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e The Loewner energy is the action functional/large deviation rate
function of SLE,, with vanishing .
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e Similarly, the Dirichlet energy of functions ¢ defined on D C C is
the action functional/large deviation rate function of (a small
parameter v times) the Gaussian free field (GFF).

e This talk: there is a nice interplay between Loewner energy and
Dirichlet energy of functions in £(D) which is reminiscent to
SLE/Gaussian free field (GFF) couplings pioneered by Sheffield and
Dubédat.

e Our results are purely analytic.
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In this talk we assume all finite energy curves pass through co. All results also have a

version for bounded curve (even for statements that are not Mébius invariant).
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Finite energy curves

We gather some geometric properties of finite energy curves:

e [5(n) is finite if and only if 7 is a Weil-Petersson quasicircle [W.
2018]. Nag, Verjovsky, Sullivan, Cui, Taktajan, Teo, Shen, Bishop etc. provided
many (= 20) equivalent characterizations of it.

e They are asymptotically smooth. That is, chord-arc with local
constant 1: for all x,y on the curve, the shorter arc 7, between x
and y satisfies

lim length (ny,)/|x —y| = 1.

Ix—y|—0

e They are NOT C! and may exhibit slow spirals.
e Being C3/2t¢ — finite energy.
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We have €?# € L} _(C) and the transformation law:

u(z) = pof(z)+logl|f'(z)|, v(z)=ypog(z)+loglg'(2)l,

such that e?Ydz? = f*(e?¢dz?), e?dz? = g*(e?¢dz?).



Cutting identity

Let p € £(C) C W,})’f((C), f, g conformal maps from H, H* onto H, H*

fixing oo.
5 . H
H 62v(2)d22 PR eZudZZ 0 1
0 1 ‘__g/ 0 T
H e?vdZZ

We have €?# € L} _(C) and the transformation law:
u(z) = o f(z) +log|f'(2)], v(z) =¢og(z)+loglg'(2)l,

such that e?Ydz? = f*(e?¢dz?), e?dz? = g*(e?¢dz?).

Theorem (cutting)
We have the identity Dc(¢) + I*(n) = Du(u) + Du-(v).



Large deviation heuristics

SLE/GFF v :=/k Finite energy
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SLE/GFF v :=/k Finite energy

SLE, loop. Finite energy Jordan curve, 7.
Free boundary GFF v® on H (on C). | 2u, u € E(H) (2¢, ¢ € £(C)).
7-LQG on quantum plane ~ e"®dz%. | €*¢dz?, ¢ € £(C).

v-LQG on quantum half-plane on H e*'dz*, u € £(H).

cuts an Finite energy n cuts ¢ € £(C)
into into u € E(H), v € E(H™) and
ind. quantum half-planes e7®1, e7%2, = Du(u) + Du=(v).

SLE/GFF = one may expect that under appropriate topology and for small x,

“

= P(y/k®; stays close to 2u, v/k®, stays close to 2v)"



Large deviation heuristics, cont’'d

From the large deviation principle and the independence of SLE and &, one
expects

lim —xl

fim s log

= Iim0 —r log P(SLE, stays close to ) + Iimo —k log P(v/k® stays close to 2¢p)
K—> K—

= 1'(n) + Dc(¥).



Large deviation heuristics, cont’'d

From the large deviation principle and the independence of SLE and &, one
expects

lim —xl

fim s log

= Iim0 —r log P(SLE, stays close to ) + Iimo —k log P(v/k® stays close to 2¢p)
K—> K—
= I'(n) + Dc(y)-

Similarly, the independence between ®; and ®, gives

lim —k log P(v/k®1 stays close to 2u, /k®, stays close to 2v)
Kk—0

= DH(U) + D[-j* (V)



Large deviation heuristics, cont’'d

From the large deviation principle and the independence of SLE and &, one
expects

lim —xl

fim s log

= Iim0 —r log P(SLE, stays close to ) + Iimo —k log P(v/k® stays close to 2¢p)
K—r K—>
= I'(n) + Dc(y)-
Similarly, the independence between ®; and ®, gives
lim —k log P(v/k®1 stays close to 2u, /k®, stays close to 2v)
Kk—0

= DH(U) + D[-j* (V)
— :D;q(u)+DH*(v).



Large deviation heuristics, cont’'d

From the large deviation principle and the independence of SLE and &, one
expects

lim —klog
r—0

= Iim0 —r log P(SLE, stays close to ) + Iimo —k log P(v/k® stays close to 2¢p)
K—> K—
= I'(n) + Dc(y)-

Similarly, the independence between ®; and ®, gives
IimO —k log P(y/k®1 stays close to 2u, v/k®, stays close to 2v)
K—r
= DH(U) + D[-ﬂ* (V)

- :D;q(u)+DH*(v).

Conversely, one expects the density of an independent couple (SLE,., /x GFF)
has density

£(n, ¢) oc exp(—/"(1)/k) exp(— /K),
the identity on the action functional also suggests the SLE/GFF coupling.



Our proof of the identity:

Assume that 7 and ¢ are smooth.
Du(u) = Du(p o f) + Du(log|f']) + / V(log|f'|) - V(¢ o f)dz

= Dy(p) + Du(log |f']) + %/HV(Iog If']) - V(p o f)dz?



Our proof of the identity:

Assume that 7 and ¢ are smooth.
Du(u) = Du(p o f) + Du(log|f']) + /Vlog|f’ V(g o f)dz

= Dy(p) + Du(log |f']) + %/HV(Iog If']) - V(p o f)dz?

Adding Dy (v) the first two terms sum up to Dc(¢) + /5(n), and the
cross terms sum up to O since

/V(Iog If']) - V(g o f)dz? = /(an log |f'|)¢ o f(x)dx
JH ‘ R
= / K(F())IF ()l o F(x)dx

:/ k(y)cp(y)dy:f/ k(y)e(y)dy. O
oOH OH*



Converse operation: Isometric welding

Now let u € E(H), v € £(H*). The traces of u,v € H*/2(R). We have
e',e” € L (R) defines two boundary measures du = e“dx, dv = e“dx.

Lemma
We define h(0) = 0, and h(x) :=

inf {y > 0: u[0,x] = v[0,y]} if x >0; H
. ] eu(;;:)dx 0 1
—inf{y > 0: u[x,0] = v[-y,0]} ifx<O.
ht |}
Then h is a quasisymmetric homeomorphism. e?@dy 0 H*

Moreover, log b € HY/?(R).

10



Welding problem

We say that the triple (7, f, g) is a normalized solution to the
conformal welding problem for h if

e 1) is Jordan curve in ¢ passing through 0, 1, oo;
e f:H — H is the conformal map fixing 0, 1, co;
e g:H* — H* is conformal and g='o f = hon R,

f
. H "
0 1
hi=glof ' — .
g 1
m— 7 g
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Welding problem

We say that the triple (7, f, g) is a normalized solution to the
conformal welding problem for h if

e 1) is Jordan curve in ¢ passing through 0, 1, oo;
e f:H — H is the conformal map fixing 0, 1, co;
e g:H* — H* is conformal and g='o f = hon R,

f
, H H
0 1
h=glof 0 I —/\_/x——'r]
g 1
H* - H*

It is well-known that if h is quasisymmetric, then the normalized solution is
unique and 7 is a quasicircle in C.
Theorem (Shen-Tang-Wu '18)

n is Weil-Petersson quasicircle if and only if log i’ € HY/?(R).
11



Why isometric welding: converse of cutting

Suppose u € E(H) and v € E(H*) are given.

Corollary
There exists a unique normalized solution to the welding homeomorphism
induced by e and €Y, and the curve obtained has finite Loewner energy.

Corollary
There exists a unique tuple (p,n, f, g) such that:

1. nis a Jordan curve passing through 0, 1 and oo;
2. f :H — H is the conformal map fixing 0,1 and oo and g : H* — H*

is the conformal map fixing 0, oc;

3. ¢ defined from the transformation law (from u,v,f, g) is in
E(C).
Moreover, 7 is obtained from the isometric conformal welding of H and H*
according to the boundary lengths e“dx and e"dx. In particular,

I1(n) = Dis(u) + Dyg- (v) — De(). =



Application: arclength conformal welding

Assume 11,17, are rectifiable
Jordan curves and |n1] = |n2].

1 1 1m1 — 1o preserves arclength.

m

G

Fv
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7 such that G=1o F

(4
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Application: arclength conformal welding
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o [Huber 1976] The solution does not always exist.

e [Bishop 1990] If the solution exists, 7 can be a curve of positive area
and the solution is not unique.

e [David 1982, Zinsmeister 1982] If 1, and 1, are chord-arc, then the
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Application: arclength conformal welding

Assume 11,17, are rectifiable & "

Jordan curves and |n1] = |n2].

G
1 1 1m1 — 1o preserves arclength.

FNo—— nsuchthat GTlo F =19

o [Huber 1976] The solution does not always exist.

e [Bishop 1990] If the solution exists, 7 can be a curve of positive area
and the solution is not unique.

e [David 1982, Zinsmeister 1982] If 1, and 1, are chord-arc, then the
solution exists and is unique, and is an quasicircle.

e [Bishop 1990] But the Hausdorff dimension of 7) can take any value in
1< d <2 = even not rectifiable.

13



Application: arclength conformal welding

m 2

Assume 11,17, are rectifiable
Jordan curves and || = |n2|.

G
1 1 1m1 — 1o preserves arclength.

FNo—— nsuchthat GTlo F =19

o [Huber 1976] The solution does not always exist.

e [Bishop 1990] If the solution exists, 7 can be a curve of positive area
and the solution is not unique.

e [David 1982, Zinsmeister 1982] If 1, and 1, are chord-arc, then the
solution exists and is unique, and is an quasicircle.

e [Bishop 1990] But the Hausdorff dimension of 7) can take any value in
1< d <2 = even not rectifiable.

o [V. W. 2019] The class of finite energy curves is closed under
arclength welding.

13



How does the energy change under the arclength welding operation?

") 77 15(m) + 1"(m2)



Arclength welding of finite energy domains

Assume IL(n;) < oo, I*(172) < oo, both passing through co. Let H;, H be
the two connected components of C . 7;.

m H,y F H
Y — 0 : s n

o Hi -

14



Arclength welding of finite energy domains

Assume IL(n;) < oo, I*(172) < oo, both passing through co. Let H;, H be
the two connected components of C . 7;.

Corollary (sub-additivity)

Let n (resp. ij) be the arclength welding curve of the domains Hy and Hj
(resp. H> and H;). Then n and ij have finite energy. Moreover,

I5(n) + 14(7) < 1Y(m) + 15 ().

m H, F

Y ! "
pim —> 12 % _/\/_n\
T, G. H*

2 H;

14



Proof of the sub-additivity

i
end g M . M rog
vim = i % . _/\/—,,7\
v il & . *
e?2dz? H*i; 2 H; q

In fact, let u; = log|f/|, v; = log|g/|. From the definition of the Loewner
energy,
IL(T],') = DH (U,’) —+ DH* (V,') .

Arclength welding implies that 7 is the welding curve obtained the
isometric welding of et and e“2 and 7} is the isometric welding of e*2 and

e". Then, from the welding identity,

I*(n) + I*(#) < Du (u1) + Du- (v2) + Du (u2) + Da- (v1)
= 1Y) + I(np). O

15



Flow-line identity




Winding identity

Assume 7 is C1.

floo) = o0

H

g(00) = 00
H* H*

16



Winding identity

Assume 7 is C1.

For z = n(s), define the function 7 : 7 — R such that 7 is continuous and
7(2) := arg(n/(s))-

We denote by
arg f'(f~1(2)) zeH,
agg'(g7l(2)) zeH*

PIr(z) = {

which is the Poisson integral of 7 in C.
16



Flow-line identity

Notice that arg(f’) has the same Dirichlet energy as log|f’|. We have the
identity
I(n) = Da(arg f') + Du- (arg g') = De(Pl7)).

17



Flow-line identity

Notice that arg(f’) has the same Dirichlet energy as log|f’|. We have the
identity
I(n) = Da(arg f') + Du- (arg g') = De(Pl7)).

Theorem (Interpretation: Flow-line identity)

Conversely, if ¢ € £(C) N CO(C), then for all z, € C, any solution to the
differential equation

n'(t) = ) vt e R and 7(0) = z
is an infinite arclength parametrized simple curve and
De() = I*() + De(0),

where @g = ¢ — P[ip|y].

17



Equipotential energy monotonicity

Corollary [infinite curve]
Let r > 0, we have IL(n") < IE(n).

Corollary [bounded curve]
For 0 < r < 1, we have It(n,) < IL(f(C)) < It(n).

18



Equipotential energy monotonicity, cont’d

Proposition
The function r + It(n,) (resp. r+ IX(n")) is continuous and monotone.

Moreover,

1) 2225 1Hm); 1M () 225 0.

r—0+ r—o0o

(resp. I"(n") == I(n); 1"(n") —>0.)

Remark: The vanishing of /5(n,) as r — 0 can be thought as expressing
the fact that conformal maps asymptotically take small circles to circles.

19



Complex function identity

Corollary (Complex identity)

Let ¢ be a complex-valued function on C with finite Dirichlet energy and
Imy e COC). Let n be a flow-line of the vector field ¥ and f, g the
conformal maps associated to n. Then we have

Dc(¥) = DPu(C) + Da-(§),

where ( = o f + (logf")*, ¢ = og+ (logg’)*.

f(o0) =00
H H
7] _/\/__
g(oo) =00
H* H*

20



Complex function identity, cont’d

It follows from welding and flow-line identities (see next slide) and also
implies both identities:

e Taking Im = ¢ and Re(¢)) =0
— flow-line identity: Dc(p) = IX(n) + Dc(wo).

21



Complex function identity, cont’d

It follows from welding and flow-line identities (see next slide) and also
implies both identities:

e Taking Im = ¢ and Re(¢)) =0
= flow-line identity: Dc(p) = I*(n) + De(po)-
e Taking Ret) = ¢ and Im 1) := P[r] where 7 is the winding of the
curve 7
= welding identity: Dc(p) + I1(n) = Du(u) + Du-(v).

21



Proof of the complex identity

¢=yof+(logf)" = +i(lmyof —argf)
flow-line : = v+ ilmg o f.

E=v+ilmypog.

where u := Rey o f +log|f’|,v := Rey o g + log|g’|.

22



Proof of the complex identity

¢=yof+(logf)" = +i(lmyof —argf)
flow-line : = v+ ilmg o f.

E=v+ilmypog.

where u:=Rev o f +log|f’|,v :=Rev o g + log |g’|.
We have

De(¥) = De(Re ) + De(Im )
flow-line id. = Dc(Re ) + 1Y(n) + De(Im 1)
= + De(Im vo)
welding id. = + De(Im 1))
=Du(¢) + Du-(§). O

22
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SLE/GFF analogs: A (very loose) dictio

SLE/GFF with v = /k — 0

Finite energy

SLE loop.

Finite energy Jordan curve, .

Free boundary GFF v® on H (on C).

2u, u € E(H) (2¢, ¢ € £(C)).

~-LQG on quantum plane ~ e7®dz2.

e??dz?, o € £(C).

v-LQG on quantum half-plane on H

e?dz?, u € £(H).

~-LQG boundary measure on R ~ e7®/2dx

e"@dx, u e H/2(R).

SLE, cuts an independent
quantum plane into
independent quantum half-planes.

Finite energy n cuts ¢ € £(C)
into u € £(H), v € E(H*) and
I(n) + Dc(p) = Du(u) + Da=(v).

Quantum zipper: isometric welding
of independent v-LQG measures on R
produces SLE.

Isometric welding
of edx and e'dx, u,v € H/2(R)
produces a finite energy curve.

7-LQG chaos w.r.t. Minkowski content
equals the pushforward of
v-LQG measures on R.

e?In|dz|, ¢ly € HY?(n),
equals the pushforward of
edx and eVdx, u,v € HY/2(R).

Bi-infinite flow-line of e/®/X ~ ¢7®/2

is an SLE,, loop measurable wrt. ®.

Bi-infinite flow-line of /%
is a finite energy curve
Dc(p) = I*(n) + Dc(po)-

(work in progress)

Complex identity <> welding+flow-line.

23



Thanks for your attention!
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