it’s defined on).

I Finally, one has to construct the actual QFT using this field,
via the Osterwalder–Schrader axioms or otherwise.
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YM existence: Mathematical literature

I Well-understood in dimension 2. Many contributors.

I In dimensions 3 and 4, long series of papers by Ba laban in the
80s, aiming to prove the existence of subsequential scaling
limits. Established results about the behavior of the partition
function in the scaling limit.

I However, the problem is still considered to be open in
dimensions 3 and 4.

I Recently, probabilists have made exciting new progress in
constructing ϕ4

3 theory via stochastic quantization (many
contributors).
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Open problem #2: Mass gap

I Recall the Hamiltonian H of a QFT, and the vacuum state Ω.
The vacuum state is the unique (up to scalar multiples)
nonzero element of H that satisfies HΩ = 0.

I The theory is said to have a mass gap if there is some µ > 0
such that any other eigenvalue of H is ≥ µ.

I Physically, this means that the particles described by the
theory possess nonzero mass.

I If we go through the probabilistic approach, the mass gap
question can be shown to be equivalent to the question of
exponential decay of correlations in the Euclidean QFT.

I Various Yang–Mills theories — such as 4D Yang–Mills theory
with gauge group SU(3) — are supposed to have mass gaps.

I The first step to showing this is to show that the
corresponding lattice gauge theories have exponential decay of
correlations at large β.
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Mass gap: Mathematical literature

I At small β, exponential decay can be proved by well-known
techniques from statistical physics (expansions or coupling).

I No general method for large β.

Sourav Chatterjee Yang–Mills for mathematicians



Mass gap: Mathematical literature

I At small β, exponential decay can be proved by well-known
techniques from statistical physics (expansions or coupling).

I No general method for large β.

Sourav Chatterjee Yang–Mills for mathematicians



Wilson loops

I Consider a lattice gauge theory on Zd with gauge group G .

I Let U be a random configuration of group elements attached
to edges, drawn from the probability measure defined by this
theory.

I Given a loop γ with directed edges e1, . . . , em, the Wilson
loop variable Wγ is defined as

Wγ := Re(Tr(U(e1)U(e2) · · ·U(em))).

I The expected value of Wγ is denoted by 〈Wγ〉.

Sourav Chatterjee Yang–Mills for mathematicians



Wilson loops

I Consider a lattice gauge theory on Zd with gauge group G .

I Let U be a random configuration of group elements attached
to edges, drawn from the probability measure defined by this
theory.

I Given a loop γ with directed edges e1, . . . , em, the Wilson
loop variable Wγ is defined as

Wγ := Re(Tr(U(e1)U(e2) · · ·U(em))).

I The expected value of Wγ is denoted by 〈Wγ〉.

Sourav Chatterjee Yang–Mills for mathematicians



Wilson loops

I Consider a lattice gauge theory on Zd with gauge group G .

I Let U be a random configuration of group elements attached
to edges, drawn from the probability measure defined by this
theory.

I Given a loop γ with directed edges e1, . . . , em, the Wilson
loop variable Wγ is defined as

Wγ := Re(Tr(U(e1)U(e2) · · ·U(em))).

I The expected value of Wγ is denoted by 〈Wγ〉.

Sourav Chatterjee Yang–Mills for mathematicians



Wilson loops

I Consider a lattice gauge theory on Zd with gauge group G .

I Let U be a random configuration of group elements attached
to edges, drawn from the probability measure defined by this
theory.

I Given a loop γ with directed edges e1, . . . , em, the Wilson
loop variable Wγ is defined as

Wγ := Re(Tr(U(e1)U(e2) · · ·U(em))).

I The expected value of Wγ is denoted by 〈Wγ〉.

Sourav Chatterjee Yang–Mills for mathematicians



Quark confinement

I Lattice gauge theories and Wilson loops were introduced by
Wilson in 1974 primarily to understand the phenomenon of
quark confinement.

I Quarks are elementary particles that bind together to form
protons, neutrons, etc.

I Quarks are always bound, and never occur freely in nature.
This is known as quark confinement or color confinement.

I Wilson argued that this phenomenon occurs due to a
mathematical feature of Yang–Mills theories, that is now
called Wilson’s area law.
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Open problem #3: Quark confinement

I Take any 4D non-Abelian lattice gauge theory.

I Show that for any β, there are constants C (β) and c(β) such
that for any loop γ,

|〈Wγ〉| ≤ C (β)e−c(β)area(γ),

where 〈Wγ〉 is the expected value of the Wilson loop variable
Wγ and area(γ) is the minimal surface area enclosed by γ.

I This is known as Wilson’s area law, and was argued by Wilson
to be the reason behind confinement of quarks.

I Showing for rectangles is good enough.
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Quark confinement: Mathematical literature

I There is a general proof at small β by Osterwalder and Seiler
(1978).

I Proof at large β for 3D U(1) theory by Göpfert and Mack
(1982).

I Disproof at large β for 4D U(1) theory by Guth (1980) and
Fröhlich and Spencer (1982). Therefore in 4D at large β, it is
crucial that the gauge group is non-Abelian.
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Fröhlich and Spencer (1982). Therefore in 4D at large β, it is
crucial that the gauge group is non-Abelian.

Sourav Chatterjee Yang–Mills for mathematicians



Quark confinement: Mathematical literature

I There is a general proof at small β by Osterwalder and Seiler
(1978).

I Proof at large β for 3D U(1) theory by Göpfert and Mack
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Gauge-string duality

I In 1997, Maldacena made the remarkable discovery that
certain quantum field theories are ‘dual’ to certain string
theories.

I Duality means that any calculation in one theory corresponds
to some calculation in the other theory.

I Maldacena’s discovery is known as AdS-CFT duality or
gauge-string duality or gauge-gravity duality.
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Open problem #4: Gauge-string duality in lattice gauge
theories

I To establish gauge-string duality for YM theories, one can, for
example, try to show that expected values of Wilson loop
variables are expressible as integrals over trajectories of strings
in a string theory.

I Tremendous activity in physics, but almost nothing on the
mathematical side. Possibly because the relevant QFTs are
not mathematically well-defined.

I In 2015, I proved such a result for lattice gauge theories at
small β — probably the first mathematical theorem in this
area. Extended later in a joint work with Jafar Jafarov.

I However, this is a discrete result. It is an open problem to
prove such a theorem when β is large. We need to consider
large β for passing to the continuum limit.
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Strong-weak dualities

I A strong-weak duality is a duality between a physical theory
at large β and another physical theory at small β.

I Here, as usual, ‘duality’ means calculations in one model can
be carried out certain ‘dual calculations’ in the other model.
Usually, calculations are easier at small β.

I Earliest example: Kramers–Wannier duality for the 2D Ising
model. Many other examples in the literature.

I In a recent preprint, I proved a duality relation for Wilson loop
expectations in 4D Z2 lattice gauge theory which allowed me
to calculate Wilson loop expectations to leading order at
large β.

I Roughly speaking, the result is that if β is large, and a loop γ
has length αe12β, then 〈Wγ〉 ≈ e−2α.

I Key step: Express 〈Wγ〉 as an expectation of some other
quantity in 4D Z2 lattice gauge theory at inverse coupling
strength λ = −1

2 log tanhβ. Note: λ→ 0 as β →∞.
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expectations in 4D Z2 lattice gauge theory which allowed me
to calculate Wilson loop expectations to leading order at
large β.

I Roughly speaking, the result is that if β is large, and a loop γ
has length αe12β, then 〈Wγ〉 ≈ e−2α.

I Key step: Express 〈Wγ〉 as an expectation of some other
quantity in 4D Z2 lattice gauge theory at inverse coupling
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2 log tanhβ. Note: λ→ 0 as β →∞.
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Open problem #5: Strong-weak dualities for lattice gauge
theories

I Understanding the precise behavior of Wilson loop
expectations at large β is crucial for constructing scaling
limits.

I The method from my preprint can probably be extended to
other Abelian gauge groups. Not clear how to do non-Abelian.

I For non-Abelian theories, there is a conjectured set of such
dualities, known as the Montonen–Olive dualities.

I Kapustin and Witten (2007) suggested that the
Montonen–Olive dualities are in fact equivalent to the
geometric Langlands correspondence.

I Of course, no one knows how to prove anything about any of
this.
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Where to read about all this

I My preprint “Yang–Mills for probabilists” on arXiv has more
details and references for many of the topics presented here.
(See also my other preprints on Yang–Mills and lattice gauge
theories for references on specific topics.)

I On my website, you will find lecture notes for a course on
“Quantum field theory for mathematicians” that I taught
recently at Stanford. Introduces the foundations of QFT but
not Yang–Mills.

I The above lecture notes are based on a (terrific) forthcoming
book by Michel Talagrand that presents QFT for a
mathematical audience.

I The developments in stochastic quantization are available in
recent papers and preprints of various authors.

I Constructive QFT is explained in the textbook of Glimm and
Jaffe, and in many surveys and expositions available online.
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