Liouville Quantum Gravity as a Mating of Trees

Xin Sun

¹Columbia Univeristy

²Simons Society of Fellows

June 19, 2019

Mating of Trees (MoT) for $c = -2, \gamma = \sqrt{2}, \kappa = 8$.

- **③** Scaling limit of UST on \mathbb{Z}^2 , Euclidean Mating of Trees.
- 2 Continuum MoT Theorem for $c = -2, \gamma = \sqrt{2}, \kappa = 8$
- UST-weighted random planar map: a MoT bijection.
- Application and Open Questions.

- Percolation on uniform random triangulations.
- Mating of Trees for $c = 0, \gamma = \sqrt{8/3}, \kappa = 6$.
- Application to $QLE(\sqrt{8/3}, 0)$ and Cardy embedding.
- A word on MoT for $c \in (-\infty, 1), \gamma \in (0, 2), \kappa = (4, \infty)$.

See the forthcoming survey(s) of Gwynne-Holden-S. for materials that are not covered.

A Spanning Tree on a Planar Map

Peano Curve: Red on the Left , Blue on the Right

Our point of view on uniform spanning tree (UST):

- a statistical mechanical model with central charge -2.
- has conformal invariant scaling limit on many reasonable lattice (universality)

Uniform Spanning Tree (UST) on \mathbb{Z}^2

- Sample a UST on $[-n, n]^2$.
- As $n \to \infty$, we obtain UST on \mathbb{Z}^2 as local limit.
- UST is almost surely a one-ended tree on \mathbb{Z}^2 .
- Focus on infinite volume setting to avoid boundary effect.

Our point of view on uniform spanning tree (UST):

- a statistical mechanical model with central charge -2.
- has conformal invariant scaling limit on many reasonable lattice (universality)

Uniform Spanning Tree (UST) on \mathbb{Z}^2

- Sample a UST on $[-n, n]^2$.
- As $n \to \infty$, we obtain UST on \mathbb{Z}^2 as local limit.
- UST is almost surely a one-ended tree on \mathbb{Z}^2 .

Focus on infinite volume setting to avoid boundary effect.

A Portion of UST on \mathbb{Z}^2 with dual tree and Peano curve

Blue Tree *T*: a sample of UST on \mathbb{Z}^2 ; Red Tree *T'*: dual tree of *T*, living on $(\frac{1}{2}, \frac{1}{2}) + \mathbb{Z}^2$; Purple Curve: Peano Curve in between *T* and *T'*

Wilson's algorithm (Discrete Imaginary Geometry).

- Sample a LERW on \mathbb{Z}^2 from 0 to ∞ as the first branch of *T*;
- Choose a vertex $v \in \mathbb{Z}^2$ not on the existing subtree, sample a LERW from v until it merges with the existing subtree.
- Add the LERW in Step 2 to the existing subtree.
- Iterate Step 2 and 3 until every vertex on \mathbb{Z}^2 is on T.

Scaling limit of LERW on $n^{-1}\mathbb{Z}^2$ from 0 to ∞ :

- SLE₂ from 0 to ∞ .
- n^{-5/4}× counting measure LERW converges to the Euclidean occupation measure λ on SLE₂.

Scaling limit of the UST $T_n = n^{-1}T$ on $n^{-1}\mathbb{Z}^2$:

 Continuum UST ℑ on C (sampled from SLE₂ via a continuum Wilson's algorithm)

• Converge as a metric tree.

(λ on different branches induces a metric on \mathfrak{T})

Same convergence holds jointly for the dual tree $T'_n = n^{-1}T'$.

Scaling limit of LERW on $n^{-1}\mathbb{Z}^2$ from 0 to ∞ :

- SLE₂ from 0 to ∞ .
- n^{-5/4}× counting measure LERW converges to the Euclidean occupation measure λ on SLE₂.

Scaling limit of the UST $T_n = n^{-1}T$ on $n^{-1}\mathbb{Z}^2$:

• Continuum UST \mathfrak{T} on \mathbb{C}

(sampled from SLE₂ via a continuum Wilson's algorithm)

• Converge as a metric tree.

(λ on different branches induces a metric on \mathfrak{T})

Same convergence holds jointly for the dual tree $T'_n = n^{-1}T'$.

 η_n : Peano curve of T_n on $n^{-1}\mathbb{Z}^2$, parametrized such that

 $\eta_n(0) = 0$ and Lebesgue $(\eta_n([s, t])) = t - s \quad \forall t > s.$

Then η_n converges to an **SLE**₈ curve η on \mathbb{C} parametrized in the same way as η_n .

For a fixed time *t*: η_R^t : the right boundary of $\eta(-\infty, t]$. η_L^t : the left boundary of $\eta(-\infty, t]$.

 η_B^t is the branch of \mathfrak{T} from $\eta(t)$ to ∞ . equivalently, the scaling limit of the branch of T_n from $\eta_n(t)$.

Same holds for η_L^t with \mathfrak{T} , T_n replaced by their dual trees.

 η_n : Peano curve of T_n on $n^{-1}\mathbb{Z}^2$, parametrized such that

 $\eta_n(0) = 0$ and Lebesgue $(\eta_n([s, t])) = t - s \quad \forall t > s.$

Then η_n converges to an **SLE**₈ curve η on \mathbb{C} parametrized in the same way as η_n .

For a fixed time *t*: η_R^t : the right boundary of $\eta(-\infty, t]$. η_L^t : the left boundary of $\eta(-\infty, t]$.

 η_R^t is the branch of \mathfrak{T} from $\eta(t)$ to ∞ . equivalently, the scaling limit of the branch of T_n from $\eta_n(t)$.

Same holds for η_l^t with \mathfrak{T} , T_n replaced by their dual trees.

Contour Function of a Planar Tree

Scaling Limit of Contour functions of T_n and T'_n

View T_n , T'_n as planar trees rooted at ∞ :

$$egin{aligned} & R_n(t) = \mathsf{distance}_{\mathcal{T}_n}(\eta_n(t),\infty) - \mathsf{distance}_{\mathcal{T}_n}(\eta_n(0),\infty) \ & L_n(t) = \mathsf{distance}_{\mathcal{T}'_n}(\eta_n(t),\infty) - \mathsf{distance}_{\mathcal{T}'_n}(\eta_n(0),\infty) \end{aligned}$$

$$\lim_{n\to\infty} Z_n(t) = Z_t = (L_t, R_t)$$
 where

$$R_t = \lambda(\eta_R^t) - \lambda(\eta_R^0).$$
$$L_t = \lambda(\eta_L^t) - \lambda(\eta_L^0).$$

$$M_{t_1}$$
 L_t L_t

Scaling Limit of Contour functions of T_n and T'_n

View T_n , T'_n as planar trees rooted at ∞ :

$$egin{aligned} R_n(t) &= ext{distance}_{\mathcal{T}_n}(\eta_n(t),\infty) - ext{distance}_{\mathcal{T}_n}(\eta_n(0),\infty) \ L_n(t) &= ext{distance}_{\mathcal{T}'_n}(\eta_n(t),\infty) - ext{distance}_{\mathcal{T}'_n}(\eta_n(0),\infty) \end{aligned}$$

 $\lim_{n\to\infty} Z_n(t) = Z_t = (L_t, R_t)$ where

$$R_t = \lambda(\eta_R^t) - \lambda(\eta_R^0).$$

$$L_t = \lambda(\eta_L^t) - \lambda(\eta_L^0).$$

Theorem (Holden-S.(16))

Let η be the SLE₈ on \mathbb{C} parametrized such that

 $\eta(\mathbf{0}) = \mathbf{0}$ and Lebesgue $(\eta([s, t])) = t - s \quad \forall t > s.$

Let $Z_t = (L_t, R_t)$ where

$$R_t = \lambda(\eta_R^t) - \lambda(\eta_R^0)$$
 and $L_t = \lambda(\eta_L^t) - \lambda(\eta_L^0)$.

Then

- η as a parameterized curve is determined by Z up to rotations around 0.
- 3 The law of Z is **NOT** explicit.

Theorem (Holden-S.(16))

Let η be the SLE₈ on \mathbb{C} parametrized such that

 $\eta(\mathbf{0}) = \mathbf{0}$ and Lebesgue $(\eta([s, t])) = t - s \quad \forall t > s.$

Let $Z_t = (L_t, R_t)$ where

$$R_t = \lambda(\eta_R^t) - \lambda(\eta_R^0)$$
 and $L_t = \lambda(\eta_L^t) - \lambda(\eta_L^0)$.

Then

- Z is self-similar and has stationary increments.
- η as a parameterized curve is determined by Z up to rotations around 0.
- The law of Z is NOT explicit.

Theorem (Holden-S.(16))

Let η be the SLE₈ on \mathbb{C} parametrized such that

 $\eta(\mathbf{0}) = \mathbf{0}$ and Lebesgue $(\eta([s, t])) = t - s \quad \forall t > s.$

Let $Z_t = (L_t, R_t)$ where

$$R_t = \lambda(\eta_R^t) - \lambda(\eta_R^0)$$
 and $L_t = \lambda(\eta_L^t) - \lambda(\eta_L^0)$.

Then

- Z is self-similar and has stationary increments.
- η as a parameterized curve is determined by Z up to rotations around 0.
- The law of Z is **NOT** explicit.

SLE₈ on $\sqrt{2}$ -LQG

- Let *D* be a Jordan domain.
- Let η be a chordal SLE₈ on *D* from $a \in \partial D$ to $b \in \partial D$.
- *h*: GFF on *D* independent of η .

• Let
$$\mu_h = e^{\sqrt{2}h} dx dy$$
.

- Re-weigh the law of (h, η) by $\mu_h(D)$.
- Sample $z \in D$ according to μ_h .

This setting is not canonical.

(could not be a scaling limit of natural discrete model.)

Let $B^n(z)$ be the ball centered at z such that $\mu_h(B^n(z)) = n^{-1}$. Let ϕ^n be the affine transform that maps $B^n(z)$ to \mathbb{D} (unit disk). Let μ^n be the pushforward of $n\mu_h$ by ϕ^n so that $\mu^n(\mathbb{D}) = 1$. Let η^n be the pushforward of η by ϕ^n parameterized by $\eta^n(0) = 0$ and $\mu^n(\eta^n([s, t])) = t - s \quad \forall t > s$.

_emma

Let $B^n(z)$ be the ball centered at z such that $\mu_h(B^n(z)) = n^{-1}$.

Let ϕ^n be the affine transform that maps $B^n(z)$ to \mathbb{D} (unit disk).

Let μ^n be the pushforward of $n\mu_h$ by ϕ^n so that $\mu^n(\mathbb{D}) = 1$.

Let η^n be the pushforward of η by ϕ^n parameterized by

 $\eta^n(\mathbf{0}) = \mathbf{0}$ and $\mu^n(\eta^n([s,t])) = t - s \quad \forall t > s.$

_emma

Let $B^n(z)$ be the ball centered at z such that $\mu_h(B^n(z)) = n^{-1}$.

Let ϕ^n be the affine transform that maps $B^n(z)$ to \mathbb{D} (unit disk).

Let μ^n be the pushforward of $n\mu_h$ by ϕ^n so that $\mu^n(\mathbb{D}) = 1$.

Let η^n be the pushforward of η by ϕ^n parameterized by

 $\eta^n(\mathbf{0}) = \mathbf{0}$ and $\mu^n(\eta^n([s,t])) = t - s \quad \forall t > s.$

_emma

Let $B^n(z)$ be the ball centered at z such that $\mu_h(B^n(z)) = n^{-1}$.

Let ϕ^n be the affine transform that maps $B^n(z)$ to \mathbb{D} (unit disk).

Let μ^n be the pushforward of $n\mu_h$ by ϕ^n so that $\mu^n(\mathbb{D}) = 1$.

Let η^n be the pushforward of η by ϕ^n parameterized by

 $\eta^n(\mathbf{0}) = \mathbf{0}$ and $\mu^n(\eta^n([\mathbf{s}, t])) = t - \mathbf{s} \quad \forall t > \mathbf{s}.$

Lemma

The law of the limiting measure/curve pair (μ, η) :

- There exists a random distribution \hat{h} which is a particular variant of GFF such that $\mu = e^{\gamma \tilde{h}} dx dy$ with $\gamma = \sqrt{2}$.
- η is an SLE₈ on C, independent of *h* if modulo parametrization.
- $\eta(0) = 0$ and $\mu(\eta[s, t]) = t s$ for all t > s.

The law of $\widetilde{\pmb{h}}$: γ -quantum cone

- **()** Sample a whole plane GFF plus $-\gamma \log |\cdot|$.
- ② Fix the additive constant by requiring the circle average around ∂D equals +∞.
- Second according to the $\sqrt{2}$ -LQG coordinate change formula so that the quantum mass of \mathbb{D} is 1.
- Replace $+\infty$ by *C* and send *C* to $+\infty$ to make it rigorous.

The law of the limiting measure/curve pair (μ, η) :

- There exists a random distribution \tilde{h} which is a particular variant of GFF such that $\mu = e^{\gamma \tilde{h}} dx dy$ with $\gamma = \sqrt{2}$.
- η is an SLE₈ on C, independent of *h* if modulo parametrization.
- $\eta(0) = 0$ and $\mu(\eta[s, t]) = t s$ for all t > s.

The law of \tilde{h} : γ -quantum cone

- **()** Sample a whole plane GFF plus $-\gamma \log |\cdot|$.
- Pix the additive constant by requiring the circle average around ∂D equals +∞.
- Sescale the field according to the √2-LQG coordinate change formula so that the quantum mass of D is 1.
- If \mathbb{O} Replace $+\infty$ by *C* and send *C* to $+\infty$ to make it rigorous.

The law of the limiting measure/curve pair (μ, η) :

- There exists a random distribution \tilde{h} which is a particular variant of GFF such that $\mu = e^{\gamma \tilde{h}} dx dy$ with $\gamma = \sqrt{2}$.
- η is an SLE₈ on C, independent of *h* if modulo parametrization.
- $\eta(0) = 0$ and $\mu(\eta[s, t]) = t s$ for all t > s.

The law of \tilde{h} : γ -quantum cone

- **()** Sample a whole plane GFF plus $-\gamma \log |\cdot|$.
- Pix the additive constant by requiring the circle average around ∂D equals +∞.
- Sescale the field according to the √2-LQG coordinate change formula so that the quantum mass of D is 1.
- Seplace $+\infty$ by *C* and send *C* to $+\infty$ to make it rigorous.

Boundary Length Process

Similarly as in the Euclidean case, for a fixed time *t*: η_R^t : the right boundary of $\eta(-\infty, t]$. η_I^t : the left boundary of $\eta(-\infty, t]$.

Let
$$\widetilde{\lambda} = e^{\gamma \widetilde{h}/2} d\lambda$$
 and $Z_t = (L_t, R_t)$ where
 $R_t = \widetilde{\lambda}(\eta_R^t) - \widetilde{\lambda}(\eta_R^0)$ and $L_t = \widetilde{\lambda}(\eta_L^t) - \widetilde{\lambda}(\eta_L^0)$.

Theorem (Duplantier-Miller-Sheffield)

Let (μ, η, Z) be defined as before.

- Z is self-similar and has stationary independent increments.
- η as a parameterized curve is determined by Z up to rotations around 0. Equivalently, (η, μ) is determined by Z up to rotations around 0.
- The law of Z is explicit: a pair of independent Brownian motions.

Proof.

"Immediately" follows from quantum zipper.

Question: How could someone come up with this strange theorem?

Theorem (Duplantier-Miller-Sheffield)

Let (μ, η, Z) be defined as before.

- Z is self-similar and has stationary independent increments.
- η as a parameterized curve is determined by Z up to rotations around 0. Equivalently, (η, μ) is determined by Z up to rotations around 0.
- The law of Z is explicit: a pair of independent Brownian motions.

Proof.

"Immediately" follows from quantum zipper.

Question: How could someone come up with this strange theorem?

Theorem (Duplantier-Miller-Sheffield)

Let (μ, η, Z) be defined as before.

- Z is self-similar and has stationary independent increments.
- η as a parameterized curve is determined by Z up to rotations around 0. Equivalently, (η, μ) is determined by Z up to rotations around 0.
- The law of Z is explicit: a pair of independent Brownian motions.

Proof.

"Immediately" follows from quantum zipper.

Question: How could someone come up with this strange theorem?

Theorem (Duplantier-Miller-Sheffield)

Let (μ, η, Z) be defined as before.

- Z is self-similar and has stationary independent increments.
- η as a parameterized curve is determined by Z up to rotations around 0. Equivalently, (η, μ) is determined by Z up to rotations around 0.
- The law of Z is explicit: a pair of independent Brownian motions.

Proof.

"Immediately" follows from quantum zipper.

Question:

How could someone come up with this strange theorem?

 $\mathcal{MT}^n = \{ (M, T) : (n \text{-edge map, spanning tree}) \}.$

- (M^n, T^n) : a uniform sample from \mathcal{MT}^n :
 - **(1)** The law of M^n is uniform measure weighted by det_{M^n}(Δ).
 - 2 Conditioning on M^n , T^n is a uniform spanning tree.

By Point 1, M^n under discrete conformal embedding should converge to $\sqrt{2}$ -LQG.

 $(c = -2 \text{ and } c = 25 - 6Q^2, Q = 2/\gamma + \gamma/2.)$

By Point 2, viewing T^n as a random process in the random environment given by the conformally embedded M^n , we should have quenched scaling limit.

Combining Point 1 and 2, the Peano curve of T^n converge to SLE₈ which (modulo parametrization) is independent of the $\sqrt{2}$ -LQG $\mathcal{MT}^n = \{ (M, T) : (n \text{-edge map, spanning tree}) \}.$

 (M^n, T^n) : a uniform sample from \mathcal{MT}^n :

- **(1)** The law of M^n is uniform measure weighted by det_{M^n}(Δ).
- 2 Conditioning on M^n , T^n is a uniform spanning tree.

By Point 1, M^n under discrete conformal embedding should converge to $\sqrt{2}$ -LQG. (c = -2 and $c = 25 - 6Q^2$, $Q = 2/\gamma + \gamma/2$.)

By Point 2, viewing T^n as a random process in the random environment given by the conformally embedded M^n , we should have quenched scaling limit.

Combining Point 1 and 2, the Peano curve of T^n converge to SLE₈ which (modulo parametrization) is independent of the $\sqrt{2}$ -LQG $\mathcal{MT}^n = \{ (M, T) : (n \text{-edge map, spanning tree}) \}.$

 (M^n, T^n) : a uniform sample from \mathcal{MT}^n :

- **(1)** The law of M^n is uniform measure weighted by det_{M^n}(Δ).
- 2 Conditioning on M^n , T^n is a uniform spanning tree.

By Point 1, M^n under discrete conformal embedding should converge to $\sqrt{2}$ -LQG.

 $(c = -2 \text{ and } c = 25 - 6Q^2, Q = 2/\gamma + \gamma/2.)$

By Point 2, viewing T^n as a random process in the random environment given by the conformally embedded M^n , we should have quenched scaling limit.

Combining Point 1 and 2, the Peano curve of T^n converge to SLE₈ which (modulo parametrization) is independent of the $\sqrt{2}$ -LQG

Mullin-Bernardi-Sheffield Bijection

 $\mathcal{MT}^n = \{ (M, T) : (n\text{-edge map, spanning tree}) \}.$

 $\mathcal{LW}^n = \{ \text{Walk on } \mathbb{Z}^2_{>0} \text{ of length } 2n, \text{ returning to } 0 \}.$

Triangulation+Tree+Dual Tree

From Walks to Spanning Tree Decorated Maps

A Coarse Graining of UST-weighted Map

In the $\sqrt{2}$ -LQG MoT Theorem, view $\eta[i, i + 1]$ as vertices. Let $\eta[i, i + 1]$ and $\eta[j, j + 1]$ be adjacent if they share a nontrivial boundary.

This gives a planar map $\mathcal{G} = \mathcal{G}(\mu, \eta)$, embedded in \mathbb{C} .

The graph \mathcal{G} in terms of Z

Consequence of mating-of-trees theory: \mathcal{G} is close to the UST-weighted infinite map.

- The volume growth of the metric ball of \mathcal{G} has exponent dim $_{\gamma}$ with $\gamma = \sqrt{2}$. (Gwynne-Holden-S., Gwynne-Ding.)
- **2** Random walk on \mathcal{G} has speed $n^{1/\dim_{\gamma}}$. (Gwynne-Miller)
- Random walk on *G* converge to Brownian motion. Gwynne-Miller-Sheffield. (This implies that *Z* determines (μ, η).)

Things we know about UST-weighted infinite map

- The volume growth of the metric ball of \mathcal{G} has exponent dim_{γ} with $\gamma = \sqrt{2}$. (Gwynne-Holden-S.)
- Random walk has speed n^{1/dim_γ}.
 (Gwynne-Miller, Gwynne-Hutchcroft)

Continuum MoT Theorem

+strong coupling between random walk and Brownian motion +problem-specific techniques.

Same results hold whenever there is a nice MoT bijection. In particular, **random walk on UIPT has speed** $n^{1/4}$. (See Lecture 3 for the MoT bijection for UIPT due to Bernardi-Holden-S.).

Things we know about UST-weighted infinite map

- The volume growth of the metric ball of \mathcal{G} has exponent dim_{γ} with $\gamma = \sqrt{2}$. (Gwynne-Holden-S.)
- Random walk has speed n^{1/dim_γ}.
 (Gwynne-Miller, Gwynne-Hutchcroft)

Continuum MoT Theorem +strong coupling between random walk and Brownian motion +problem-specific techniques.

Same results hold whenever there is a nice MoT bijection. In particular, **random walk on UIPT has speed** $n^{1/4}$. (See Lecture 3 for the MoT bijection for UIPT due to Bernardi-Holden-S.).

Things we know about UST-weighted infinite map

- The volume growth of the metric ball of \mathcal{G} has exponent dim_{γ} with $\gamma = \sqrt{2}$. (Gwynne-Holden-S.)
- Random walk has speed n^{1/dim_γ}.
 (Gwynne-Miller, Gwynne-Hutchcroft)

Continuum MoT Theorem

+strong coupling between random walk and Brownian motion +problem-specific techniques.

Same results hold whenever there is a nice MoT bijection. In particular, **random walk on UIPT has speed** $n^{1/4}$. (See Lecture 3 for the MoT bijection for UIPT due to Bernardi-Holden-S.). All problems are stated for UST-weighted map, but can be extended to other maps.

Open Question 1: Quenched scaling limit for random walk.

- Maybe do some variant of the argument of Gwynne-Miller-Sheffield for *G*?
- Equivalent to convergence of Tutte harmonic embedding.

All problems are stated for UST-weighted map, but can be extended to other maps.

Open Question 1: Quenched scaling limit for random walk.

- Maybe do some variant of the argument of Gwynne-Miller-Sheffield for G?
- 2 Equivalent to convergence of Tutte harmonic embedding.

Open Question 2

Scaling limit of k > 1 copies of UST on the same map.

- Can focus on the *k* random walks. Tightness for free.
- Same question for site percolation on UIPT is solve by Holden-S. along the way of establishing the convergence of Cardy embedding.
- Equivalent to the quenched scaling limit of UST. Solution of the previous problem would solve it.
- But it is also interesting to solve it via other methods that can extend to more general models.
 FK-random cluster, bipolar orientation, Schnyder wood etc. weighted maps.
 For some model, there is no strong coupling (e.g. FK).

Open Question 2

Scaling limit of k > 1 copies of UST on the same map.

- Can focus on the *k* random walks. Tightness for free.
- Same question for site percolation on UIPT is solve by Holden-S. along the way of establishing the convergence of Cardy embedding.
- Equivalent to the quenched scaling limit of UST. Solution of the previous problem would solve it.
- But it is also interesting to solve it via other methods that can extend to more general models.
 FK-random cluster, bipolar orientation, Schnyder wood etc. weighted maps.
 For some model, there is no strong coupling, (e.g. FK)

Open Question 2

Scaling limit of k > 1 copies of UST on the same map.

- Can focus on the *k* random walks. Tightness for free.
- Same question for site percolation on UIPT is solve by Holden-S. along the way of establishing the convergence of Cardy embedding.
- Equivalent to the quenched scaling limit of UST. Solution of the previous problem would solve it.
- But it is also interesting to solve it via other methods that can extend to more general models.
 FK-random cluster, bipolar orientation, Schnyder wood etc. weighted maps.

For some model, there is no strong coupling. (e.g. FK)

SLE₈ coupled with $\sqrt{2}$ -LQG metric.

- Explicit laws of anything?
- (Intrinsic) axiomatic characterization of the joint law. One possibility: Stable process on metric-measure space decorated with a space-filling curve w.r.t. the semi-group of metric-gluing.
- Look at the graph G without knowing SLE/GFF, prove any property on the metric.
 Hopefully extend the argument to the discrete directly.