Interplay between Loewner and Dirichlet energies:

conformal welding & flow-lines (joint with F. Viklund)

Yilin Wang (ETH ZÜRICH)

 $\operatorname{PorQUEROLLES},\ 20\ June\ 2019$

Welding identity

Flow-line identity

 $\mathsf{SLE}/\mathsf{GFF}\ \mathsf{discussion}$

 The Loewner energy (introduced in 2016) *I^L(η)* of a Jordan curve η ⊂ Ĉ = C ∪ {∞} is defined as the Dirichlet energy of its Loewner driving function *W*.

$$I^L(\eta) := rac{1}{2} \int_{-\infty}^{\infty} W'(t)^2 dt.$$

 \implies It is invariant under Möbius transformation (fraction linear transformation $z \mapsto \frac{az+b}{cz+d}$ of $\hat{\mathbb{C}}$).

 \implies It is non negative, and equal to 0 iff η is a circle. It measures how round a Jordan curve is.

 The Loewner energy is the action functional/large deviation rate function of SLE_κ with vanishing κ.

 The Loewner energy (introduced in 2016) *I^L(η)* of a Jordan curve η ⊂ Ĉ = C ∪ {∞} is defined as the Dirichlet energy of its Loewner driving function *W*.

$$I^L(\eta) := rac{1}{2} \int_{-\infty}^\infty W'(t)^2 dt.$$

 \implies It is invariant under Möbius transformation (fraction linear transformation $z \mapsto \frac{az+b}{cz+d}$ of $\hat{\mathbb{C}}$).

 \implies It is non negative, and equal to 0 iff η is a circle. It measures how round a Jordan curve is.

 The Loewner energy is the action functional/large deviation rate function of SLE_κ with vanishing κ. The Loewner energy (introduced in 2016) *I^L(η)* of a Jordan curve η ⊂ Ĉ = C ∪ {∞} is defined as the Dirichlet energy of its Loewner driving function *W*.

$$I^L(\eta) := rac{1}{2} \int_{-\infty}^\infty W'(t)^2 dt.$$

 \implies It is invariant under Möbius transformation (fraction linear transformation $z \mapsto \frac{az+b}{cz+d}$ of $\hat{\mathbb{C}}$).

 \implies It is non negative, and equal to 0 iff η is a circle. It measures how round a Jordan curve is.

 The Loewner energy is the action functional/large deviation rate function of SLE_κ with vanishing κ.

- Similarly, the Dirichlet energy of functions φ defined on D ⊂ C is the action functional/large deviation rate function of (a small parameter γ times) the Gaussian free field (GFF).
- This talk: there is a nice interplay between Loewner energy and Dirichlet energy of functions in $\mathcal{E}(D)$ which is reminiscent to SLE/Gaussian free field (GFF) couplings pioneered by Sheffield and Dubédat.
- Our results are purely analytic.

- Similarly, the Dirichlet energy of functions φ defined on D ⊂ C is the action functional/large deviation rate function of (a small parameter γ times) the Gaussian free field (GFF).
- This talk: there is a nice interplay between Loewner energy and Dirichlet energy of functions in $\mathcal{E}(D)$ which is reminiscent to SLE/Gaussian free field (GFF) couplings pioneered by Sheffield and Dubédat.
- Our results are purely analytic.

- Similarly, the Dirichlet energy of functions φ defined on D ⊂ C is the action functional/large deviation rate function of (a small parameter γ times) the Gaussian free field (GFF).
- This talk: there is a nice interplay between Loewner energy and Dirichlet energy of functions in $\mathcal{E}(D)$ which is reminiscent to SLE/Gaussian free field (GFF) couplings pioneered by Sheffield and Dubédat.
- Our results are purely analytic.

The Loewner energy

Let
$$D \subset \mathbb{C}$$
 be a domain. For $\varphi \in W^{1,2}_{loc}(D)$, we write
 $\mathcal{D}_D(\varphi) := rac{1}{\pi} \int_D |\nabla \varphi(z)|^2 dz^2.$

Theorem (or definition) [W. 2018]

If η passes through $\infty,$ we have the identity

$$I^L(\eta) = \mathcal{D}_{\mathbb{H}}(\log |f'|) + \mathcal{D}_{\mathbb{H}^*}(\log |g'|).$$

In this talk we assume all finite energy curves pass through ∞ . All results also have a version for bounded curve (even for statements that are not Möbius invariant).

The Loewner energy

Let
$$D \subset \mathbb{C}$$
 be a domain. For $\varphi \in W^{1,2}_{loc}(D)$, we write
 $\mathcal{D}_D(\varphi) := rac{1}{\pi} \int_D |
abla \varphi(z)|^2 \, dz^2.$

Theorem (or definition) [W. 2018]

If η passes through $\infty,$ we have the identity

$$I^L(\eta) = \mathcal{D}_{\mathbb{H}}(\log |f'|) + \mathcal{D}_{\mathbb{H}^*}(\log |g'|).$$

In this talk we assume all finite energy curves pass through ∞ . All results also have a version for bounded curve (even for statements that are not Möbius invariant).

- *I^L*(η) is finite if and only if η is a Weil-Petersson quasicircle [W. 2018]. Nag, Verjovsky, Sullivan, Cui, Taktajan, Teo, Shen, Bishop etc. provided many (≈ 20) equivalent characterizations of it.
- They are asymptotically smooth. That is, chord-arc with local constant 1: for all x, y on the curve, the shorter arc η_{x,y} between x and y satisfies

$$\lim_{|x-y|\to 0} \operatorname{length}(\eta_{x,y})/|x-y| = 1.$$

- They are NOT C¹ and may exhibit slow spirals.
- Being $C^{3/2+\varepsilon} \implies$ finite energy.

- *I^L*(η) is finite if and only if η is a Weil-Petersson quasicircle [W. 2018]. Nag, Verjovsky, Sullivan, Cui, Taktajan, Teo, Shen, Bishop etc. provided many (≈ 20) equivalent characterizations of it.
- They are asymptotically smooth. That is, chord-arc with local constant 1: for all x, y on the curve, the shorter arc η_{x,y} between x and y satisfies

$$\lim_{|x-y|\to 0} \operatorname{length}(\eta_{x,y})/|x-y| = 1.$$

- They are NOT C¹ and may exhibit slow spirals.
- Being $C^{3/2+\varepsilon} \implies$ finite energy.

- *I^L*(η) is finite if and only if η is a Weil-Petersson quasicircle [W. 2018]. Nag, Verjovsky, Sullivan, Cui, Taktajan, Teo, Shen, Bishop etc. provided many (≈ 20) equivalent characterizations of it.
- They are asymptotically smooth. That is, chord-arc with local constant 1: for all x, y on the curve, the shorter arc η_{x,y} between x and y satisfies

$$\lim_{|x-y|\to 0} \operatorname{length}(\eta_{x,y})/|x-y| = 1.$$

- They are NOT C^1 and may exhibit slow spirals.
- Being $C^{3/2+\varepsilon} \implies$ finite energy.

- *I^L*(η) is finite if and only if η is a Weil-Petersson quasicircle [W. 2018]. Nag, Verjovsky, Sullivan, Cui, Taktajan, Teo, Shen, Bishop etc. provided many (≈ 20) equivalent characterizations of it.
- They are asymptotically smooth. That is, chord-arc with local constant 1: for all x, y on the curve, the shorter arc η_{x,y} between x and y satisfies

$$\lim_{|x-y|\to 0} \operatorname{length}(\eta_{x,y})/|x-y| = 1.$$

- They are NOT C^1 and may exhibit slow spirals.
- Being $C^{3/2+\varepsilon} \implies$ finite energy.

Welding identity

Cutting identity

Let $\varphi \in \mathcal{E}(\mathbb{C}) \subset W^{1,2}_{loc}(\mathbb{C})$, f, g conformal maps from \mathbb{H}, \mathbb{H}^* onto H, H^* fixing ∞ .

We have $e^{2\varphi} \in L^1_{loc}(\mathbb{C})$ and the transformation law:

 $u(z) = \varphi \circ f(z) + \log |f'(z)|, \quad v(z) = \varphi \circ g(z) + \log |g'(z)|,$

such that $e^{2u}dz^2 = f^*(e^{2\varphi}dz^2)$, $e^{2v}dz^2 = g^*(e^{2\varphi}dz^2)$.

Theorem (cutting) We have the identity $\mathcal{D}_{\mathbb{C}}(\varphi) + I^{L}(\eta) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v)$

Cutting identity

Let $\varphi \in \mathcal{E}(\mathbb{C}) \subset W^{1,2}_{loc}(\mathbb{C})$, f, g conformal maps from \mathbb{H}, \mathbb{H}^* onto H, H^* fixing ∞ .

We have $e^{2\varphi} \in L^1_{loc}(\mathbb{C})$ and the transformation law:

 $u(z) = \varphi \circ f(z) + \log |f'(z)|, \quad v(z) = \varphi \circ g(z) + \log |g'(z)|,$

such that $e^{2u}dz^2 = f^*(e^{2\varphi}dz^2)$, $e^{2v}dz^2 = g^*(e^{2\varphi}dz^2)$.

Theorem (cutting) We have the identity $\mathcal{D}_{\mathbb{C}}(arphi) + l^L(\eta) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^*}(v)$

Cutting identity

Let $\varphi \in \mathcal{E}(\mathbb{C}) \subset W^{1,2}_{loc}(\mathbb{C})$, f, g conformal maps from \mathbb{H}, \mathbb{H}^* onto H, H^* fixing ∞ .

We have $e^{2\varphi} \in L^1_{loc}(\mathbb{C})$ and the transformation law:

 $u(z) = \varphi \circ f(z) + \log |f'(z)|, \quad v(z) = \varphi \circ g(z) + \log |g'(z)|,$

such that $e^{2u}dz^2 = f^*(e^{2\varphi}dz^2)$, $e^{2v}dz^2 = g^*(e^{2\varphi}dz^2)$.

Theorem (cutting)

We have the identity $\mathcal{D}_{\mathbb{C}}(\varphi) + I^{L}(\eta) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v).$

SLE/GFF $\gamma := \sqrt{\kappa}$	Finite energy
SLE_{κ} loop.	Finite energy Jordan curve, η .
Free boundary GFF $\gamma \Phi$ on \mathbb{H} (on \mathbb{C}).	$2u, u \in \mathcal{E}(\mathbb{H}) \ (2\varphi, \varphi \in \mathcal{E}(\mathbb{C})).$
$\gamma ext{-}LQG$ on quantum plane $pprox e^{\gamma\Phi}dz^2.$	$e^{2arphi} dz^2, arphi \in \mathcal{E}(\mathbb{C}).$
$\gamma ext{-}LQG$ on quantum half-plane on $\mathbb H$	$e^{2u}dz^2, \ u \in \mathcal{E}(\mathbb{H}).$
SLE_{κ} cuts an independent	Finite energy η cuts $arphi \in \mathcal{E}(\mathbb{C})$
quantum plane $e^{\gamma \Phi}$ into	into $u\in \mathcal{E}(\mathbb{H}), v\in \mathcal{E}(\mathbb{H}^*)$ and
ind. quantum half-planes $e^{\gamma \Phi_1}, e^{\gamma \Phi_2}$.	$I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v).$

SLE/GFF \Rightarrow one may expect that under appropriate topology and for small κ ,

"P(SLE_{κ} loop stays close to η , $\sqrt{\kappa}\Phi$ stays close to 2φ) = P($\sqrt{\kappa}\Phi_1$ stays close to 2u, $\sqrt{\kappa}\Phi_2$ stays close to 2v)"

SLE/GFF $\gamma := \sqrt{\kappa}$	Finite energy
SLE_{κ} loop.	Finite energy Jordan curve, η .
Free boundary GFF $\gamma \Phi$ on \mathbb{H} (on \mathbb{C}).	$2u, u \in \mathcal{E}(\mathbb{H}) \ (2\varphi, \varphi \in \mathcal{E}(\mathbb{C})).$
$\gamma ext{-}LQG$ on quantum plane $pprox e^{\gamma\Phi}dz^2.$	$e^{2arphi} dz^2, arphi \in \mathcal{E}(\mathbb{C}).$
$\gamma ext{-LQG}$ on quantum half-plane on $\mathbb H$	$e^{2u}dz^2, \ u \in \mathcal{E}(\mathbb{H}).$
SLE_{κ} cuts an independent	Finite energy η cuts $arphi \in \mathcal{E}(\mathbb{C})$
quantum plane $e^{\gamma \Phi}$ into	into $u\in \mathcal{E}(\mathbb{H}), v\in \mathcal{E}(\mathbb{H}^*)$ and
ind. quantum half-planes $e^{\gamma \Phi_1}, e^{\gamma \Phi_2}$.	$I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v).$

 ${\sf SLE}/{\sf GFF}$ \Rightarrow one may expect that under appropriate topology and for small $\kappa,$

"P(SLE_{κ} loop stays close to η , $\sqrt{\kappa}\Phi$ stays close to 2φ) = P($\sqrt{\kappa}\Phi_1$ stays close to 2u, $\sqrt{\kappa}\Phi_2$ stays close to 2v)"

From the large deviation principle and the independence of SLE and $\Phi,$ one expects

 $\lim_{\kappa \to 0} -\kappa \log P(\mathsf{SLE}_{\kappa} \text{ stays close to } \eta, \sqrt{\kappa} \Phi \text{ stays close to } 2\varphi)$

- $= \lim_{\kappa \to 0} -\kappa \log P(\mathsf{SLE}_{\kappa} \text{ stays close to } \eta) + \lim_{\kappa \to 0} -\kappa \log P(\sqrt{\kappa} \Phi \text{ stays close to } 2\varphi)$
- $= I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi).$

Similarly, the independence between Φ_1 and Φ_2 gives

$$\begin{split} &\lim_{\kappa \to 0} -\kappa \log \mathrm{P}(\sqrt{\kappa} \Phi_1 \text{ stays close to } 2u, \sqrt{\kappa} \Phi_2 \text{ stays close to } 2v) \\ &= \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^*}(v). \end{split}$$

 $\implies l^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v).$

Conversely, one expects the density of an independent couple (SLE_{κ}, $\sqrt{\kappa}$ GFF) has density

 $f(\eta, \varphi) \propto \exp(-l^{\mathcal{L}}(\eta)/\kappa) \exp(-\mathcal{D}_{\mathbb{C}}(\varphi)/\kappa),$

From the large deviation principle and the independence of SLE and $\boldsymbol{\Phi},$ one expects

 $\lim_{\kappa \to 0} -\kappa \log P(\mathsf{SLE}_{\kappa} \text{ stays close to } \eta, \sqrt{\kappa} \Phi \text{ stays close to } 2\varphi)$

 $= \lim_{\kappa \to 0} -\kappa \log P(\mathsf{SLE}_{\kappa} \text{ stays close to } \eta) + \lim_{\kappa \to 0} -\kappa \log P(\sqrt{\kappa}\Phi \text{ stays close to } 2\varphi)$

 $= I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi).$

Similarly, the independence between Φ_1 and Φ_2 gives

$$\begin{split} &\lim_{\kappa \to 0} -\kappa \log \mathbb{P}(\sqrt{\kappa} \Phi_1 \text{ stays close to } 2u, \sqrt{\kappa} \Phi_2 \text{ stays close to } 2v) \\ &= \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^*}(v). \end{split}$$

 $\implies l^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v).$

Conversely, one expects the density of an independent couple (SLE_{κ}, $\sqrt{\kappa}$ GFF) has density

 $f(\eta, \varphi) \propto \exp(-l^{\mathcal{L}}(\eta)/\kappa) \exp(-\mathcal{D}_{\mathbb{C}}(\varphi)/\kappa),$

From the large deviation principle and the independence of SLE and $\boldsymbol{\Phi},$ one expects

 $\lim_{\kappa \to 0} -\kappa \log P(\mathsf{SLE}_{\kappa} \text{ stays close to } \eta, \sqrt{\kappa} \Phi \text{ stays close to } 2\varphi)$

 $= \lim_{\kappa \to 0} -\kappa \log P(\mathsf{SLE}_{\kappa} \text{ stays close to } \eta) + \lim_{\kappa \to 0} -\kappa \log P(\sqrt{\kappa}\Phi \text{ stays close to } 2\varphi)$ $= I^{L}(\eta) + \mathcal{D}_{\mathbb{P}}(\varphi).$

Similarly, the independence between Φ_1 and Φ_2 gives

$$\begin{split} &\lim_{\kappa \to 0} -\kappa \log \mathbb{P}(\sqrt{\kappa} \Phi_1 \text{ stays close to } 2u, \sqrt{\kappa} \Phi_2 \text{ stays close to } 2v) \\ &= \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^*}(v). \end{split}$$

 $\implies I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v).$

Conversely, one expects the density of an independent couple (SLE_{κ}, $\sqrt{\kappa}$ GFF) has density

 $f(\eta, \varphi) \propto \exp(-l^{\mathcal{L}}(\eta)/\kappa) \exp(-\mathcal{D}_{\mathbb{C}}(\varphi)/\kappa),$

From the large deviation principle and the independence of SLE and $\boldsymbol{\Phi},$ one expects

 $\lim_{\kappa \to 0} -\kappa \log P(\mathsf{SLE}_{\kappa} \text{ stays close to } \eta, \sqrt{\kappa} \Phi \text{ stays close to } 2\varphi)$

 $= \lim_{\kappa \to 0} -\kappa \log P(\mathsf{SLE}_{\kappa} \text{ stays close to } \eta) + \lim_{\kappa \to 0} -\kappa \log P(\sqrt{\kappa} \Phi \text{ stays close to } 2\varphi)$ $= I^{L}(n) + \mathcal{D}_{\mathcal{P}}(\varphi).$

Similarly, the independence between Φ_1 and Φ_2 gives

$$\begin{split} \lim_{\kappa \to 0} &-\kappa \log \mathrm{P}(\sqrt{\kappa} \Phi_1 \text{ stays close to } 2u, \sqrt{\kappa} \Phi_2 \text{ stays close to } 2v) \\ &= \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^*}(v). \\ \implies & I^L(\eta) + \mathcal{D}_{\mathbb{P}}(\varphi) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^*}(v). \end{split}$$

Conversely, one expects the density of an independent couple (SLE_{κ}, $\sqrt{\kappa}$ GFF) has density

$$f(\eta, \varphi) \propto \exp(-l^{L}(\eta)/\kappa) \exp(-\mathcal{D}_{\mathbb{C}}(\varphi)/\kappa),$$

Our proof of the identity:

Assume that η and φ are smooth.

$$egin{split} \mathcal{D}_{\mathbb{H}}(u) &= \mathcal{D}_{\mathbb{H}}(arphi \circ f) + \mathcal{D}_{\mathbb{H}}(\log|f'|) + rac{1}{\pi}\int_{\mathbb{H}}
abla (\log|f'|) \cdot
abla (\varphi \circ f) dz^2 \ &= \mathcal{D}_{H}(arphi) + \mathcal{D}_{\mathbb{H}}(\log|f'|) + rac{1}{\pi}\int_{\mathbb{H}}
abla (\log|f'|) \cdot
abla (\varphi \circ f) dz^2. \end{split}$$

Adding $\mathcal{D}_{\mathbb{H}^*}(v)$ the first two terms sum up to $\mathcal{D}_{\mathbb{C}}(\varphi) + I^{\mathcal{L}}(\eta)$, and the cross terms sum up to 0 since

$$\int_{\mathbb{H}} \nabla (\log |f'|) \cdot \nabla (\varphi \circ f) dz^2 = \int_{\mathbb{R}} (\partial_n \log |f'|) \varphi \circ f(x) dx$$
$$= \int_{\mathbb{R}} k(f(x)) |f'(x)| \varphi \circ f(x) dx$$
$$= \int_{\partial H} k(y) \varphi(y) dy = -\int_{\partial H^*} k(y) \varphi(y) dy. \quad \Box$$

Our proof of the identity:

Assume that η and φ are smooth.

$$\mathcal{D}_{\mathbb{H}}(u) = \mathcal{D}_{\mathbb{H}}(\varphi \circ f) + \mathcal{D}_{\mathbb{H}}(\log |f'|) + rac{1}{\pi} \int_{\mathbb{H}} \nabla(\log |f'|) \cdot \nabla(\varphi \circ f) dz^2$$

 $= \mathcal{D}_{H}(\varphi) + \mathcal{D}_{\mathbb{H}}(\log |f'|) + rac{1}{\pi} \int_{\mathbb{H}} \nabla(\log |f'|) \cdot \nabla(\varphi \circ f) dz^2.$

Adding $\mathcal{D}_{\mathbb{H}^*}(v)$ the first two terms sum up to $\mathcal{D}_{\mathbb{C}}(\varphi) + I^L(\eta)$, and the cross terms sum up to 0 since

$$\begin{split} \int_{\mathbb{H}} \nabla(\log |f'|) \cdot \nabla(\varphi \circ f) dz^2 &= \int_{\mathbb{R}} (\partial_n \log |f'|) \varphi \circ f(x) dx \\ &= \int_{\mathbb{R}} k(f(x)) |f'(x)| \varphi \circ f(x) dx \\ &= \int_{\partial H} k(y) \varphi(y) dy = - \int_{\partial H^*} k(y) \varphi(y) dy. \quad \Box \end{split}$$

Now let $u \in \mathcal{E}(\mathbb{H})$, $v \in \mathcal{E}(\mathbb{H}^*)$. The traces of $u, v \in H^{1/2}(\mathbb{R})$. We have $e^u, e^v \in L^1_{loc}(\mathbb{R})$ defines two boundary measures $d\mu = e^u dx, d\nu = e^v dx$.

Lemma

We define h(0) = 0, and h(x) :=

$$\begin{cases} \inf \{y \ge 0 : \mu[0, x] = \nu[0, y]\} & \text{if } x > 0; \\ -\inf \{y \ge 0 : \mu[x, 0] = \nu[-y, 0]\} & \text{if } x < 0. \end{cases}$$

Then h is a quasisymmetric homeomorphism. Moreover, $\log h' \in H^{1/2}(\mathbb{R})$.

Welding problem

We say that the triple (η, f, g) is a normalized solution to the conformal welding problem for h if

- η is Jordan curve in $\hat{\mathbb{C}}$ passing through 0, 1, $\infty;$
- $f:\mathbb{H} \to H$ is the conformal map fixing $0,1,\infty;$
- $g: \mathbb{H}^* o H^*$ is conformal and $g^{-1} \circ f = h$ on \mathbb{R} ,

It is well-known that if h is quasisymmetric, then the normalized solution is unique and η is a quasicircle in $\hat{\mathbb{C}}$.

Theorem (Shen-Tang-Wu '18)

 η is Weil-Petersson quasicircle if and only if $\log h' \in H^{1/2}(\mathbb{R})$.

Welding problem

We say that the triple (η, f, g) is a normalized solution to the conformal welding problem for h if

- η is Jordan curve in $\hat{\mathbb{C}}$ passing through 0, 1, $\infty;$
- $f:\mathbb{H} \to H$ is the conformal map fixing $0,1,\infty;$
- $g: \mathbb{H}^* o H^*$ is conformal and $g^{-1} \circ f = h$ on \mathbb{R} ,

It is well-known that if h is quasisymmetric, then the normalized solution is unique and η is a quasicircle in $\hat{\mathbb{C}}$.

```
Theorem (Shen-Tang-Wu '18)
```

 η is Weil-Petersson quasicircle if and only if $\log h' \in \mathsf{H}^{1/2}(\mathbb{R}).$

Welding problem

We say that the triple (η, f, g) is a normalized solution to the conformal welding problem for h if

- η is Jordan curve in $\hat{\mathbb{C}}$ passing through 0, 1, $\infty;$
- $f:\mathbb{H} \to H$ is the conformal map fixing $0,1,\infty;$
- $g: \mathbb{H}^* o H^*$ is conformal and $g^{-1} \circ f = h$ on \mathbb{R} ,

It is well-known that if h is quasisymmetric, then the normalized solution is unique and η is a quasicircle in $\hat{\mathbb{C}}$.

Theorem (Shen-Tang-Wu '18)

 η is Weil-Petersson quasicircle if and only if $\log h' \in H^{1/2}(\mathbb{R})$.

Suppose $u \in \mathcal{E}(\mathbb{H})$ and $v \in \mathcal{E}(\mathbb{H}^*)$ are given.

Corollary

There exists a unique normalized solution to the welding homeomorphism induced by e^u and e^v , and the curve obtained has finite Loewner energy.

Corollary

There exists a unique tuple (φ, η, f, g) such that:

- 1. η is a Jordan curve passing through 0, 1 and $\infty;$
- 2. $f : \mathbb{H} \to H$ is the conformal map fixing 0,1 and ∞ and $g : \mathbb{H}^* \to H^*$ is the conformal map fixing 0, ∞ ;
- 3. φ defined from the transformation law (from u, v, f, g) is in $\mathcal{E}(\mathbb{C})$.

Moreover, η is obtained from the isometric conformal welding of \mathbb{H} and \mathbb{H}^* according to the boundary lengths $e^u dx$ and $e^v dx$. In particular,

$$I^{L}(\eta) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v) - \mathcal{D}_{\mathbb{C}}(\varphi).$$
¹²

Assume η_1, η_2 are rectifiable Jordan curves and $|\eta_1| = |\eta_2|$.

- [Huber 1976] The solution does not always exist.
- [Bishop 1990] If the solution exists, η can be a curve of positive area and the solution is not unique.
- [David 1982, Zinsmeister 1982] If η_1 and η_2 are chord-arc, then the solution exists and is unique, and is an quasicircle.
- [Bishop 1990] But the Hausdorff dimension of η can take any value in $1 < d < 2 \implies$ even not rectifiable.
- [V. W. 2019] The class of finite energy curves is closed under arclength welding.

Assume η_1, η_2 are rectifiable Jordan curves and $|\eta_1| = |\eta_2|$.

- [Huber 1976] The solution does not always exist.
- [Bishop 1990] If the solution exists, η can be a curve of positive area and the solution is not unique.
- [David 1982, Zinsmeister 1982] If η_1 and η_2 are chord-arc, then the solution exists and is unique, and is an quasicircle.
- [Bishop 1990] But the Hausdorff dimension of η can take any value in $1 < d < 2 \implies$ even not rectifiable.
- [V. W. 2019] The class of finite energy curves is closed under arclength welding.

Assume η_1, η_2 are rectifiable Jordan curves and $|\eta_1| = |\eta_2|$.

- [Huber 1976] The solution does not always exist.
- [Bishop 1990] If the solution exists, η can be a curve of positive area and the solution is not unique.
- [David 1982, Zinsmeister 1982] If η_1 and η_2 are chord-arc, then the solution exists and is unique, and is an quasicircle.
- [Bishop 1990] But the Hausdorff dimension of η can take any value in $1 < d < 2 \implies$ even not rectifiable.
- [V. W. 2019] The class of finite energy curves is closed under arclength welding.

Assume η_1, η_2 are rectifiable Jordan curves and $|\eta_1| = |\eta_2|$.

- [Huber 1976] The solution does not always exist.
- [Bishop 1990] If the solution exists, η can be a curve of positive area and the solution is not unique.
- [David 1982, Zinsmeister 1982] If η_1 and η_2 are **chord-arc**, then the solution exists and is unique, and is an quasicircle.
- [Bishop 1990] But the Hausdorff dimension of η can take any value in $1 < d < 2 \implies$ even not rectifiable.
- [V. W. 2019] The class of finite energy curves is closed under arclength welding.

Assume η_1, η_2 are rectifiable Jordan curves and $|\eta_1| = |\eta_2|$.

- [Huber 1976] The solution does not always exist.
- [Bishop 1990] If the solution exists, η can be a curve of positive area and the solution is not unique.
- [David 1982, Zinsmeister 1982] If η_1 and η_2 are **chord-arc**, then the solution exists and is unique, and is an quasicircle.
- [Bishop 1990] But the Hausdorff dimension of η can take any value in $1 < d < 2 \implies$ even not rectifiable.
- [V. W. 2019] The class of finite energy curves is closed under arclength welding.

Assume η_1, η_2 are rectifiable Jordan curves and $|\eta_1| = |\eta_2|$.

- [Huber 1976] The solution does not always exist.
- [Bishop 1990] If the solution exists, η can be a curve of positive area and the solution is not unique.
- [David 1982, Zinsmeister 1982] If η_1 and η_2 are **chord-arc**, then the solution exists and is unique, and is an quasicircle.
- [Bishop 1990] But the Hausdorff dimension of η can take any value in $1 < d < 2 \implies$ even not rectifiable.
- [V. W. 2019] The class of finite energy curves is closed under arclength welding.

How does the energy change under the arclength welding operation?

 $I^{L}(\eta)$?? $I^{L}(\eta_{1}) + I^{L}(\eta_{2})$

Assume $I^{L}(\eta_{1}) < \infty$, $I^{L}(\eta_{2}) < \infty$, both passing through ∞ . Let H_{i}, H_{i}^{*} be the two connected components of $\mathbb{C} \smallsetminus \eta_{i}$.

Corollary (sub-additivity)

Let η (resp. $\tilde{\eta}$) be the arclength welding curve of the domains H_1 and H_2^* (resp. H_2 and H_1^*). Then η and $\tilde{\eta}$ have finite energy. Moreover,

 $I^{L}(\eta) + I^{L}(\tilde{\eta}) \leq I^{L}(\eta_{1}) + I^{L}(\eta_{2}).$

Assume $I^{L}(\eta_{1}) < \infty$, $I^{L}(\eta_{2}) < \infty$, both passing through ∞ . Let H_{i}, H_{i}^{*} be the two connected components of $\mathbb{C} \smallsetminus \eta_{i}$.

Corollary (sub-additivity)

Let η (resp. $\tilde{\eta}$) be the arclength welding curve of the domains H_1 and H_2^* (resp. H_2 and H_1^*). Then η and $\tilde{\eta}$ have finite energy. Moreover,

$$I^{L}(\eta) + I^{L}(\tilde{\eta}) \leq I^{L}(\eta_{1}) + I^{L}(\eta_{2}).$$

Proof of the sub-additivity

In fact, let $u_i = \log |f_i'|$, $v_i = \log |g_i'|$. From the definition of the Loewner energy,

$$I^{L}(\eta_{i}) = \mathcal{D}_{\mathbb{H}}(u_{i}) + \mathcal{D}_{\mathbb{H}^{*}}(v_{i}).$$

Arclength welding implies that η is the welding curve obtained the isometric welding of e^{u_1} and e^{v_2} and $\tilde{\eta}$ is the isometric welding of e^{u_2} and e^{v_1} . Then, from the welding identity,

$$egin{aligned} &I^{L}(\eta)+I^{L}(ilde{\eta})\leq\mathcal{D}_{\mathbb{H}}\left(u_{1}
ight)+\mathcal{D}_{\mathbb{H}^{*}}\left(v_{2}
ight)+\mathcal{D}_{\mathbb{H}}\left(u_{2}
ight)+\mathcal{D}_{\mathbb{H}^{*}}\left(v_{1}
ight)\ &=I^{L}(\eta_{1})+I^{L}(\eta_{2}). \quad \Box \end{aligned}$$

Flow-line identity

Winding identity

Assume η is C^1 .

For $z = \eta(s)$, define the function $\tau : \eta \to \mathbb{R}$ such that τ is continuous and

$$\tau(z) := \arg(\eta'(s)).$$

We denote by

$$\mathcal{P}[\tau](z) = \begin{cases} \arg f'(f^{-1}(z)) & z \in H; \\ \arg g'(g^{-1}(z)) & z \in H^* \end{cases}$$

which is the Poisson integral of au in \mathbb{C} .

Winding identity

Assume η is C^1 .

For $z = \eta(s)$, define the function $au : \eta o \mathbb{R}$ such that au is continuous and

$$au(z) := \arg(\eta'(s)).$$

We denote by

$$\mathcal{P}[\tau](z) = \begin{cases} \arg f'(f^{-1}(z)) & z \in H; \\ \arg g'(g^{-1}(z)) & z \in H^* \end{cases}$$

which is the Poisson integral of τ in \mathbb{C} .

Flow-line identity

Notice that $\arg(f')$ has the same Dirichlet energy as $\log |f'|$. We have the identity

$$I^{L}(\eta) = \mathcal{D}_{\mathbb{H}}(\arg f') + \mathcal{D}_{\mathbb{H}^{*}}(\arg g') = \mathcal{D}_{\mathbb{C}}(\mathcal{P}[\tau]).$$

Theorem (Interpretation: Flow-line identity)

Conversely, if $\varphi \in \mathcal{E}(\mathbb{C}) \cap C^0(\hat{\mathbb{C}})$, then for all $z_0 \in \mathbb{C}$, any solution to the differential equation

$$\eta'(t)=e^{iarphi(\eta(t))},\,orall t\in\mathbb{R}$$
 and $\eta(0)=z_0$

is an infinite arclength parametrized simple curve and

$$\mathcal{D}_{\mathbb{C}}(\varphi) = I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi_{0}),$$

where $\varphi_0 = \varphi - \mathcal{P}[\varphi|_{\eta}].$

Flow-line identity

Notice that $\arg(f')$ has the same Dirichlet energy as $\log |f'|$. We have the identity

$$\mathcal{I}^{\mathcal{L}}(\eta) = \mathcal{D}_{\mathbb{H}}(\operatorname{arg} f') + \mathcal{D}_{\mathbb{H}^*}(\operatorname{arg} g') = \mathcal{D}_{\mathbb{C}}(\mathcal{P}[\tau]).$$

Theorem (Interpretation: Flow-line identity)

Conversely, if $\varphi \in \mathcal{E}(\mathbb{C}) \cap C^0(\hat{\mathbb{C}})$, then for all $z_0 \in \mathbb{C}$, any solution to the differential equation

$$\eta'(t) = e^{i arphi(\eta(t))}, \, orall t \in \mathbb{R} \quad ext{and} \quad \eta(0) = z_0$$

is an infinite arclength parametrized simple curve and

$$\mathcal{D}_{\mathbb{C}}(\varphi) = I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi_{0}),$$

where $\varphi_0 = \varphi - \mathcal{P}[\varphi|_{\eta}]$.

Equipotential energy monotonicity

Corollary [infinite curve]

Let r > 0, we have $I^{L}(\eta^{r}) \leq I^{L}(\eta)$.

Corollary [bounded curve] For 0 < r < 1, we have $I^{L}(\eta_{r}) \leq I^{L}(f(C)) \leq I^{L}(\eta)$.

Proposition

The function $r \mapsto l^{L}(\eta_{r})$ (resp. $r \mapsto l^{L}(\eta^{r})$) is continuous and monotone. Moreover,

$$\begin{split} & I^{L}(\eta_{r}) \xrightarrow{r \to 1-} I^{L}(\eta); \quad I^{L}(\eta_{r}) \xrightarrow{r \to 0+} 0. \\ (\text{resp. } I^{L}(\eta^{r}) \xrightarrow{r \to 0+} I^{L}(\eta); \quad I^{L}(\eta^{r}) \xrightarrow{r \to \infty} 0.) \end{split}$$

Remark: The vanishing of $I^{L}(\eta_{r})$ as $r \to 0$ can be thought as expressing the fact that conformal maps asymptotically take small circles to circles.

Corollary (Complex identity)

Let ψ be a complex-valued function on \mathbb{C} with finite Dirichlet energy and $\operatorname{Im} \psi \in C^0(\hat{\mathbb{C}})$. Let η be a flow-line of the vector field e^{ψ} and f, g the conformal maps associated to η . Then we have

 $\mathcal{D}_{\mathbb{C}}(\psi) = \mathcal{D}_{\mathbb{H}}(\zeta) + \mathcal{D}_{\mathbb{H}^*}(\xi),$

where $\zeta = \psi \circ f + (\log f')^*$, $\xi = \psi \circ g + (\log g')^*$.

It follows from welding and flow-line identities (see next slide) and also implies both identities:

- Taking Im $\psi = \varphi$ and $\operatorname{Re}(\psi) = 0$ \implies flow-line identity: $\mathcal{D}_{\mathbb{C}}(\varphi) = I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi_{0}).$
- Taking Re $\psi = \varphi$ and Im $\psi := \mathcal{P}[\tau]$ where τ is the winding of the curve η

 \implies welding identity: $\mathcal{D}_{\mathbb{C}}(\varphi) + I^{L}(\eta) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v).$

It follows from welding and flow-line identities (see next slide) and also implies both identities:

• Taking Im
$$\psi = \varphi$$
 and $\operatorname{Re}(\psi) = 0$
 \implies flow-line identity: $\mathcal{D}_{\mathbb{C}}(\varphi) = I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi_{0}).$

• Taking ${\rm Re}\,\psi=\varphi$ and ${\rm Im}\,\psi:=\mathcal{P}[\tau]$ where τ is the winding of the curve η

 \implies welding identity: $\mathcal{D}_{\mathbb{C}}(\varphi) + I^{L}(\eta) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v).$

 $\begin{aligned} \zeta &= \psi \circ f + (\log f')^* = \operatorname{\mathsf{Re}} \psi \circ f + \log |f'| + i(\operatorname{\mathsf{Im}} \psi \circ f - \arg f') \\ \text{flow-line} &:= u + i\operatorname{\mathsf{Im}} \psi_0 \circ f. \\ \xi &= v + i\operatorname{\mathsf{Im}} \psi_0 \circ g. \end{aligned}$

where $u := \operatorname{Re} \psi \circ f + \log |f'|, v := \operatorname{Re} \psi \circ g + \log |g'|.$

We have

 $\begin{aligned} \mathcal{D}_{\mathbb{C}}(\psi) &= \mathcal{D}_{\mathbb{C}}(\operatorname{Re}\psi) + \mathcal{D}_{\mathbb{C}}(\operatorname{Im}\psi) \\ \text{flow-line id.} &= \mathcal{D}_{\mathbb{C}}(\operatorname{Re}\psi) + I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\operatorname{Im}\psi_{0}) \\ &= \mathcal{D}_{\mathbb{C}}(\operatorname{Re}\psi) + I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\operatorname{Im}\psi_{0}) \\ \text{welding id.} &= \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v) + \mathcal{D}_{\mathbb{C}}(\operatorname{Im}\psi_{0}) \\ &= \mathcal{D}_{\mathbb{H}}(\zeta) + \mathcal{D}_{\mathbb{H}^{*}}(\xi). \quad \Box \end{aligned}$

 $\begin{aligned} \zeta &= \psi \circ f + (\log f')^* = \operatorname{\mathsf{Re}} \psi \circ f + \log |f'| + i(\operatorname{\mathsf{Im}} \psi \circ f - \arg f') \\ \text{flow-line} &:= u + i\operatorname{\mathsf{Im}} \psi_0 \circ f. \\ \xi &= v + i\operatorname{\mathsf{Im}} \psi_0 \circ g. \end{aligned}$

where $u := \operatorname{Re} \psi \circ f + \log |f'|, v := \operatorname{Re} \psi \circ g + \log |g'|.$

We have

$$\begin{split} \mathcal{D}_{\mathbb{C}}(\psi) &= \mathcal{D}_{\mathbb{C}}(\operatorname{Re}\psi) + \mathcal{D}_{\mathbb{C}}(\operatorname{Im}\psi)\\ \text{flow-line id.} &= \mathcal{D}_{\mathbb{C}}(\operatorname{Re}\psi) + l^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\operatorname{Im}\psi_{0})\\ &= \mathcal{D}_{\mathbb{C}}(\operatorname{Re}\psi) + l^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\operatorname{Im}\psi_{0})\\ \text{welding id.} &= \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v) + \mathcal{D}_{\mathbb{C}}(\operatorname{Im}\psi_{0})\\ &= \mathcal{D}_{\mathbb{H}}(\zeta) + \mathcal{D}_{\mathbb{H}^{*}}(\xi). \quad \Box \end{split}$$

SLE/GFF discussion

SLE/GFF analogs: A (very loose) dictionary

SLE/GFF with $\gamma = \sqrt{\kappa} \rightarrow 0$	Finite energy
SLE_{κ} loop.	Finite energy Jordan curve, η .
Free boundary GFF $\gamma \Phi$ on \mathbb{H} (on \mathbb{C}).	$2u, u \in \mathcal{E}(\mathbb{H}) \ (2\varphi, \varphi \in \mathcal{E}(\mathbb{C})).$
γ -LQG on quantum plane $pprox e^{\gamma \Phi} dz^2$.	$e^{2arphi}dz^2,arphi\in\mathcal{E}(\mathbb{C}).$
$\gamma extsf{-LQG}$ on quantum half-plane on $\mathbb H$	$e^{2u}dz^2, u \in \mathcal{E}(\mathbb{H}).$
γ -LQG boundary measure on $\mathbb{R} pprox e^{\gamma \Phi/2} dx$	$e^{u(x)}dx, u \in H^{1/2}(\mathbb{R}).$
SLE_{κ} cuts an independent	Finite energy η cuts $arphi \in \mathcal{E}(\mathbb{C})$
quantum plane into	into $u\in \mathcal{E}(\mathbb{H}),$ $v\in \mathcal{E}(\mathbb{H}^*)$ and
independent quantum half-planes.	$I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v).$
Quantum zipper: isometric welding	Isometric welding
of independent $\gamma ext{-LQG}$ measures on $\mathbb R$	of $e^u dx$ and $e^v dx$, $u, v \in H^{1/2}(\mathbb{R})$
produces SLE_{κ} .	produces a finite energy curve.
γ -LQG chaos w.r.t. Minkowski content	$e^{arphi _{\eta}} dz , \ arphi _{\eta} \in H^{1/2}(\eta),$
equals the pushforward of	equals the pushforward of
γ -LQG measures on \mathbb{R} .	$e^{u}dx$ and $e^{v}dx$, $u, v \in H^{1/2}(\mathbb{R})$.
Bi-infinite flow-line of $e^{i\Phi/\chi} \approx e^{i\gamma\Phi/2}$	Bi-infinite flow-line of $e^{i\varphi}$
is an SLE_κ loop measurable wrt. Φ .	is a finite energy curve
	$\mathcal{D}_{\mathbb{C}}(\varphi) = I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi_{0}).$
(work in progress)	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$

Thanks for your attention!

