Liouville Quantum Gravity as a Mating of Trees

Xin Sun

${ }^{1}$ Columbia Univeristy
${ }^{2}$ Simons Society of Fellows

June 19, 2019

Lecture 2 (previously supposed to be Part 2 of Lecture 1)

Mating of Trees (MoT) for $c=-2, \gamma=\sqrt{2}, \kappa=8$.
(1) Scaling limit of UST on \mathbb{Z}^{2}, Euclidean Mating of Trees.
(2) Continuum MoT Theorem for $c=-2, \gamma=\sqrt{2}, \kappa=8$
(3) UST-weighted random planar map: a MoT bijection.
(4) Application and Open Questions.

Lecture 3 (previously supposed to be Part 1 of Lecture 2)

- Percolation on uniform random triangulations.
- Mating of Trees for $c=0, \gamma=\sqrt{8 / 3}, \kappa=6$.
- Application to $\operatorname{QLE}(\sqrt{8 / 3}, 0)$ and Cardy embedding.
- A word on MoT for $c \in(-\infty, 1), \gamma \in(0,2), \kappa=(4, \infty)$.

See the forthcoming survey(s) of Gwynne-Holden-S. for materials that are not covered.

A Spanning Tree on a Planar Map

Dual Tree

Peano Curve: Red on the Left, Blue on the Right

Our point of view on uniform spanning tree (UST):

- a statistical mechanical model with central charge -2.
- has conformal invariant scaling limit on many reasonable lattice (universality)

Uniform Spanning Tree (UST) on \mathbb{Z}^{2}

- Sample a UST on $[-n, n]^{2}$
- As $n \rightarrow \infty$, we obtain UST on \mathbb{Z}^{2} as local limit.
- UST is almost surely a one-ended tree on \mathbb{Z}^{2}.

Focus on infinite volume setting to avoid boundary effect.

Our point of view on uniform spanning tree (UST):

- a statistical mechanical model with central charge -2.
- has conformal invariant scaling limit on many reasonable lattice (universality)

Uniform Spanning Tree (UST) on \mathbb{Z}^{2}

- Sample a UST on $[-n, n]^{2}$.
- As $n \rightarrow \infty$, we obtain UST on \mathbb{Z}^{2} as local limit.
- UST is almost surely a one-ended tree on \mathbb{Z}^{2}.

Focus on infinite volume setting to avoid boundary effect.

A Portion of UST on \mathbb{Z}^{2} with dual tree and Peano curve

Blue Tree T : a sample of UST on \mathbb{Z}^{2}; Red Tree T^{\prime} : dual tree of T, living on $\left(\frac{1}{2}, \frac{1}{2}\right)+\mathbb{Z}^{2}$;
Purple Curve: Peano Curve in between T and T^{\prime}

Wilson's algorithm (Discrete Imaginary Geometry).
(1) Sample a LERW on \mathbb{Z}^{2} from 0 to ∞ as the first branch of T;
(2) Choose a vertex $v \in \mathbb{Z}^{2}$ not on the existing subtree, sample a LERW from v until it merges with the existing subtree.
(3) Add the LERW in Step 2 to the existing subtree.
(4) Iterate Step 2 and 3 until every vertex on \mathbb{Z}^{2} is on T.

Scaling Limit of UST on $n^{-1} \mathbb{Z}^{2}$

Scaling limit of LERW on $n^{-1} \mathbb{Z}^{2}$ from 0 to ∞ :

- SLE $_{2}$ from 0 to ∞.
- $n^{-5 / 4} \times$ counting measure LERW converges to the Euclidean occupation measure λ on SLE_{2}.

Scaling limit of the UST $T_{n}=n^{-1} T$ on $n^{-1} \mathbb{Z}^{2}$:

- Continuum UST \mathfrak{T} on \mathbb{C} (sampled from SLE $_{2}$ via a continuum Wilson's algorithm)
- Converge as a metric tree.
(λ on different branches induces a metric on τ
Same convergence holds jointly for the dual tree $T_{n}^{\prime}=n^{-1} T^{\prime}$.

Scaling limit of LERW on $n^{-1} \mathbb{Z}^{2}$ from 0 to ∞ :

- SLE $_{2}$ from 0 to ∞.
- $n^{-5 / 4} \times$ counting measure LERW converges to the Euclidean occupation measure λ on SLE $_{2}$.

Scaling limit of the UST $T_{n}=n^{-1} T$ on $n^{-1} \mathbb{Z}^{2}$:

- Continuum UST \mathfrak{T} on \mathbb{C} (sampled from SLE_{2} via a continuum Wilson's algorithm)
- Converge as a metric tree.
(λ on different branches induces a metric on \mathfrak{T})
Same convergence holds jointly for the dual tree $T_{n}^{\prime}=n^{-1} T^{\prime}$.

Scaling Limit of Peano Curve and Contour Function

η_{n} : Peano curve of T_{n} on $n^{-1} \mathbb{Z}^{2}$, parametrized such that

$$
\eta_{n}(0)=0 \quad \text { and } \quad \text { Lebesgue }\left(\eta_{n}([s, t])\right)=t-s \quad \forall t>s .
$$

Then η_{n} converges to an SLE $_{8}$ curve η on \mathbb{C} parametrized in the same way as η_{n}.

For a fixed time t :
η_{D}^{t} : the right boundary of $n(-\infty, t]$.
η_{R}^{t} is the branch of \mathfrak{T} from $\eta(t)$ to ∞.
equivalently, the scaling limit of the branch of T_{n} from $\eta_{n}(t)$.
Same holds for η_{L}^{t} with \mathfrak{T}, T_{n} replaced by their dual trees.
η_{n} : Peano curve of T_{n} on $n^{-1} \mathbb{Z}^{2}$, parametrized such that

$$
\eta_{n}(0)=0 \quad \text { and } \quad \text { Lebesgue }\left(\eta_{n}([s, t])\right)=t-s \quad \forall t>s
$$

Then η_{n} converges to an $\mathbf{S L E}_{8}$ curve η on \mathbb{C} parametrized in the same way as η_{n}.

For a fixed time t :
η_{R}^{t} : the right boundary of $\eta(-\infty, t]$.
η_{L}^{t} : the left boundary of $\eta(-\infty, t]$.
η_{R}^{t} is the branch of \mathfrak{T} from $\eta(t)$ to ∞. equivalently, the scaling limit of the branch of T_{n} from $\eta_{n}(t)$.

Same holds for η_{L}^{t} with \mathfrak{T}, T_{n} replaced by their dual trees.

Contour Function of a Planar Tree

Scaling Limit of Contour functions of T_{n} and T_{n}^{\prime}

View T_{n}, T_{n}^{\prime} as planar trees rooted at ∞ :

$$
\begin{aligned}
& R_{n}(t)=\operatorname{distance}_{T_{n}}\left(\eta_{n}(t), \infty\right)-\operatorname{distance}_{T_{n}}\left(\eta_{n}(0), \infty\right) \\
& L_{n}(t)=\operatorname{distance}_{T_{n}^{\prime}}\left(\eta_{n}(t), \infty\right)-\operatorname{distance}_{T_{n}^{\prime}}\left(\eta_{n}(0), \infty\right)
\end{aligned}
$$

$\lim _{n \rightarrow \infty} Z_{n}(t)=Z_{t}=\left(L_{t}, R_{t}\right)$ where

Scaling Limit of Contour functions of T_{n} and T_{n}^{\prime}

View T_{n}, T_{n}^{\prime} as planar trees rooted at ∞ :

$$
\begin{aligned}
R_{n}(t) & =\operatorname{distance}_{T_{n}}\left(\eta_{n}(t), \infty\right)-\operatorname{distance}_{T_{n}}\left(\eta_{n}(0), \infty\right) \\
L_{n}(t) & =\operatorname{distance}_{T_{n}^{\prime}}\left(\eta_{n}(t), \infty\right)-\operatorname{distance}_{T_{n}^{\prime}}\left(\eta_{n}(0), \infty\right)
\end{aligned}
$$

$\lim _{n \rightarrow \infty} Z_{n}(t)=Z_{t}=\left(L_{t}, R_{t}\right)$ where

$$
\begin{aligned}
R_{t} & =\lambda\left(\eta_{R}^{t}\right)-\lambda\left(\eta_{R}^{0}\right) . \\
L_{t} & =\lambda\left(\eta_{L}^{t}\right)-\lambda\left(\eta_{L}^{0}\right) .
\end{aligned}
$$

Euclidean Mating-of-Trees Theorem

Theorem (Holden-S.(16))
Let η be the SLE_{8} on \mathbb{C} parametrized such that

$$
\eta(0)=0 \quad \text { and } \quad \text { Lebesgue }(\eta([s, t]))=t-s \quad \forall t>s
$$

Let $Z_{t}=\left(L_{t}, R_{t}\right)$ where

$$
R_{t}=\lambda\left(\eta_{R}^{t}\right)-\lambda\left(\eta_{R}^{0}\right) \quad \text { and } \quad L_{t}=\lambda\left(\eta_{L}^{t}\right)-\lambda\left(\eta_{L}^{0}\right)
$$

Then
(1) Z is self-similar and has stationary increments.
(2) η as a parameterized curve is determined by Z
up to rotations around 0 .
(3) The law of Z is NOT explicit.

Euclidean Mating-of-Trees Theorem

Theorem (Holden-S.(16))

Let η be the SLE_{8} on \mathbb{C} parametrized such that

$$
\eta(0)=0 \quad \text { and } \quad \operatorname{Lebesgue}(\eta([s, t]))=t-s \quad \forall t>s .
$$

Let $Z_{t}=\left(L_{t}, R_{t}\right)$ where

$$
R_{t}=\lambda\left(\eta_{R}^{t}\right)-\lambda\left(\eta_{R}^{0}\right) \quad \text { and } \quad L_{t}=\lambda\left(\eta_{L}^{t}\right)-\lambda\left(\eta_{L}^{0}\right)
$$

Then
(1) Z is self-similar and has stationary increments.
(2) η as a parameterized curve is determined by Z up to rotations around 0.
(3) The law of Z is NOT explicit.

Euclidean Mating-of-Trees Theorem

Theorem (Holden-S.(16))

Let η be the SLE_{8} on \mathbb{C} parametrized such that

$$
\eta(0)=0 \quad \text { and } \quad \operatorname{Lebesgue}(\eta([s, t]))=t-s \quad \forall t>s .
$$

Let $Z_{t}=\left(L_{t}, R_{t}\right)$ where

$$
R_{t}=\lambda\left(\eta_{R}^{t}\right)-\lambda\left(\eta_{R}^{0}\right) \quad \text { and } \quad L_{t}=\lambda\left(\eta_{L}^{t}\right)-\lambda\left(\eta_{L}^{0}\right)
$$

Then
(1) Z is self-similar and has stationary increments.
(2) η as a parameterized curve is determined by Z up to rotations around 0.
(3) The law of Z is NOT explicit.

SLE_{8} on $\sqrt{2}-\mathrm{LQG}$

- Let D be a Jordan domain.
- Let η be a chordal SLE $_{8}$ on D from $a \in \partial D$ to $b \in \partial D$.
- h : GFF on D independent of η.
- Let $\mu_{h}=e^{\sqrt{2} h} d x d y$.
- Re-weigh the law of (h, η) by $\mu_{h}(D)$.
- Sample $z \in D$ according to μ_{h}.

This setting is not canonical.
(could not be a scaling limit of natural discrete model.)

Infinite Volume Setting

Blow up (h, η) around z : given $n \in \mathbb{N}$
Let $B^{n}(z)$ be the ball centered at z such that $\mu_{h}\left(B^{n}(z)\right)=n^{-1}$.
Let ϕ^{n} be the affine transform that maps $B^{n}(z)$ to \mathbb{D} (unit disk).
Let μ^{n} be the pushforward of $n \mu_{n}$ by ϕ^{n} so that $\mu^{n}(\mathbb{D})=1$.
Let η^{n} be the pushforward of η by ϕ^{n} parameterized by

$$
\eta^{n}(0)=0 \quad \text { and } \quad \mu^{n}\left(\eta^{n}([s, i])\right)=t-s \quad \forall t>s .
$$

Lemma

$\left(\mu^{n}, \eta^{n}\right)$ weakly converges to (μ, η).

Infinite Volume Setting

Blow up (h, η) around z : given $n \in \mathbb{N}$
Let $B^{n}(z)$ be the ball centered at z such that $\mu_{h}\left(B^{n}(z)\right)=n^{-1}$.
Let ϕ^{n} be the affine transform that maps $B^{n}(z)$ to \mathbb{D} (unit disk).
Let μ^{n} be the pushforward of $n \mu_{n}$ by ϕ^{n} so that $\mu^{n}(\mathbb{D})=1$.
Let η^{n} be the pushforward of η by ϕ^{n} parameterized by

Lemma

weakly converges to (μ, η).

Infinite Volume Setting

Blow up (h, η) around z : given $n \in \mathbb{N}$
Let $B^{n}(z)$ be the ball centered at z such that $\mu_{h}\left(B^{n}(z)\right)=n^{-1}$.
Let ϕ^{n} be the affine transform that maps $B^{n}(z)$ to \mathbb{D} (unit disk).
Let μ^{n} be the pushforward of $n \mu_{h}$ by ϕ^{n} so that $\mu^{n}(\mathbb{D})=1$.
Let η^{n} be the pushforward of η by ϕ^{n} parameterized by

Lemma

weakly converges to (μ, η).

Infinite Volume Setting

Blow up (h, η) around z : given $n \in \mathbb{N}$
Let $B^{n}(z)$ be the ball centered at z such that $\mu_{h}\left(B^{n}(z)\right)=n^{-1}$.
Let ϕ^{n} be the affine transform that maps $B^{n}(z)$ to \mathbb{D} (unit disk).
Let μ^{n} be the pushforward of $n \mu_{h}$ by ϕ^{n} so that $\mu^{n}(\mathbb{D})=1$.
Let η^{n} be the pushforward of η by ϕ^{n} parameterized by

$$
\eta^{n}(0)=0 \quad \text { and } \quad \mu^{n}\left(\eta^{n}([s, t])\right)=t-s \quad \forall t>s
$$

Lemma

(μ^{n}, η^{n}) weakly converges to (μ, η).

The law of the limiting measure/curve pair (μ, η) :

- There exists a random distribution \widetilde{h} which is a particular variant of GFF such that $\mu=e^{\gamma \widetilde{h}} d x d y$ with $\gamma=\sqrt{2}$.
- η is an SLE_{8} on \mathbb{C}, independent of h if modulo parametrization.
- $\eta(0)=0$ and $\mu(\eta[s, t])=t-s$ for all $t>s$.

The law of \widetilde{h} : γ-quantum cone
(1) Sample a whole plane GFF plus - $\gamma \log$
(2) Fix the additive constant by
requiring the circle average around $\partial \mathbb{D}$ equals
(3) Rescale the field according to the $\sqrt{2}$-LQG coordinate
change formula so that the quantum mass of \mathbb{D} is 1 .
(4) Replace $+\infty$ by C and send C to $+\infty$ to make it rigorous.

The law of the limiting measure/curve pair (μ, η) :

- There exists a random distribution \tilde{h} which is a particular variant of GFF such that $\mu=e^{\gamma \widetilde{h}} d x d y$ with $\gamma=\sqrt{2}$.
- η is an SLE_{8} on \mathbb{C}, independent of h if modulo parametrization.
- $\eta(0)=0$ and $\mu(\eta[s, t])=t-s$ for all $t>s$.

The law of \widetilde{h} : γ-quantum cone
(1) Sample a whole plane GFF plus $-\gamma \log |\cdot|$.
(2) Fix the additive constant by requiring the circle average around $\partial \mathbb{D}$ equals $+\infty$.
(3) Rescale the field according to the $\sqrt{2}-$ LQG coordinate change formula so that the quantum mass of \mathbb{D} is 1 .
© Replace

The law of the limiting measure/curve pair (μ, η) :

- There exists a random distribution \tilde{h} which is a particular variant of GFF such that $\mu=e^{\gamma \widetilde{h}} d x d y$ with $\gamma=\sqrt{2}$.
- η is an SLE_{8} on \mathbb{C}, independent of h if modulo parametrization.
- $\eta(0)=0$ and $\mu(\eta[s, t])=t-s$ for all $t>s$.

The law of \widetilde{h} : γ-quantum cone
(1) Sample a whole plane GFF plus $-\gamma \log |\cdot|$.
(2) Fix the additive constant by requiring the circle average around $\partial \mathbb{D}$ equals $+\infty$.
(3) Rescale the field according to the $\sqrt{2}-$ LQG coordinate change formula so that the quantum mass of \mathbb{D} is 1 .
(4) Replace $+\infty$ by C and send C to $+\infty$ to make it rigorous.

Boundary Length Process

Similarly as in the Euclidean case, for a fixed time t :
η_{R}^{t} : the right boundary of $\eta(-\infty, t]$.
η_{L}^{t} : the left boundary of $\eta(-\infty, t]$.
Let $\widetilde{\lambda}=e^{\gamma \widetilde{h} / 2} d \lambda$ and $Z_{t}=\left(L_{t}, R_{t}\right)$ where

$$
R_{t}=\widetilde{\lambda}\left(\eta_{R}^{t}\right)-\widetilde{\lambda}\left(\eta_{R}^{0}\right) \quad \text { and } \quad L_{t}=\widetilde{\lambda}\left(\eta_{L}^{t}\right)-\widetilde{\lambda}\left(\eta_{L}^{0}\right)
$$

$\sqrt{2}$-LQG Mating-of-Trees Theorem

Theorem (Duplantier-Miller-Sheffield)
Let (μ, η, Z) be defined as before.
(1) Z is self-similar and has stationary independent increments.
(2) η as a parameterized curve is determined by Z up to rotations around 0.
(8) The law of Z is explicit:

Proof.

"Immediately" follows from quantum zipper.

Question:
How could someone come up with this strange theorem?

$\sqrt{2}$-LQG Mating-of-Trees Theorem

Theorem (Duplantier-Miller-Sheffield)
Let (μ, η, Z) be defined as before.
(1) Z is self-similar and has stationary independent increments.
(2) η as a parameterized curve is determined by Z up to rotations around 0 . Equivalently, (η, μ) is determined by Z up to rotations around 0 .
(3) The law of Z is explicit:
a pair of independent Brownian motions.

Proof.
 "Immediately" follows from quantum zipper.

Question:
How could someone come up with this strange theorem?

$\sqrt{2}$-LQG Mating-of-Trees Theorem

Theorem (Duplantier-Miller-Sheffield)

Let (μ, η, Z) be defined as before.
(1) Z is self-similar and has stationary independent increments.
(2) η as a parameterized curve is determined by Z up to rotations around 0 . Equivalently, (η, μ) is determined by Z up to rotations around 0 .
(3) The law of Z is explicit:
a pair of independent Brownian motions.

Proof.
 "Immediately" follows from quantum zipper.
 Question:
 How could someone come up with this strange theorem?

$\sqrt{2}$-LQG Mating-of-Trees Theorem

Theorem (Duplantier-Miller-Sheffield)

Let (μ, η, Z) be defined as before.
(1) Z is self-similar and has stationary independent increments.
(2) η as a parameterized curve is determined by Z up to rotations around 0 . Equivalently, (η, μ) is determined by Z up to rotations around 0 .
(3) The law of Z is explicit: a pair of independent Brownian motions.

Proof.

"Immediately" follows from quantum zipper.

Question:
How could someone come up with this strange theorem?
$\mathcal{M} \mathcal{T}^{n}=\{(M, T):(n$-edge map, spanning tree $)\}$.
(M^{n}, T^{n}): a uniform sample from $\mathcal{M} \mathcal{T}^{n}$:
(1) The law of M^{n} is uniform measure weighted by $\operatorname{det}_{M^{n}}(\Delta)$.
(2) Conditioning on M^{n}, T^{n} is a uniform spanning tree.

By Point 2, viewing T^{n} as a random process in the random environment given by the conformally embedded M^{n}, we should have quenched scaling limit.

Combining Point 1 and 2 ,
the Peano curve of T^{n} converge to SLE $_{8}$ which (modulo parametrization) is independent of the $\sqrt{2}$-LQG
$\mathcal{M} \mathcal{T}^{n}=\{(M, T):(n$-edge map, spanning tree $)\}$.
(M^{n}, T^{n}): a uniform sample from $\mathcal{M} \mathcal{T}^{n}$:
(1) The law of M^{n} is uniform measure weighted by $\operatorname{det}_{M^{n}}(\Delta)$.
(2) Conditioning on M^{n}, T^{n} is a uniform spanning tree.

By Point 1, M^{n} under discrete conformal embedding should converge to $\sqrt{2}-$ LQG.
($c=-2$ and $c=25-6 Q^{2}, Q=2 / \gamma+\gamma / 2$.)
By Point 2, viewing T^{n} as a random process in the random
environment given by the conformally embedded M^{n},
we should have quenched scaling limit.
Combining Point 1 and 2,
the Peano curve of T^{n} converge to SLE_{8} which (modulo parametrization) is independent of the $\sqrt{2}$-LQG
$\mathcal{M} \mathcal{T}^{n}=\{(M, T):(n$-edge map, spanning tree $)\}$.
(M^{n}, T^{n}): a uniform sample from $\mathcal{M} \mathcal{T}^{n}$:
(0) The law of M^{n} is uniform measure weighted by $\operatorname{det}_{M^{n}}(\Delta)$.
(2) Conditioning on M^{n}, T^{n} is a uniform spanning tree.

By Point 1, M^{n} under discrete conformal embedding should converge to $\sqrt{2}$-LQG.
($c=-2$ and $c=25-6 Q^{2}, Q=2 / \gamma+\gamma / 2$.)
By Point 2 , viewing T^{n} as a random process in the random environment given by the conformally embedded M^{n}, we should have quenched scaling limit.

Combining Point 1 and 2 , the Peano curve of T^{n} converge to SLE_{8} which (modulo parametrization) is independent of the $\sqrt{2}$-LQG

Mullin-Bernardi-Sheffield Bjection

$\mathcal{M} \mathcal{T}^{n}=\{(M, T):(n$-edge map, spanning tree $)\}$.
$\mathcal{L} \mathcal{W}^{n}=\left\{\right.$ Walk on $\mathbb{Z}_{\geq 0}^{2}$ of length $2 n$, returning to 0$\}$.

Triangulation+Tree+Dual Tree

From Spanning Tree Decorated Maps to Walks

A Coarse Graining of UST-weighted Map

In the $\sqrt{2}$-LQG MoT Theorem, view $\eta[i, i+1]$ as vertices.
Let $\eta[i, i+1]$ and $\eta[j, j+1]$ be adjacent if they share a nontrivial boundary.
This gives a planar map $\mathcal{G}=\mathcal{G}(\mu, \eta)$, embedded in \mathbb{C}.

The graph \mathcal{G} in terms of Z

Consequence of mating-of-trees theory: \mathcal{G} is close to the UST-weighted infinite map.
(0) The volume growth of the metric ball of \mathcal{G} has exponent $\operatorname{dim}_{\gamma}$ with $\gamma=\sqrt{2}$. (Gwynne-Holden-S., Gwynne-Ding.)
(2) Random walk on \mathcal{G} has speed $n^{1 / \text { dim }_{\gamma}}$. (Gwynne-Miller)
(0) Random walk on \mathcal{G} converge to Brownian motion. Gwynne-Miller-Sheffield. (This implies that Z determines (μ, η).)

Things we know about UST-weighted infinite map

(0) The volume growth of the metric ball of \mathcal{G} has exponent $\operatorname{dim}_{\gamma}$ with $\gamma=\sqrt{2}$. (Gwynne-Holden-S.)
(2) Random walk has speed $n^{1 / \mathrm{dim}_{r}}$. (Gwynne-Miller, Gwynne-Hutchcroft)

Continuum MoT Theorem
+strong coupling between random walk and Brownian motion +problem-specific techniques.

Same results hold whenever there is a nice MoT bijection. In particular, random walk on UIPT has speed $n^{1 / 4}$. (See Lecture 3 for the MoT bijection for UIPT
due to Bernardi-Holden-S.).

Things we know about UST-weighted infinite map

(1) The volume growth of the metric ball of \mathcal{G} has exponent $\operatorname{dim}_{\gamma}$ with $\gamma=\sqrt{2}$. (Gwynne-Holden-S.)
(2) Random walk has speed $n^{1 / \operatorname{dim}_{\gamma}}$. (Gwynne-Miller, Gwynne-Hutchcroft)

Continuum MoT Theorem
+strong coupling between random walk and Brownian motion +problem-specific techniques.

Same results hold whenever there is a nice MoT bijection. In particular, random walk on UIPT has speed $n^{1 / 4}$. (See Lecture 3 for the MoT bijection for UIPT
due to Bernardi-Holden-S.)

Things we know about UST-weighted infinite map

(1) The volume growth of the metric ball of \mathcal{G} has exponent $\operatorname{dim}_{\gamma}$ with $\gamma=\sqrt{2}$. (Gwynne-Holden-S.)
(2) Random walk has speed $n^{1 / \operatorname{dim}_{\gamma}}$. (Gwynne-Miller, Gwynne-Hutchcroft)

Continuum MoT Theorem
+strong coupling between random walk and Brownian motion +problem-specific techniques.

Same results hold whenever there is a nice MoT bijection. In particular, random walk on UIPT has speed $n^{1 / 4}$.
(See Lecture 3 for the MoT bijection for UIPT due to Bernardi-Holden-S.).

Open Questions

All problems are stated for UST-weighted map, but can be extended to other maps.

Open Question 1: Quenched scaling limit for random walk.
(1) Maybe do some variant of the argument of Gwynne-Miller-Sheffield for \mathcal{G} ?
(2) Equivalent to convergence of Tutte harmonic embedding.

Open Questions

All problems are stated for UST-weighted map, but can be extended to other maps.

Open Question 1: Quenched scaling limit for random walk.
(1) Maybe do some variant of the argument of Gwynne-Miller-Sheffield for \mathcal{G} ?
(2) Equivalent to convergence of Tutte harmonic embedding.

Open Question 2

Scaling limit of $k>1$ copies of UST on the same map.

- Can focus on the k random walks. Tightness for free.
- Same question for site percolation on UIPT is solve by Holden-S. along the way of establishing the convergence of Cardy embedding.
- Equivalent to the quenched scaling limit of UST. Solution of the previous problem would solve it.
- But it is also interesting to solve it via other methods that can extend to more general models.
FK-random cluster, bipolar orientation, Schnyder wood etc. weighted maps.
For some model, there is no strong coupling. (e.g. FK)

Open Question 2

Scaling limit of $k>1$ copies of UST on the same map.

- Can focus on the k random walks. Tightness for free.
- Same question for site percolation on UIPT is solve by Holden-S. along the way of establishing the convergence of Cardy embedding.
- Equivalent to the quenched scaling limit of UST. Solution of the previous problem would solve it.
- But it is also interesting to solve it via other methods that can extend to more general models. FK-random cluster, bipolar orientation, Schnyder wood etc. weighted maps.
For some model, there is no strong coupling. (e.g. FK)

Open Question 2

Scaling limit of $k>1$ copies of UST on the same map.

- Can focus on the k random walks. Tightness for free.
- Same question for site percolation on UIPT is solve by Holden-S. along the way of establishing the convergence of Cardy embedding.
- Equivalent to the quenched scaling limit of UST. Solution of the previous problem would solve it.
- But it is also interesting to solve it via other methods that can extend to more general models. FK-random cluster, bipolar orientation, Schnyder wood etc. weighted maps.
For some model, there is no strong coupling. (e.g. FK)

Very Very Open Question 3

SLE_{8} coupled with $\sqrt{2}$-LQG metric.
(1) Explicit laws of anything?
(2) (Intrinsic) axiomatic characterization of the joint law. One possibility: Stable process on metric-measure space decorated with a space-filling curve w.r.t. the semi-group of metric-gluing.
(3) Look at the graph \mathcal{G} without knowing SLE/GFF, prove any property on the metric. Hopefully extend the argument to the discrete directly.

