Liouville Quantum Gravity as a Mating of Trees

Xin Sun

¹Columbia Univeristy

²Simons Society of Fellows

June 21, 2019

Lecture 3

- Mating-of-Trees (MoT) for $\gamma \in (0, \sqrt{2}]$ and $\kappa \geq 8$.
- Quantum cone/wedge/zipper and proof of MoT Theorem
- Percolation on uniform random triangulations.
- Mating of trees for $\gamma \in (\sqrt{2}, 2)$ and $\kappa \in (4, 8)$.
- Application to $QLE(\sqrt{8/3}, 0)$ and Cardy embedding.

See the forthcoming survey(s) of Gwynne-Holden-S. for materials that are not covered.

SLE
$$_\kappa$$
 on γ -LQG for $\gamma \in (0,\sqrt{2}]$ and $\kappa = 16/\gamma^2 \geq 8$

- Let *D* be a Jordan domain.
- Let η be a chordal SLE κ on D from $a \in \partial D$ to $b \in \partial D$.
- *h*: GFF on *D* independent of η .
- Let $\mu_h = e^{\gamma h} dx dy$.
- Re-weigh the law of (h, η) by $\mu_h(D)$.
- Sample $z \in D$ according to μ_h .

This setting is not canonical.

(could not be a scaling limit of natural discrete model.)

Blow up (h, η) around *z*: given $n \in \mathbb{N}$

Let $B^n(z)$ be the ball centered at z such that $\mu_h(B^n(z)) = n^{-1}$.

Let ϕ^n be the affine transform that maps $B^n(z)$ to \mathbb{D} (unit disk).

Let μ^n be the pushforward of $n\mu_h$ by ϕ^n so that $\mu^n(\mathbb{D}) = 1$.

Let η^n be the pushforward of η by ϕ^n parameterized by

 $\eta^n(\mathbf{0}) = \mathbf{0}$ and $\mu^n(\eta^n([\mathbf{s}, t])) = t - \mathbf{s} \quad \forall t > \mathbf{s}.$

Lemma

 (μ^n, η^n) weakly converges to (μ, η) .

The law of the limiting measure/curve pair (μ , η):

- There exists a random distribution \tilde{h} which is a particular variant of GFF such that $\mu = e^{\gamma \tilde{h}} dx dy$.
- η is an SLE_κ on C, independent of h̃ if modulo parametrization.
- $\eta(0) = 0$ and $\mu(\eta[s, t]) = t s$ for all t > s.

The law of $\widetilde{\pmb{h}}$: γ -quantum cone

- Sample a whole plane GFF plus $-\gamma \log |\cdot|$.
- ② Fix the additive constant by requiring the circle average around ∂D equals +∞.
- 3 Rescale the field according to the γ-LQG coordinate change formula so that the quantum mass of D is 1.
- Image 0 Replace $+\infty$ by *C* and send *C* to $+\infty$ to make it rigorous.

The law of the limiting measure/curve pair (μ , η):

- There exists a random distribution \tilde{h} which is a particular variant of GFF such that $\mu = e^{\gamma \tilde{h}} dx dy$.
- η is an SLE_κ on C, independent of *h* if modulo parametrization.
- $\eta(0) = 0$ and $\mu(\eta[s, t]) = t s$ for all t > s.

The law of \tilde{h} : γ -quantum cone

- **()** Sample a whole plane GFF plus $-\gamma \log |\cdot|$.
- Pix the additive constant by requiring the circle average around ∂D equals +∞.
- Solution Rescale the field according to the γ -LQG coordinate change formula so that the quantum mass of \mathbb{D} is 1.
- Seplace $+\infty$ by *C* and send *C* to $+\infty$ to make it rigorous.

Boundary Length Process

For a fixed time *t*: η_R^t : the right boundary of $\eta(-\infty, t]$. η_L^t : the left boundary of $\eta(-\infty, t]$.

Let
$$\widetilde{\lambda} = e^{\gamma \widetilde{h}/2} d\lambda$$
 and $Z_t = (L_t, R_t)$ where
 $R_t = \widetilde{\lambda}(\eta_R^t) - \widetilde{\lambda}(\eta_R^0)$ and $L_t = \widetilde{\lambda}(\eta_L^t) - \widetilde{\lambda}(\eta_L^0)$.

γ -LQG Mating-of-Trees Theorem for $\gamma \in (0, \sqrt{2}]$

Theorem (Duplantier-Miller-Sheffield)

Let (μ, η, Z) be defined as before.

- Z is self-similar and has stationary independent increments.
- η as a parameterized curve is determined by Z up to rotations around 0. Equivalently, (η, μ) is determined by Z up to rotations around 0.
- Solution The law of Z is explicit: 2D Brownian motions with covariance $-\cos 4\pi/\kappa$.

the α -quantum cone is the following γ -LQG surface:

- Sample a whole plane GFF plus $-\alpha \log |\cdot|$.
- If ix the additive constant by requiring the circle average around ∂D equals +∞.
- Sescale the field according to the γ-LQG coordinate change formula so that the quantum mass of D is 1.
- **(4)** Replace $+\infty$ by *C* and send *C* to $+\infty$ to make it rigorous.

The law of the α -quantum cone is particularly simple in the cylindrical coordinate.

the α -quantum cone is the following γ -LQG surface:

- Sample a whole plane GFF plus $-\alpha \log |\cdot|$.
- If ix the additive constant by requiring the circle average around ∂D equals +∞.
- Sescale the field according to the γ-LQG coordinate change formula so that the quantum mass of D is 1.
- **(4)** Replace $+\infty$ by *C* and send *C* to $+\infty$ to make it rigorous.

The law of the α -quantum cone is particularly simple in the cylindrical coordinate.

the α -quantum wedge is a γ -LQG surface:

- **O** Sample a free GFF on \mathbb{H} plus $-\alpha \log |\cdot|$.
- Pix the additive constant by requiring the circle average around ∂D equals +∞.
- Sescale the field according to the γ-LQG coordinate change formula so that the quantum mass of D is 1.
- Seplace $+\infty$ by *C* and send *C* to $+\infty$ to make it rigorous.

The law of the α -quantum wedge in the strip coordinate: Replace $B_t - (Q - \gamma)t$ in the cone by $B_{2t} - (Q - \gamma)t$.

the α -quantum wedge is a γ -LQG surface:

- **O** Sample a free GFF on \mathbb{H} plus $-\alpha \log |\cdot|$.
- If ix the additive constant by requiring the circle average around ∂D equals +∞.
- Sescale the field according to the γ-LQG coordinate change formula so that the quantum mass of D is 1.
- Seplace $+\infty$ by *C* and send *C* to $+\infty$ to make it rigorous.

The law of the α -quantum wedge in the strip coordinate: Replace $B_t - (Q - \gamma)t$ in the cone by $B_{2t} - (Q - \gamma)t$.

Weight of Quantum Cones and Wedges

Both quantum cones and wedges are both one-parameter family of γ -LQG surfaces, parametrized by α .

Let us Introduce a new parametrization for convenience of stating quantum zipper results.

Fix
$$\gamma \in (0, 2)$$
, for $\alpha \leq Q$

- We call W = -2γα + γ² + 4 the weight of an α-quantum cone.
- We call W = -γα + γ² + 2 the weight of an α-quantum wedge.

Theorem (Sheffield, Duplantier-Miller-Sheffield)

Let $\widehat{\kappa} = \gamma^2 \in (0, 4)$.

- Whole Plane $SLE_{\hat{\kappa}}(W-2)$ cuts a weight W-cone into a weight W wedge.
- A chordal SLE_k(W₁ 2; W₂ 2) cuts a weight W₁ + W₂ wedge into two independent wedge of weights W₁ and W₂ respectively

Let $\kappa = 16/\hat{\kappa} = 16/\gamma^2$. Duality of SLE gives:

1)
$$\eta_R^0$$
 is SLE _{$\hat{\kappa}$} (2 - $\hat{\kappa}$).

Conditioning on η_R^0 , the law of η_L^0 is chordal $SLE_{\widehat{\kappa}}(-\widehat{\kappa}/2; -\widehat{\kappa}/2)$ on $\mathbb{C} \setminus \eta_R^0$.

Theorem (Sheffield, Duplantier-Miller-Sheffield)

Let $\widehat{\kappa} = \gamma^2 \in (0, 4)$.

- Whole Plane $SLE_{\hat{\kappa}}(W-2)$ cuts a weight W-cone into a weight W wedge.
- A chordal SLE_k(W₁ 2; W₂ 2) cuts a weight W₁ + W₂ wedge into two independent wedge of weights W₁ and W₂ respectively

Let $\kappa = 16/\hat{\kappa} = 16/\gamma^2$. Duality of SLE gives:

$$\ \, \mathbf{0} \ \, \eta_{R}^{\mathbf{0}} \text{ is SLE}_{\widehat{\kappa}}(\mathbf{2}-\widehat{\kappa}).$$

2 Conditioning on η_R^0 , the law of η_L^0 is chordal $SLE_{\widehat{\kappa}}(-\widehat{\kappa}/2; -\widehat{\kappa}/2)$ on $\mathbb{C} \setminus \eta_R^0$.

- Z is self-similar and has stationarity increments of Z because (h, η) is the infinite volume of something.
- Quantum zipper \implies Independence $\implies Z$ is Brownian motion.
- Covariance of Z is obtained by computing a rare event using both Z and (h, η).
- Z determines (h, η) up to rotations because of quenched scaling limit of random walk on G, (or some weaker variant that is sufficient for measurability)

- Z is self-similar and has stationarity increments of Z because (h, η) is the infinite volume of something.
- Quantum zipper \implies Independence $\implies Z$ is Brownian motion.
- Covariance of Z is obtained by computing a rare event using both Z and (h, η).
- Z determines (h, η) up to rotations because of quenched scaling limit of random walk on G, (or some weaker variant that is sufficient for measurability)

- Z is self-similar and has stationarity increments of Z because (h, η) is the infinite volume of something.
- Quantum zipper \implies Independence $\implies Z$ is Brownian motion.
- Covariance of Z is obtained by computing a rare event using both Z and (h, η).
- Z determines (h, η) up to rotations because of quenched scaling limit of random walk on G, (or some weaker variant that is sufficient for measurability)

- Z is self-similar and has stationarity increments of Z because (h, η) is the infinite volume of something.
- Quantum zipper \implies Independence $\implies Z$ is Brownian motion.
- Covariance of Z is obtained by computing a rare event using both Z and (h, η).
- Z determines (h, η) up to rotations because of quenched scaling limit of random walk on G, (or some weaker variant that is sufficient for measurability)

(Chordal) Percolation Interface

Loop Ensemble for Monochromatic Bdy Condition

One-Step Peeling

A Total Ordering on Edges (Analog to Peano Curve)

Although chordal SLE_6 on (D, a, b) is non-space-filling,

by mimicking the construction in the discrete,

we can construct a continuum version of the total ordering

which gives a space-filling curve as in the $\kappa = 8$ case.

We call this curve the spacing-filling SLE_6 on (D, a, b).

The same construction works for all $\kappa \in (4, 8)$.

Space-filling SLE_{κ} for $\kappa \in (4, 8)$ is a major invention of imaginary geometry.

The existence (continuity) is proved in IG-IV.

It is the "envelop" of all other non-space-filling SLE_{κ} , in the sense that non-space-filling SLE_{κ} are subordinators of the space-filling one.

If one only cares about solving open questions for $\kappa = 8$ using mating of trees, may not need to look at imaginary geometry.

Space-filling SLE_{κ} for $\kappa \in (4, 8)$ is a major invention of imaginary geometry.

The existence (continuity) is proved in IG-IV.

It is the "envelop" of all other non-space-filling SLE_{κ} , in the sense that non-space-filling SLE_{κ} are subordinators of the space-filling one.

If one only cares about solving open questions for $\kappa = 8$ using mating of trees, may not need to look at imaginary geometry.

Past and Future Relative to a Typical Edge

Space-filling SLE₆: Past/Future at 0

Space-filling SLE₆ at Three different times

The Radial SLE₆ inside Space-filling SLE₆

Mating-of-Trees Theorem for $\gamma \in (\sqrt{2}, 2)$ and $\kappa \in (4, 8)$

Since we can extend the space-filling SLE_{κ} to $\kappa \ge [8, \infty)$,

the previous MoT Theorem for $\gamma \in (\mathbf{0},\sqrt{2}]$ and $\kappa = \mathbf{16}/\gamma^2 \geq \mathbf{8}$

holds exactly in the same way

for
$$\gamma \in (\sqrt{2}, 2)$$
 and $\kappa = 16/\gamma^2 \in (4, 8)$.

When $c = 0, \gamma = \sqrt{8/3}$ and $\kappa = 6$, the covariance of Z is $-\cos(4\pi/\kappa) = 1/2$.

Mating-of-Trees Theorem for $\gamma \in (\sqrt{2}, 2)$ and $\kappa \in (4, 8)$

Since we can extend the space-filling SLE_{κ} to $\kappa \ge [8, \infty)$,

the previous MoT Theorem for $\gamma \in (\mathbf{0},\sqrt{2}]$ and $\kappa = \mathbf{16}/\gamma^2 \geq \mathbf{8}$

holds exactly in the same way

for
$$\gamma \in (\sqrt{2}, 2)$$
 and $\kappa = 16/\gamma^2 \in (4, 8)$.

When c = 0, $\gamma = \sqrt{8/3}$ and $\kappa = 6$, the covariance of Z is $-\cos(4\pi/\kappa) = 1/2$.

The Bijection of Bernardi-Holden-S.

The Bijection of Bernardi-Holden-S.

t = 10

