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Lecture 3

Mating-of-Trees (MoT) for γ ∈ (0,
√

2] and κ ≥ 8.

Quantum cone/wedge/zipper and proof of MoT Theorem

Percolation on uniform random triangulations.

Mating of trees for γ ∈ (
√

2,2) and κ ∈ (4,8).

Application to QLE(
√

8/3,0) and Cardy embedding.

See the forthcoming survey(s) of Gwynne-Holden-S.
for materials that are not covered.
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SLEκ on γ-LQG for γ ∈ (0,
√

2] and κ = 16/γ2 ≥ 8

Let D be a Jordan domain.

Let η be a chordal SLEκ on D from a ∈ ∂D to b ∈ ∂D.

h: GFF on D independent of η.

Let µh = eγhdxdy .

Re-weigh the law of (h, η) by µh(D).

Sample z ∈ D according to µh.

This setting is not canonical.
(could not be a scaling limit of natural discrete model.)
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Infinite Volume Setting

Blow up (h, η) around z: given n ∈ N

Let Bn(z) be the ball centered at z such that µh(Bn(z)) = n−1.

Let φn be the affine transform that maps Bn(z) to D (unit disk).

Let µn be the pushforward of nµh by φn so that µn(D) = 1.

Let ηn be the pushforward of η by φn parameterized by

ηn(0) = 0 and µn(ηn([s, t ])) = t − s ∀t > s.

Lemma
(µn, ηn) weakly converges to (µ, η).
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The law of the limiting measure/curve pair (µ, η):

There exists a random distribution h̃ which is a particular
variant of GFF such that µ = eγh̃dxdy .
η is an SLEκ on C,
independent of h̃ if modulo parametrization.
η(0) = 0 and µ(η[s, t ]) = t − s for all t > s.

The law of h̃: γ-quantum cone
1 Sample a whole plane GFF plus −γ log | · |.
2 Fix the additive constant by

requiring the circle average around ∂D equals +∞.
3 Rescale the field according to the γ-LQG coordinate

change formula so that the quantum mass of D is 1.
4 Replace +∞ by C and send C to +∞ to make it rigorous.
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Boundary Length Process

For a fixed time t :
ηt

R: the right boundary of η(−∞, t ].
ηt

L: the left boundary of η(−∞, t ].

Let λ̃ = eγh̃/2dλ and Zt = (Lt ,Rt) where

Rt = λ̃(ηt
R)− λ̃(η

0
R) and Lt = λ̃(ηt

L)− λ̃(η
0
L).

η(0) = 0

η(t1)

η(t2) t1 t2

Lt

Rt

η0L
η0R
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γ-LQG Mating-of-Trees Theorem for γ ∈ (0,
√

2]

Theorem (Duplantier-Miller-Sheffield)

Let (µ, η,Z ) be defined as before.
1 Z is self-similar and has stationary independent

increments.
2 η as a parameterized curve is determined by Z up to

rotations around 0. Equivalently, (η, µ) is determined by Z
up to rotations around 0.

3 The law of Z is explicit:
2D Brownian motions with covariance − cos 4π/κ.
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α-quantum cone for α ≤ Q (Seiberg bound)

Fix γ ∈ (0,2), α ≤ Q,
the α-quantum cone is the following γ-LQG surface:

1 Sample a whole plane GFF plus −α log | · |.
2 Fix the additive constant by

requiring the circle average around ∂D equals +∞.
3 Rescale the field according to the γ-LQG coordinate

change formula so that the quantum mass of D is 1.
4 Replace +∞ by C and send C to +∞ to make it rigorous.

The law of the α-quantum cone is particularly simple
in the cylindrical coordinate.
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α-quantum wedge for α ≤ Q (Seiberg bound)

Fix γ ∈ (0,2), α ≤ Q,
the α-quantum wedge is a γ-LQG surface:

1 Sample a free GFF on H plus −α log | · |.
2 Fix the additive constant by

requiring the circle average around ∂D equals +∞.
3 Rescale the field according to the γ-LQG coordinate

change formula so that the quantum mass of D is 1.
4 Replace +∞ by C and send C to +∞ to make it rigorous.

The law of the α-quantum wedge in the strip coordinate:
Replace Bt − (Q − γ)t in the cone by B2t − (Q − γ)t .
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α-quantum wedge for α ≤ Q (Seiberg bound)
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Weight of Quantum Cones and Wedges

Both quantum cones and wedges are both
one-parameter family of γ-LQG surfaces, parametrized by α.

Let us Introduce a new parametrization
for convenience of stating quantum zipper results.

Fix γ ∈ (0,2), for α ≤ Q
We call W = −2γα+ γ2 + 4
the weight of an α-quantum cone.

We call W = −γα+ γ2 + 2
the weight of an α-quantum wedge.
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Conformal Welding and Quantum Zipper

Theorem (Sheffield, Duplantier-Miller-Sheffield)

Let κ̂ = γ2 ∈ (0,4).
1 Whole Plane SLEκ̂(W − 2) cuts a weight W-cone into a

weight W wedge.
2 A chordal SLEκ̂(W1 − 2;W2 − 2)

cuts a weight W1 + W2 wedge into two independent wedge
of weights W1 and W2 respectively

Let κ = 16/κ̂ = 16/γ2. Duality of SLE gives:
1 η0

R is SLEκ̂(2− κ̂).
2 Conditioning on η0

R, the law of η0
L is chordal

SLEκ̂(−κ̂/2;−κ̂/2) on C \ η0
R.
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Proof of Mating of Trees Theorem

Proof.
Z is self-similar and has stationarity increments of Z
because (h, η) is the infinite volume of something.

Quantum zipper =⇒ Independence
=⇒ Z is Brownian motion.

Covariance of Z is obtained by
computing a rare event using both Z and (h, η).

Z determines (h, η) up to rotations because of
quenched scaling limit of random walk on G,
(or some weaker variant that is sufficient for measurability)
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(Chordal) Percolation Interface
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Loop Ensemble for Monochromatic Bdy Condition
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One-Step Peeling
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A Total Ordering on Edges (Analog to Peano Curve)

16 / 37



Spacing-filling SLEκ for κ ∈ (4,8)

Although chordal SLE6 on (D,a,b) is non-space-filling,

by mimicking the construction in the discrete,

we can construct a continuum version of the total ordering

which gives a space-filling curve as in the κ = 8 case.

We call this curve the spacing-filling SLE6 on (D,a,b).

The same construction works for all κ ∈ (4,8).
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Spacing-filling SLEκ for κ ∈ (4,8)

Space-filling SLEκ for κ ∈ (4,8) is
a major invention of imaginary geometry.

The existence (continuity) is proved in IG-IV.

It is the “envelop” of all other non-space-filling SLEκ,
in the sense that non-space-filling SLEκ are
subordinators of the space-filling one.

If one only cares about solving open questions for κ = 8 using
mating of trees, may not need to look at imaginary geometry.
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Past and Future Relative to a Typical Edge

Q1

Q2

Q3

Q4

P“Past”

“Future”
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Space-filling SLE6: Past/Future at 0

0
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Space-filling SLE6 at Three different times

0

η(t0)

η(t1)
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The Radial SLE6 inside Space-filling SLE6

0
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Mating-of-Trees Theorem for γ ∈ (
√

2,2) and κ ∈ (4,8)

Since we can extend the space-filling SLEκ to κ ≥ [8,∞),

the previous MoT Theorem for γ ∈ (0,
√

2] and κ = 16/γ2 ≥ 8

holds exactly in the same way

for γ ∈ (
√

2,2) and κ = 16/γ2 ∈ (4,8).

When c = 0, γ =
√

8/3 and κ = 6,
the covariance of Z is − cos(4π/κ) = 1/2.
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The Bijection of Bernardi-Holden-S.
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The Bijection of Bernardi-Holden-S.
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