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Lecture 2 (previously supposed to be Part 2 of Lecture 1)

Mating of Trees (MoT) for c = −2, γ =
√

2, κ = 8.

1 Scaling limit of UST on Z2, Euclidean Mating of Trees.

2 Continuum MoT Theorem for c = −2, γ =
√

2, κ = 8

3 UST-weighted random planar map: a MoT bijection.

4 Application and Open Questions.
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Lecture 3 (previously supposed to be Part 1 of Lecture 2)

Percolation on uniform random triangulations.

Mating of Trees for c = 0, γ =
√

8/3, κ = 6.

Application to QLE(
√

8/3,0) and Cardy embedding.

A word on MoT for c ∈ (−∞,1), γ ∈ (0,2), κ = (4,∞).

See the forthcoming survey(s) of Gwynne-Holden-S.
for materials that are not covered.
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A Spanning Tree on a Planar Map
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Dual Tree
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Peano Curve: Red on the Left , Blue on the Right
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Our point of view on uniform spanning tree (UST):
a statistical mechanical model with central charge −2.
has conformal invariant scaling limit on many reasonable
lattice (universality)

Uniform Spanning Tree (UST) on Z2

Sample a UST on [−n,n]2.
As n→∞, we obtain UST on Z2 as local limit.
UST is almost surely a one-ended tree on Z2.

Focus on infinite volume setting to avoid boundary effect.

7 / 53



Our point of view on uniform spanning tree (UST):
a statistical mechanical model with central charge −2.
has conformal invariant scaling limit on many reasonable
lattice (universality)

Uniform Spanning Tree (UST) on Z2

Sample a UST on [−n,n]2.
As n→∞, we obtain UST on Z2 as local limit.
UST is almost surely a one-ended tree on Z2.

Focus on infinite volume setting to avoid boundary effect.

7 / 53



A Portion of UST on Z2 with dual tree and Peano curve

Blue Tree T : a sample of UST on Z2;
Red Tree T ′: dual tree of T , living on (1

2 ,
1
2) + Z2;

Purple Curve: Peano Curve in between T and T ′

T ′
T
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How to Sample UST on Z2

Wilson’s algorithm (Discrete Imaginary Geometry).

1 Sample a LERW on Z2 from 0 to∞
as the first branch of T ;

2 Choose a vertex v ∈ Z2 not on the existing subtree, sample
a LERW from v until it merges with the existing subtree.

3 Add the LERW in Step 2 to the existing subtree.

4 Iterate Step 2 and 3 until every vertex on Z2 is on T .
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Scaling Limit of UST on n−1Z2

Scaling limit of LERW on n−1Z2 from 0 to∞:

SLE2 from 0 to∞.
n−5/4× counting measure LERW converges to
the Euclidean occupation measure λ on SLE2.

Scaling limit of the UST Tn = n−1T on n−1Z2:

Continuum UST T on C
(sampled from SLE2 via a continuum Wilson’s algorithm)
Converge as a metric tree.
(λ on different branches induces a metric on T)

Same convergence holds jointly for the dual tree T ′n = n−1T ′.
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Scaling Limit of Peano Curve and Contour Function

ηn: Peano curve of Tn on n−1Z2, parametrized such that

ηn(0) = 0 and Lebesgue(ηn([s, t ])) = t − s ∀t > s.

Then ηn converges to an SLE8 curve η on C
parametrized in the same way as ηn.

For a fixed time t :
ηt

R: the right boundary of η(−∞, t ].
ηt

L: the left boundary of η(−∞, t ].

ηt
R is the branch of T from η(t) to∞.

equivalently, the scaling limit of the branch of Tn from ηn(t).

Same holds for ηt
L with T,Tn replaced by their dual trees.
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Contour Function of a Planar Tree
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Scaling Limit of Contour functions of Tn and T ′n
View Tn,T ′n as planar trees rooted at∞:

Rn(t) = distanceTn (ηn(t),∞)− distanceTn (ηn(0),∞)

Ln(t) = distanceT ′
n
(ηn(t),∞)− distanceT ′

n
(ηn(0),∞)

limn→∞ Zn(t) = Zt = (Lt ,Rt ) where

Rt = λ(ηt
R)− λ(η0

R).

Lt = λ(ηt
L)− λ(η0

L).

η(0) = 0

η(t1)

η(t2) t1 t2

Lt

Rt

η0L
η0R
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Euclidean Mating-of-Trees Theorem

Theorem (Holden-S.(16))
Let η be the SLE8 on C parametrized such that

η(0) = 0 and Lebesgue(η([s, t ])) = t − s ∀t > s.

Let Zt = (Lt ,Rt ) where

Rt = λ(ηt
R)− λ(η0

R) and Lt = λ(ηt
L)− λ(η0

L).

Then
1 Z is self-similar and has stationary increments.
2 η as a parameterized curve is determined by Z

up to rotations around 0.
3 The law of Z is NOT explicit.
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SLE8 on
√

2-LQG

Let D be a Jordan domain.

Let η be a chordal SLE8 on D from a ∈ ∂D to b ∈ ∂D.

h: GFF on D independent of η.

Let µh = e
√

2hdxdy .

Re-weigh the law of (h, η) by µh(D).

Sample z ∈ D according to µh.

This setting is not canonical.
(could not be a scaling limit of natural discrete model.)
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Infinite Volume Setting

Blow up (h, η) around z: given n ∈ N

Let Bn(z) be the ball centered at z such that µh(Bn(z)) = n−1.

Let φn be the affine transform that maps Bn(z) to D (unit disk).

Let µn be the pushforward of nµh by φn so that µn(D) = 1.

Let ηn be the pushforward of η by φn parameterized by

ηn(0) = 0 and µn(ηn([s, t ])) = t − s ∀t > s.

Lemma
(µn, ηn) weakly converges to (µ, η).
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The law of the limiting measure/curve pair (µ, η):

There exists a random distribution h̃ which is a particular
variant of GFF such that µ = eγh̃dxdy with γ =

√
2.

η is an SLE8 on C,
independent of h if modulo parametrization.
η(0) = 0 and µ(η[s, t ]) = t − s for all t > s.

The law of h̃: γ-quantum cone
1 Sample a whole plane GFF plus −γ log | · |.
2 Fix the additive constant by

requiring the circle average around ∂D equals +∞.
3 Rescale the field according to the

√
2-LQG coordinate

change formula so that the quantum mass of D is 1.
4 Replace +∞ by C and send C to +∞ to make it rigorous.

18 / 53



The law of the limiting measure/curve pair (µ, η):

There exists a random distribution h̃ which is a particular
variant of GFF such that µ = eγh̃dxdy with γ =

√
2.

η is an SLE8 on C,
independent of h if modulo parametrization.
η(0) = 0 and µ(η[s, t ]) = t − s for all t > s.

The law of h̃: γ-quantum cone
1 Sample a whole plane GFF plus −γ log | · |.
2 Fix the additive constant by

requiring the circle average around ∂D equals +∞.
3 Rescale the field according to the

√
2-LQG coordinate

change formula so that the quantum mass of D is 1.
4 Replace +∞ by C and send C to +∞ to make it rigorous.

18 / 53



The law of the limiting measure/curve pair (µ, η):

There exists a random distribution h̃ which is a particular
variant of GFF such that µ = eγh̃dxdy with γ =

√
2.

η is an SLE8 on C,
independent of h if modulo parametrization.
η(0) = 0 and µ(η[s, t ]) = t − s for all t > s.

The law of h̃: γ-quantum cone
1 Sample a whole plane GFF plus −γ log | · |.
2 Fix the additive constant by

requiring the circle average around ∂D equals +∞.
3 Rescale the field according to the

√
2-LQG coordinate

change formula so that the quantum mass of D is 1.
4 Replace +∞ by C and send C to +∞ to make it rigorous.

18 / 53



Boundary Length Process

Similarly as in the Euclidean case, for a fixed time t :
ηt

R: the right boundary of η(−∞, t ].
ηt

L: the left boundary of η(−∞, t ].

Let λ̃ = eγh̃/2dλ and Zt = (Lt ,Rt ) where

Rt = λ̃(ηt
R)− λ̃(η0

R) and Lt = λ̃(ηt
L)− λ̃(η0

L).

η(0) = 0

η(t1)

η(t2) t1 t2

Lt

Rt

η0L
η0R
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√
2-LQG Mating-of-Trees Theorem

Theorem (Duplantier-Miller-Sheffield)

Let (µ, η,Z ) be defined as before.
1 Z is self-similar and has stationary independent

increments.
2 η as a parameterized curve is determined by Z up to

rotations around 0. Equivalently, (η, µ) is determined by Z
up to rotations around 0.

3 The law of Z is explicit:
a pair of independent Brownian motions.

Proof.
“Immediately” follows from quantum zipper.

Question:
How could someone come up with this strange theorem?
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MT n = {(M,T ) : (n-edge map, spanning tree)}.

(Mn,T n): a uniform sample fromMT n:
1 The law of Mn is uniform measure weighted by detMn (∆).
2 Conditioning on Mn, T n is a uniform spanning tree.

By Point 1, Mn under discrete conformal embedding should
converge to

√
2-LQG.

(c = −2 and c = 25− 6Q2, Q = 2/γ + γ/2.)

By Point 2, viewing T n as a random process in the random
environment given by the conformally embedded Mn,
we should have quenched scaling limit.

Combining Point 1 and 2,
the Peano curve of T n converge to SLE8 which (modulo
parametrization) is independent of the

√
2-LQG
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Mullin-Bernardi-Sheffield Bijection

MT n = {(M,T ) : (n-edge map, spanning tree)}.

LWn = {Walk on Z2
≥0 of length 2n, returning to 0}.
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Triangulation+Tree+Dual Tree
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From Spanning Tree Decorated Maps to Walks
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From Walks to Spanning Tree Decorated Maps
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A Coarse Graining of UST-weighted Map

In the
√

2-LQG MoT Theorem, view η[i , i + 1] as vertices.
Let η[i , i + 1] and η[j , j + 1] be adjacent if they share a nontrivial
boundary.
This gives a planar map G = G(µ, η), embedded in C.
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The graph G in terms of Z

Consequence of mating-of-trees theory:
G is close to the UST-weighted infinite map.
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Things we know about G

1 The volume growth of the metric ball of G has exponent
dimγ with γ =

√
2. (Gwynne-Holden-S., Gwynne-Ding.)

2 Random walk on G has speed n1/ dimγ . (Gwynne-Miller)

3 Random walk on G converge to Brownian motion.
Gwynne-Miller-Sheffield.
(This implies that Z determines (µ, η).)
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Things we know about UST-weighted infinite map

1 The volume growth of the metric ball of G has exponent
dimγ with γ =

√
2. (Gwynne-Holden-S.)

2 Random walk has speed n1/ dimγ .
(Gwynne-Miller, Gwynne-Hutchcroft)

Continuum MoT Theorem
+strong coupling between random walk and Brownian motion
+problem-specific techniques.

Same results hold whenever there is a nice MoT bijection.
In particular, random walk on UIPT has speed n1/4.
(See Lecture 3 for the MoT bijection for UIPT
due to Bernardi-Holden-S.).
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Open Questions

All problems are stated for UST-weighted map,
but can be extended to other maps.

Open Question 1: Quenched scaling limit for random walk.
1 Maybe do some variant of the argument of

Gwynne-Miller-Sheffield for G?

2 Equivalent to convergence of Tutte harmonic embedding.
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Open Question 2

Scaling limit of k > 1 copies of UST on the same map.

Can focus on the k random walks. Tightness for free.

Same question for site percolation on UIPT is solve by
Holden-S. along the way of establishing the convergence
of Cardy embedding.

Equivalent to the quenched scaling limit of UST.
Solution of the previous problem would solve it.

But it is also interesting to solve it via other methods
that can extend to more general models.
FK-random cluster, bipolar orientation, Schnyder wood etc.
weighted maps.
For some model, there is no strong coupling. (e.g. FK)

52 / 53



Open Question 2

Scaling limit of k > 1 copies of UST on the same map.

Can focus on the k random walks. Tightness for free.

Same question for site percolation on UIPT is solve by
Holden-S. along the way of establishing the convergence
of Cardy embedding.

Equivalent to the quenched scaling limit of UST.
Solution of the previous problem would solve it.

But it is also interesting to solve it via other methods
that can extend to more general models.
FK-random cluster, bipolar orientation, Schnyder wood etc.
weighted maps.
For some model, there is no strong coupling. (e.g. FK)

52 / 53



Open Question 2

Scaling limit of k > 1 copies of UST on the same map.

Can focus on the k random walks. Tightness for free.

Same question for site percolation on UIPT is solve by
Holden-S. along the way of establishing the convergence
of Cardy embedding.

Equivalent to the quenched scaling limit of UST.
Solution of the previous problem would solve it.

But it is also interesting to solve it via other methods
that can extend to more general models.
FK-random cluster, bipolar orientation, Schnyder wood etc.
weighted maps.
For some model, there is no strong coupling. (e.g. FK)

52 / 53



Very Very Open Question 3

SLE8 coupled with
√

2-LQG metric.

1 Explicit laws of anything?

2 (Intrinsic) axiomatic characterization of the joint law.
One possibility: Stable process on metric-measure space
decorated with a space-filling curve
w.r.t. the semi-group of metric-gluing.

3 Look at the graph G without knowing SLE/GFF,
prove any property on the metric.
Hopefully extend the argument to the discrete directly.
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