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@ Mating-of-Trees (MoT) for v € (0,v/2] and x > 8.

@ Quantum cone/wedge/zipper and proof of MoT Theorem
@ Percolation on uniform random triangulations.

@ Mating of trees for y € (v/2,2) and k € (4, 8).

@ Application to QLE(,/8/3,0) and Cardy embedding.

See the forthcoming survey(s) of Gwynne-Holden-S.
for materials that are not covered.



SLE, on y-LQG for v € (0,v/2] and x = 16/+° > 8

Let D be a Jordan domain.

Let n be a chordal SLE x on D from a€ dDto b € 9D.

h: GFF on D independent of 7.

Let up = €""dxdy.

Re-weigh the law of (h,n) by un(D).

@ Sample z € D according to pp.

This setting is not canonical.
(could not be a scaling limit of natural discrete model.)



Infinite Volume Setting

Blow up (h,7n) around z: given n € N

Let B"(z) be the ball centered at z such that p,(B"(2)) = n~".
Let ¢" be the affine transform that maps B"(z) to D (unit disk).
Let 1" be the pushforward of nuj, by ¢” so that 1"(D) = 1.

Let n" be the pushforward of n by ¢” parameterized by

n"(0)=0 and p"(n"([s,f])) =t—s Vt>s.

(1", n™) weakly converges to (u,n).




The law of the limiting measure/curve pair (u,n):
@ There exists a random distribution hwhich is a particular
variant of GFF such that 1 = €""dxdy.

@ nisan SLE, on C,
independent of h if modulo parametrization.

@ 1(0) =0and u(n[s,t]) =t —sforall t > s.



The law of the limiting measure/curve pair (u,n):
@ There exists a random distribution hwhich is a particular
variant of GFF such that 1 = €""dxdy.

@ nisan SLE, on C,
independent of h if modulo parametrization.

@ 1(0) =0and u(n[s,t]) =t —sforall t > s.

The law of h: v-quantum cone
@ Sample a whole plane GFF plus —vlog | - |.

© Fix the additive constant by
requiring the circle average around 0D equals +oc.

© Rescale the field according to the v-LQG coordinate
change formula so that the quantum mass of D is 1.

Q Replace +oo by C and send C to +oo to make it rigorous.
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Boundary Length Process

For a fixed time t:
nk: the right boundary of 7(—oo, t].
ni: the left boundary of n(—oo, t].

Let X = e7/2d) and Z; = (L, R;) where

Ri = A(nk) — A(n%) and Ly = X(nf) — A(nD).




v-LQG Mating-of-Trees Theorem for v € (0,v/2]

Theorem (Duplantier-Miller-Sheffield)
Let (i, n,Z) be defined as before.

@ Z is self-similar and has stationary independent
increments.

© 1 as a parameterized curve is determined by Z up to
rotations around 0. Equivalently, (n, 1) is determined by Z
up to rotations around O.

© The law of Z is explicit:
2D Brownian motions with covariance — cos 47 /.




a-quantum cone for a < Q (Seiberg bound)

Fix v € (0,2),a < Q,
the a-quantum cone is the following v-LQG surface:
@ Sample a whole plane GFF plus —alog| - |.

@ Fix the additive constant by
requiring the circle average around 0D equals +cc.

© Rescale the field according to the v-LQG coordinate
change formula so that the quantum mass of D is 1.

© Replace +oo by C and send C to +oo to make it rigorous.



a-quantum cone for a < Q (Seiberg bound)

Fix v € (0,2),a < Q,
the a-quantum cone is the following v-LQG surface:
@ Sample a whole plane GFF plus —alog| - |.

@ Fix the additive constant by
requiring the circle average around 0D equals +cc.

© Rescale the field according to the v-LQG coordinate
change formula so that the quantum mass of D is 1.

© Replace +oo by C and send C to +oo to make it rigorous.

The law of the a-quantum cone is particularly simple
in the cylindrical coordinate.



a-quantum wedge for a < Q (Seiberg bound)

Fix v € (0,2),a < Q,
the a-quantum wedge is a v-LQG surface:
@ Sample a free GFF on H plus —«/log | - |.

@ Fix the additive constant by
requiring the circle average around 0D equals +oc.

© Rescale the field according to the v-LQG coordinate
change formula so that the quantum mass of D is 1.

© Replace +oo by C and send C to +oo to make it rigorous.



a-quantum wedge for a < Q (Seiberg bound)

Fix v € (0,2),a < Q,
the a-quantum wedge is a v-LQG surface:
@ Sample a free GFF on H plus —«/log | - |.

@ Fix the additive constant by
requiring the circle average around 0D equals +oc.

© Rescale the field according to the v-LQG coordinate
change formula so that the quantum mass of D is 1.

© Replace +oo by C and send C to +oo to make it rigorous.

The law of the a-quantum wedge in the strip coordinate:
Replace B; — (Q — v)t in the cone by B>y — (Q — 7)t.



Weight of Quantum Cones and Wedges

Both quantum cones and wedges are both
one-parameter family of v-LQG surfaces, parametrized by «.

Let us Introduce a new parametrization
for convenience of stating quantum zipper results.

Fix v € (0,2),fora < Q

@ Wecall W=—-2va+~2+4
the weight of an a-quantum cone.

@ Wecal W=—ya++%+2
the weight of an a-quantum wedge.
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Conformal Welding and Quantum Zipper

Theorem (Sheffield, Duplantier-Miller-Sheffield)
Letk = ~2 € (0,4).
@ Whole Plane SLE;(W — 2) cuts a weight W-cone into a
weight W wedge.
@ A chordal SLE;(W; — 2; W, — 2)
cuts a weight Wy + W, wedge into two independent wedge
of weights Wy and W, respectively
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Conformal Welding and Quantum Zipper

Theorem (Sheffield, Duplantier-Miller-Sheffield)
Letk = ~2 € (0,4).
@ Whole Plane SLE;(W — 2) cuts a weight W-cone into a
weight W wedge.
@ A chordal SLE;(W; — 2; W, — 2)
cuts a weight Wy + W, wedge into two independent wedge
of weights Wy and W, respectively

Let x = 16/% = 16/~2. Duality of SLE gives:
@ 1% is SLEx(2 - 7).
@ Conditioning on 7%, the law of ? is chordal
SLEx(~#/2; —#/2) on C \ .
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Proof of Mating of Trees Theorem

@ Zis self-similar and has stationarity increments of Z
because (h,n) is the infinite volume of something.
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Proof of Mating of Trees Theorem

@ Zis self-similar and has stationarity increments of Z
because (h,n) is the infinite volume of something.

@ Quantum zipper = Independence
= Z is Brownian motion.

@ Covariance of Z is obtained by
computing a rare event using both Z and (h, n).

@ Z determines (h,n) up to rotations because of
quenched scaling limit of random walk on G,
(or some weaker variant that is sufficient for measurability)

O
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One-Step Peeling
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A Total Ordering on Edges (Analog to Peano Curve)
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Spacing-filling SLE,. for x < (4,8)

Although chordal SLEg on (D, a, b) is non-space-filling,

by mimicking the construction in the discrete,

we can construct a continuum version of the total ordering
which gives a space-filling curve as in the x = 8 case.

We call this curve the spacing-filling SLEg on (D, a, b).

The same construction works for all x € (4, 8).
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Spacing-filling SLE,. for x < (4,8)

Space-filling SLE,, for x € (4,8) is
a major invention of imaginary geometry.

The existence (continuity) is proved in IG-IV.

It is the “envelop” of all other non-space-filling SLE,,
in the sense that non-space-filling SLE,; are
subordinators of the space-filling one.
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Spacing-filling SLE,. for x < (4,8)

Space-filling SLE,, for x € (4,8) is
a major invention of imaginary geometry.

The existence (continuity) is proved in IG-IV.

It is the “envelop” of all other non-space-filling SLE,,
in the sense that non-space-filling SLE,; are
subordinators of the space-filling one.

If one only cares about solving open questions for x = 8 using
mating of trees, may not need to look at imaginary geometry.
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Past and Future Relative to a Typical Edge

“Future”
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The Radial SLEg inside Space-filling SLEg




Mating-of-Trees Theorem for v € (v/2,2) and « € (4,8)

Since we can extend the space-filling SLE,, to x > [8, o0),
the previous MoT Theorem for v € (0,v2] and k = 16/72 > 8
holds exactly in the same way

for v € (v2,2) and k = 16/42 € (4, 8).
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Mating-of-Trees Theorem for v € (v/2,2) and « € (4,8)

Since we can extend the space-filling SLE,, to x > [8, o0),
the previous MoT Theorem for v € (0,v2] and k = 16/72 > 8
holds exactly in the same way

for v € (v2,2) and k = 16/42 € (4, 8).

When ¢ =0,y = ,/8/3 and xk = 6,
the covariance of Z is —cos(4n/k) = 1/2.
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The Bijection of Bernardi-Holden-S.
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The Bijection of Bernardi-Holden-S.
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