Liouville Quantum Gravity as a Mating of Trees

Xin Sun

${ }^{1}$ Columbia Univeristy
${ }^{2}$ Simons Society of Fellows

June 21, 2019

Lecture 3

- Mating-of-Trees (MoT) for $\gamma \in(0, \sqrt{2}]$ and $\kappa \geq 8$.
- Quantum cone/wedge/zipper and proof of MoT Theorem
- Percolation on uniform random triangulations.
- Mating of trees for $\gamma \in(\sqrt{2}, 2)$ and $\kappa \in(4,8)$.
- Application to $\operatorname{QLE}(\sqrt{8 / 3}, 0)$ and Cardy embedding.

See the forthcoming survey(s) of Gwynne-Holden-S. for materials that are not covered.

SLE $_{\kappa}$ on γ-LQG for $\gamma \in(0, \sqrt{2}]$ and $\kappa=16 / \gamma^{2} \geq 8$

- Let D be a Jordan domain.
- Let η be a chordal SLE κ on D from $a \in \partial D$ to $b \in \partial D$.
- h : GFF on D independent of η.
- Let $\mu_{h}=e^{\gamma h} d x d y$.
- Re-weigh the law of (h, η) by $\mu_{h}(D)$.
- Sample $z \in D$ according to μ_{h}.

This setting is not canonical. (could not be a scaling limit of natural discrete model.)

Infinite Volume Setting

Blow up (h, η) around z : given $n \in \mathbb{N}$
Let $B^{n}(z)$ be the ball centered at z such that $\mu_{h}\left(B^{n}(z)\right)=n^{-1}$.
Let ϕ^{n} be the affine transform that maps $B^{n}(z)$ to \mathbb{D} (unit disk).
Let μ^{n} be the pushforward of $n \mu_{h}$ by ϕ^{n} so that $\mu^{n}(\mathbb{D})=1$.
Let η^{n} be the pushforward of η by ϕ^{n} parameterized by

$$
\eta^{n}(0)=0 \quad \text { and } \quad \mu^{n}\left(\eta^{n}([s, t])\right)=t-s \quad \forall t>s
$$

Lemma

(μ^{n}, η^{n}) weakly converges to (μ, η).

The law of the limiting measure/curve pair (μ, η) :

- There exists a random distribution \widetilde{h} which is a particular variant of GFF such that $\mu=e^{\gamma^{\widetilde{h}}} d x d y$.
- η is an $\operatorname{SLE}_{\kappa}$ on \mathbb{C}, independent of \widetilde{h} if modulo parametrization.
- $\eta(0)=0$ and $\mu(\eta[s, t])=t-s$ for all $t>s$.

The law of \widetilde{h} : γ-quantum cone
(1) Sample a whole plane GFF plus - $\gamma \log$
(2) Fix the additive constant by
requiring the circle average around $\partial \mathbb{D}$ equals
(3) Rescale the field according to the γ-LQG coordinate change formula so that the quantum mass of \mathbb{D} is 1 . (9) Replace $+\infty$ by C and send C to $+\infty$ to make it rigorous.

The law of the limiting measure/curve pair (μ, η) :

- There exists a random distribution \tilde{h} which is a particular variant of GFF such that $\mu=e^{\gamma^{h}} d x d y$.
- η is an $\operatorname{SLE}_{\kappa}$ on \mathbb{C}, independent of \widetilde{h} if modulo parametrization.
- $\eta(0)=0$ and $\mu(\eta[s, t])=t-s$ for all $t>s$.

The law of \widetilde{h} : γ-quantum cone
(1) Sample a whole plane GFF plus $-\gamma \log |\cdot|$.
(2) Fix the additive constant by requiring the circle average around $\partial \mathbb{D}$ equals $+\infty$.
(3) Rescale the field according to the γ-LQG coordinate change formula so that the quantum mass of \mathbb{D} is 1 .
(4) Replace $+\infty$ by C and send C to $+\infty$ to make it rigorous.

Boundary Length Process

For a fixed time t :
η_{R}^{t} : the right boundary of $\eta(-\infty, t]$.
η_{L}^{t} : the left boundary of $\eta(-\infty, t]$.
Let $\tilde{\lambda}=e^{\tilde{\gamma} / 2} d \lambda$ and $Z_{t}=\left(L_{t}, R_{t}\right)$ where

$$
R_{t}=\widetilde{\lambda}\left(\eta_{R}^{t}\right)-\widetilde{\lambda}\left(\eta_{R}^{0}\right) \quad \text { and } \quad L_{t}=\widetilde{\lambda}\left(\eta_{L}^{t}\right)-\widetilde{\lambda}\left(\eta_{L}^{0}\right) .
$$

Theorem (Duplantier-Miller-Sheffield)

Let (μ, η, Z) be defined as before.
(1) Z is self-similar and has stationary independent increments.
(2) η as a parameterized curve is determined by Z up to rotations around 0 . Equivalently, (η, μ) is determined by Z up to rotations around 0 .
(3) The law of Z is explicit:

2D Brownian motions with covariance $-\cos 4 \pi / \kappa$.

α-quantum cone for $\alpha \leq Q$ (Seiberg bound)

Fix $\gamma \in(0,2), \alpha \leq Q$,
the α-quantum cone is the following γ-LQG surface:
(Sample a whole plane GFF plus $-\alpha \log |\cdot|$.
(2) Fix the additive constant by requiring the circle average around $\partial \mathbb{D}$ equals $+\infty$.
(3) Rescale the field according to the γ-LQG coordinate change formula so that the quantum mass of \mathbb{D} is 1 .
(9) Replace $+\infty$ by C and send C to $+\infty$ to make it rigorous.

The law of the α-quantum cone is particularly simple
in the cylindrical coordinate.

α-quantum cone for $\alpha \leq Q$ (Seiberg bound)

Fix $\gamma \in(0,2), \alpha \leq Q$,
the α-quantum cone is the following γ-LQG surface:
(1) Sample a whole plane GFF plus $-\alpha \log |\cdot|$.
(2) Fix the additive constant by requiring the circle average around $\partial \mathbb{D}$ equals $+\infty$.
(3) Rescale the field according to the γ-LQG coordinate change formula so that the quantum mass of \mathbb{D} is 1 .
(0) Replace $+\infty$ by C and send C to $+\infty$ to make it rigorous.

The law of the α-quantum cone is particularly simple in the cylindrical coordinate.

Fix $\gamma \in(0,2), \alpha \leq Q$,
the α-quantum wedge is a γ-LQG surface:
(1) Sample a free GFF on \mathbb{H} plus $-\alpha \log |\cdot|$.
(2) Fix the additive constant by requiring the circle average around $\partial \mathbb{D}$ equals $+\infty$.
(0) Rescale the field according to the γ-LQG coordinate change formula so that the quantum mass of \mathbb{D} is 1 .
(9) Replace $+\infty$ by C and send C to $+\infty$ to make it rigorous.

The law of the α-quantum wedge in the strip coordinate: Replace $B_{t}-(Q-\gamma) t$ in the cone by $B_{2 t}-(Q-\gamma) t$.

α-quantum wedge for $\alpha \leq Q$ (Seiberg bound)

Fix $\gamma \in(0,2), \alpha \leq Q$,
the α-quantum wedge is a γ-LQG surface:
(1) Sample a free GFF on \mathbb{H} plus $-\alpha \log |\cdot|$.
(2) Fix the additive constant by requiring the circle average around $\partial \mathbb{D}$ equals $+\infty$.
(3) Rescale the field according to the γ-LQG coordinate change formula so that the quantum mass of \mathbb{D} is 1 .
(9) Replace $+\infty$ by C and send C to $+\infty$ to make it rigorous.

The law of the α-quantum wedge in the strip coordinate: Replace $B_{t}-(Q-\gamma) t$ in the cone by $B_{2 t}-(Q-\gamma) t$.

Weight of Quantum Cones and Wedges

Both quantum cones and wedges are both one-parameter family of γ-LQG surfaces, parametrized by α.

Let us Introduce a new parametrization for convenience of stating quantum zipper results.

Fix $\gamma \in(0,2)$, for $\alpha \leq Q$

- We call $W=-2 \gamma \alpha+\gamma^{2}+4$ the weight of an α-quantum cone.
- We call $W=-\gamma \alpha+\gamma^{2}+2$ the weight of an α-quantum wedge.

Conformal Welding and Quantum Zipper

Theorem (Sheffield, Duplantier-Miller-Sheffield)

Let $\widehat{\kappa}=\gamma^{2} \in(0,4)$.
(1) Whole Plane $\operatorname{SLE}_{\widehat{\kappa}}(W-2)$ cuts a weight W-cone into a weight W wedge.
(2) A chordal $\operatorname{SLE}_{\widehat{\kappa}}\left(W_{1}-2 ; W_{2}-2\right)$ cuts a weight $W_{1}+W_{2}$ wedge into two independent wedge of weights W_{1} and W_{2} respectively

Let $\kappa=16 / \widehat{\kappa}=16 / \gamma^{2}$. Duality of SLE gives:
(1) η_{R}^{0} is $\operatorname{SLE}_{\widehat{\kappa}}(2-\widehat{\kappa})$.
(2) Conditioning on η_{R}^{0}, the law of η_{L}^{0} is chordal $\operatorname{SLE}_{\widehat{\kappa}}(-\widehat{\kappa} / 2 ;-\widehat{\kappa} / 2)$ on $\mathbb{C} \backslash \eta_{R}^{0}$.

Conformal Welding and Quantum Zipper

Theorem (Sheffield, Duplantier-Miller-Sheffield)

Let $\widehat{\kappa}=\gamma^{2} \in(0,4)$.
(1) Whole Plane $\operatorname{SLE}_{\widehat{\kappa}}(W-2)$ cuts a weight W-cone into a weight W wedge.
(2) A chordal $\operatorname{SLE}_{\widehat{\kappa}}\left(W_{1}-2 ; W_{2}-2\right)$ cuts a weight $W_{1}+W_{2}$ wedge into two independent wedge of weights W_{1} and W_{2} respectively

Let $\kappa=16 / \widehat{\kappa}=16 / \gamma^{2}$. Duality of SLE gives:
(1) η_{R}^{0} is $\operatorname{SLE}_{\widehat{\kappa}}(2-\widehat{\kappa})$.
(2) Conditioning on η_{R}^{0}, the law of η_{L}^{0} is chordal $\operatorname{SLE}_{\widehat{\kappa}}(-\widehat{\kappa} / 2 ;-\widehat{\kappa} / 2)$ on $\mathbb{C} \backslash \eta_{R}^{0}$.

Proof of Mating of Trees Theorem

Proof.

- Z is self-similar and has stationarity increments of Z because (h, η) is the infinite volume of something.
- Quantum zipper \Longrightarrow Independence $\Longrightarrow Z$ is Brownian motion.
- Covariance of Z is obtained by computing a rare event using both Z and (h, η)
- Z determines (h, η) up to rotations because of
quenched scaling limit of random walk on \mathcal{G},
(or some weaker variant that is sufficient for measurability)

Proof of Mating of Trees Theorem

Proof.

- Z is self-similar and has stationarity increments of Z because (h, η) is the infinite volume of something.
- Quantum zipper \Longrightarrow Independence
$\Longrightarrow Z$ is Brownian motion.
- Covariance of Z is obtained by computing a rare event using both Z and (h, η)
- Z determines (h, η) up to rotations because of quenched scaling limit of random walk on \mathcal{G}, (or some weaker variant that is sufficient for measurability)

Proof of Mating of Trees Theorem

Proof.

- Z is self-similar and has stationarity increments of Z because (h, η) is the infinite volume of something.
- Quantum zipper \Longrightarrow Independence
$\Longrightarrow Z$ is Brownian motion.
- Covariance of Z is obtained by computing a rare event using both Z and (h, η).
- Z determines (h, η) up to rotations because of
quenched scaling limit of random walk on \mathcal{G},
(or some weaker variant that is sufficient for measurability)

Proof of Mating of Trees Theorem

Proof.

- Z is self-similar and has stationarity increments of Z because (h, η) is the infinite volume of something.
- Quantum zipper \Longrightarrow Independence
$\Longrightarrow Z$ is Brownian motion.
- Covariance of Z is obtained by computing a rare event using both Z and (h, η).
- Z determines (h, η) up to rotations because of quenched scaling limit of random walk on \mathcal{G}, (or some weaker variant that is sufficient for measurability)

One-Step Peeling

A Total Ordering on Edges (Analog to Peano Curve)

Spacing-filling SLE ${ }_{\kappa}$ for $\kappa \in(4,8)$

Although chordal SLE_{6} on (D, a, b) is non-space-filling,
by mimicking the construction in the discrete,
we can construct a continuum version of the total ordering
which gives a space-filling curve as in the $\kappa=8$ case.
We call this curve the spacing-filling SLE_{6} on (D, a, b).
The same construction works for all $\kappa \in(4,8)$.

Spacing-filling SLE $_{\kappa}$ for $\kappa \in(4,8)$

Space-filling $\operatorname{SLE}_{\kappa}$ for $\kappa \in(4,8)$ is a major invention of imaginary geometry.

The existence (continuity) is proved in IG-IV.
It is the "envelop" of all other non-space-filling $\operatorname{SLE}_{\kappa}$, in the sense that non-space-filling SLE $_{\kappa}$ are subordinators of the space-filling one.

If one only cares about solving open questions for $\kappa=8$ using mating of trees, may not need to look at imaginary geometry.

Spacing-filling SLE κ for $\kappa \in(4,8)$

Space-filling $\operatorname{SLE}_{\kappa}$ for $\kappa \in(4,8)$ is a major invention of imaginary geometry.

The existence (continuity) is proved in IG-IV.
It is the "envelop" of all other non-space-filling $\operatorname{SLE}_{\kappa}$, in the sense that non-space-filling SLE $_{\kappa}$ are subordinators of the space-filling one.

If one only cares about solving open questions for $\kappa=8$ using mating of trees, may not need to look at imaginary geometry.

Space-filling SLE $_{6}$: Past/Future at 0

Space-filling SLE ${ }_{6}$ at Three different times

The Radial SLE $_{6}$ inside Space-filling SLE $_{6}$

Mating-of-Trees Theorem for $\gamma \in(\sqrt{2}, 2)$ and $\kappa \in(4,8)$

Since we can extend the space-filling $\operatorname{SLE}_{\kappa}$ to $\kappa \geq[8, \infty)$, the previous MoT Theorem for $\gamma \in(0, \sqrt{2}]$ and $\kappa=16 / \gamma^{2} \geq 8$ holds exactly in the same way for $\gamma \in(\sqrt{2}, 2)$ and $\kappa=16 / \gamma^{2} \in(4,8)$.

When $c=0, \gamma=\sqrt{8 / 3}$ and $\kappa=6$,
the covariance of Z is $-\cos (4 \pi / \kappa)=1 / 2$.

Mating-of-Trees Theorem for $\gamma \in(\sqrt{2}, 2)$ and $\kappa \in(4,8)$

Since we can extend the space-filling $\operatorname{SLE}_{\kappa}$ to $\kappa \geq[8, \infty)$, the previous MoT Theorem for $\gamma \in(0, \sqrt{2}]$ and $\kappa=16 / \gamma^{2} \geq 8$ holds exactly in the same way for $\gamma \in(\sqrt{2}, 2)$ and $\kappa=16 / \gamma^{2} \in(4,8)$.

When $c=0, \gamma=\sqrt{8 / 3}$ and $\kappa=6$, the covariance of Z is $-\cos (4 \pi / \kappa)=1 / 2$.

The Bijection of Bernardi-Holden-S.

The Bijection of Bernardi-Holden-S.

$t=16$

$t=19$

