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Introduction

• The Loewner energy (introduced in 2016) IL(η) of a Jordan curve
η ⊂ Ĉ = C ∪ {∞} is defined as the Dirichlet energy of its Loewner
driving function W .

IL(η) := 1
2

∫ ∞
−∞

W ′(t)2dt.

=⇒ It is invariant under Möbius transformation (fraction linear
transformation z 7→ az+b

cz+d of Ĉ).
=⇒ It is non negative, and equal to 0 iff η is a circle. It measures

how round a Jordan curve is.
• The Loewner energy is the action functional/large deviation rate

function of SLEκ with vanishing κ.
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η ⊂ Ĉ = C ∪ {∞} is defined as the Dirichlet energy of its Loewner
driving function W .

IL(η) := 1
2

∫ ∞
−∞

W ′(t)2dt.
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SLE/GFF motivation

• Similarly, the Dirichlet energy of functions ϕ defined on D ⊂ C is
the action functional/large deviation rate function of (a small
parameter γ times) the Gaussian free field (GFF).

• This talk: there is a nice interplay between Loewner energy and
Dirichlet energy of functions in E(D) which is reminiscent to
SLE/Gaussian free field (GFF) couplings pioneered by Sheffield and
Dubédat.

• Our results are purely analytic.
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The Loewner energy

Let D ⊂ C be a domain. For ϕ ∈W 1,2
loc (D), we write

DD(ϕ) := 1
π

∫
D
|∇ϕ(z)|2 dz2.

Theorem (or definition) [W. 2018]
If η passes through ∞, we have the identity

IL(η) = DH(log |f ′|) +DH∗ (log |g ′|).

f (∞) =∞

g(∞) =∞η
H H

H∗H∗

In this talk we assume all finite energy curves pass through ∞. All results also have a
version for bounded curve (even for statements that are not Möbius invariant).
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Finite energy curves

We gather some geometric properties of finite energy curves:

• IL(η) is finite if and only if η is a Weil-Petersson quasicircle [W.
2018]. Nag, Verjovsky, Sullivan, Cui, Taktajan, Teo, Shen, Bishop etc. provided
many (≈ 20) equivalent characterizations of it.

• They are asymptotically smooth. That is, chord-arc with local
constant 1: for all x , y on the curve, the shorter arc ηx ,y between x
and y satisfies

lim
|x−y |→0

length (ηx ,y )/|x − y | = 1.

• They are NOT C 1 and may exhibit slow spirals.
• Being C 3/2+ε =⇒ finite energy.
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Welding identity



Cutting identity

Let ϕ ∈ E(C) ⊂W 1,2
loc (C), f , g conformal maps from H,H∗ onto H,H∗

fixing ∞.

f

g
η

0

00

1

1

H

H∗

H

H∗

e2udz2

e2vdz2

e2ϕ(z)dz2

We have e2ϕ ∈ L1
loc(C) and the transformation law:

u(z) = ϕ ◦ f (z) + log |f ′(z)| , v(z) = ϕ ◦ g(z) + log |g ′(z)| ,

such that e2udz2 = f ∗(e2ϕdz2), e2v dz2 = g∗(e2ϕdz2).

Theorem (cutting)
We have the identity DC(ϕ) + IL(η) = DH(u) +DH∗ (v).
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Large deviation heuristics

SLE/GFF γ :=
√
κ Finite energy

SLEκ loop. Finite energy Jordan curve, η.
Free boundary GFF γΦ on H (on C). 2u, u ∈ E(H) (2ϕ, ϕ ∈ E(C)).
γ-LQG on quantum plane ≈ eγΦdz2. e2ϕdz2, ϕ ∈ E(C).
γ-LQG on quantum half-plane on H e2udz2, u ∈ E(H).
SLEκ cuts an independent Finite energy η cuts ϕ ∈ E(C)
quantum plane eγΦ into into u ∈ E(H), v ∈ E(H∗) and
ind. quantum half-planes eγΦ1 , eγΦ2 . IL(η) +DC(ϕ) = DH(u) +DH∗ (v).

SLE/GFF ⇒ one may expect that under appropriate topology and for small κ,

“P(SLEκ loop stays close to η,
√
κΦ stays close to 2ϕ)

= P(
√
κΦ1 stays close to 2u,

√
κΦ2 stays close to 2v)”
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Large deviation heuristics, cont’d

From the large deviation principle and the independence of SLE and Φ, one
expects

lim
κ→0
−κ log P(SLEκ stays close to η,

√
κΦ stays close to 2ϕ)

= lim
κ→0
−κ log P(SLEκ stays close to η) + lim

κ→0
−κ log P(

√
κΦ stays close to 2ϕ)

= IL(η) +DC(ϕ).

Similarly, the independence between Φ1 and Φ2 gives

lim
κ→0
−κ log P(

√
κΦ1 stays close to 2u,

√
κΦ2 stays close to 2v)

= DH(u) +DH∗ (v).

=⇒ IL(η) +DC(ϕ) = DH(u) +DH∗ (v).

Conversely, one expects the density of an independent couple (SLEκ,
√
κGFF)

has density
f (η, ϕ) ∝ exp(−IL(η)/κ) exp(−DC(ϕ)/κ),

the identity on the action functional also suggests the SLE/GFF coupling.
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Our proof of the identity:

Assume that η and ϕ are smooth.

DH(u) = DH(ϕ ◦ f ) +DH(log |f ′|) + 1
π

∫
H
∇(log |f ′|) · ∇(ϕ ◦ f )dz2

= DH(ϕ) +DH(log |f ′|) + 1
π

∫
H
∇(log |f ′|) · ∇(ϕ ◦ f )dz2.

Adding DH∗ (v) the first two terms sum up to DC(ϕ) + IL(η), and the
cross terms sum up to 0 since∫

H
∇(log |f ′|) · ∇(ϕ ◦ f )dz2 =

∫
R

(∂n log |f ′|)ϕ ◦ f (x)dx

=
∫
R

k(f (x))|f ′(x)|ϕ ◦ f (x)dx

=
∫
∂H

k(y)ϕ(y)dy = −
∫
∂H∗

k(y)ϕ(y)dy .
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Converse operation: Isometric welding

Now let u ∈ E(H), v ∈ E(H∗). The traces of u, v ∈ H1/2(R). We have
eu, ev ∈ L1

loc(R) defines two boundary measures dµ = eudx , dν = ev dx .

Lemma
We define h(0) = 0, and h(x) :={

inf {y ≥ 0 : µ[0, x ] = ν[0, y ]} if x > 0;
− inf {y ≥ 0 : µ[x , 0] = ν[−y , 0]} if x < 0.

Then h is a quasisymmetric homeomorphism.
Moreover, log h′ ∈ H1/2(R).

0

0

1

h

H

H∗

eu(x)dx

ev(x)dx
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Welding problem

We say that the triple (η, f , g) is a normalized solution to the
conformal welding problem for h if

• η is Jordan curve in Ĉ passing through 0, 1,∞;
• f : H→ H is the conformal map fixing 0, 1,∞;
• g : H∗ → H∗ is conformal and g−1 ◦ f = h on R,

f

g
η

0

0 0

1

1
h := g−1 ◦ f

H

H∗

H

H∗

It is well-known that if h is quasisymmetric, then the normalized solution is
unique and η is a quasicircle in Ĉ.

Theorem (Shen-Tang-Wu ’18)
η is Weil-Petersson quasicircle if and only if log h′ ∈ H1/2(R).
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Why isometric welding: converse of cutting

Suppose u ∈ E(H) and v ∈ E(H∗) are given.

Corollary
There exists a unique normalized solution to the welding homeomorphism
induced by eu and ev , and the curve obtained has finite Loewner energy.

Corollary
There exists a unique tuple (ϕ, η, f , g) such that:

1. η is a Jordan curve passing through 0, 1 and ∞;
2. f : H→ H is the conformal map fixing 0, 1 and ∞ and g : H∗ → H∗

is the conformal map fixing 0,∞;

3. ϕ defined from the transformation law (from u, v , f , g) is in
E(C).

Moreover, η is obtained from the isometric conformal welding of H and H∗

according to the boundary lengths eudx and ev dx . In particular,

IL(η) = DH(u) +DH∗ (v)−DC(ϕ). 12



Application: arclength conformal welding

Assume η1, η2 are rectifiable
Jordan curves and |η1| = |η2|.

ψ : η1 → η2 preserves arclength.

D1

η1 η2

D2

ψ

F

G

η such that G−1 ◦ F = ψ

• [Huber 1976] The solution does not always exist.
• [Bishop 1990] If the solution exists, η can be a curve of positive area

and the solution is not unique.
• [David 1982, Zinsmeister 1982] If η1 and η2 are chord-arc, then the

solution exists and is unique, and is an quasicircle.
• [Bishop 1990] But the Hausdorff dimension of η can take any value in

1 < d < 2 =⇒ even not rectifiable.
• [V. W. 2019] The class of finite energy curves is closed under

arclength welding.

13
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How does the energy change under the arclength welding operation?

IL(η) ?? IL(η1) + IL(η2)



Arclength welding of finite energy domains

Assume IL(η1) <∞, IL(η2) <∞, both passing through ∞. Let Hi ,H∗i be
the two connected components of Cr ηi .

Corollary (sub-additivity)
Let η (resp. η̃) be the arclength welding curve of the domains H1 and H∗2
(resp. H2 and H∗1 ). Then η and η̃ have finite energy. Moreover,

IL(η) + IL(η̃) ≤ IL(η1) + IL(η2).

H1

H∗2

H

H∗

η1

η2

F

G
ψ : η1 → η2 η
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the two connected components of Cr ηi .

Corollary (sub-additivity)
Let η (resp. η̃) be the arclength welding curve of the domains H1 and H∗2
(resp. H2 and H∗1 ). Then η and η̃ have finite energy. Moreover,
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Proof of the sub-additivity

H1

H∗2

H

H∗

η1

η2

F

G
ψ : η1 → η2 η

H

H∗

f1

g2

e2u1dz2

e2v2dz2

In fact, let ui = log |f ′i |, vi = log |g ′i |. From the definition of the Loewner
energy,

IL(ηi ) = DH (ui ) +DH∗ (vi ) .

Arclength welding implies that η is the welding curve obtained the
isometric welding of eu1 and ev2 and η̃ is the isometric welding of eu2 and
ev1 . Then, from the welding identity,

IL(η) + IL(η̃) ≤ DH (u1) +DH∗ (v2) +DH (u2) +DH∗ (v1)
= IL(η1) + IL(η2).
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Flow-line identity



Winding identity

Assume η is C 1.

f (∞) =∞

g(∞) =∞η
H H

H∗H∗

eiτ

For z = η(s), define the function τ : η → R such that τ is continuous and

τ(z) := arg(η′(s)).

We denote by

P[τ ](z) =
{

arg f ′(f −1(z)) z ∈ H;
arg g ′(g−1(z)) z ∈ H∗

which is the Poisson integral of τ in C.
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Flow-line identity

Notice that arg(f ′) has the same Dirichlet energy as log |f ′|. We have the
identity

IL(η) = DH(arg f ′) +DH∗ (arg g ′) = DC(P[τ ]).

Theorem (Interpretation: Flow-line identity)
Conversely, if ϕ ∈ E(C) ∩ C 0(Ĉ), then for all z0 ∈ C, any solution to the
differential equation

η′(t) = e iϕ(η(t)), ∀t ∈ R and η(0) = z0

is an infinite arclength parametrized simple curve and

DC(ϕ) = IL(η) +DC(ϕ0),

where ϕ0 = ϕ− P[ϕ|η].
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Equipotential energy monotonicity

f (∞) = ∞

η
H H R + irηr := f (R + ir)

R

Corollary [infinite curve]
Let r > 0, we have IL(ηr ) ≤ IL(η).

f : D → D

ηT
rT

ηr

C f (C)

Corollary [bounded curve]
For 0 < r < 1, we have IL(ηr ) ≤ IL(f (C)) ≤ IL(η).
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Equipotential energy monotonicity, cont’d

Proposition
The function r 7→ IL(ηr ) (resp. r 7→ IL(ηr )) is continuous and monotone.
Moreover,

IL(ηr ) r→1−−−−−→ IL(η); IL(ηr ) r→0+−−−−→ 0.

(resp. IL(ηr ) r→0+−−−−→ IL(η); IL(ηr ) r→∞−−−→ 0.)

Remark: The vanishing of IL(ηr ) as r → 0 can be thought as expressing
the fact that conformal maps asymptotically take small circles to circles.

19



Complex function identity

Corollary (Complex identity)
Let ψ be a complex-valued function on C with finite Dirichlet energy and
Imψ ∈ C 0(Ĉ). Let η be a flow-line of the vector field eψ and f , g the
conformal maps associated to η. Then we have

DC(ψ) = DH(ζ) +DH∗ (ξ),

where ζ = ψ ◦ f + (log f ′)∗, ξ = ψ ◦ g + (log g ′)∗.

f (∞) =∞

g(∞) =∞η
H H

H∗H∗
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Complex function identity, cont’d

It follows from welding and flow-line identities (see next slide) and also
implies both identities:

• Taking Imψ = ϕ and Re(ψ) = 0
=⇒ flow-line identity: DC(ϕ) = IL(η) +DC(ϕ0).

• Taking Reψ = ϕ and Imψ := P[τ ] where τ is the winding of the
curve η

=⇒ welding identity: DC(ϕ) + IL(η) = DH(u) +DH∗ (v).
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Proof of the complex identity

ζ = ψ ◦ f + (log f ′)∗ = Reψ ◦ f + log |f ′|+ i(Imψ ◦ f − arg f ′)
flow-line : = u + i Imψ0 ◦ f .

ξ = v + i Imψ0 ◦ g .

where u := Reψ ◦ f + log |f ′|, v := Reψ ◦ g + log |g ′|.

We have

DC(ψ) = DC(Reψ) +DC(Imψ)
flow-line id. = DC(Reψ) + IL(η) +DC(Imψ0)

= DC(Reψ) + IL(η) +DC(Imψ0)
welding id. = DH(u) +DH∗ (v) +DC(Imψ0)

= DH(ζ) +DH∗ (ξ).
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SLE/GFF discussion



SLE/GFF analogs: A (very loose) dictionary

SLE/GFF with γ =
√
κ→ 0 Finite energy

SLEκ loop. Finite energy Jordan curve, η.
Free boundary GFF γΦ on H (on C). 2u, u ∈ E(H) (2ϕ, ϕ ∈ E(C)).
γ-LQG on quantum plane ≈ eγΦdz2. e2ϕdz2, ϕ ∈ E(C).
γ-LQG on quantum half-plane on H e2udz2, u ∈ E(H).
γ-LQG boundary measure on R ≈ eγΦ/2dx eu(x)dx , u ∈ H1/2(R).
SLEκ cuts an independent Finite energy η cuts ϕ ∈ E(C)
quantum plane into into u ∈ E(H), v ∈ E(H∗) and
independent quantum half-planes. IL(η) +DC(ϕ) = DH(u) +DH∗ (v).
Quantum zipper: isometric welding Isometric welding
of independent γ-LQG measures on R of eudx and ev dx , u, v ∈ H1/2(R)
produces SLEκ. produces a finite energy curve.
γ-LQG chaos w.r.t. Minkowski content eϕ|η |dz|, ϕ|η ∈ H1/2(η),
equals the pushforward of equals the pushforward of
γ-LQG measures on R. eudx and ev dx , u, v ∈ H1/2(R).
Bi-infinite flow-line of eiΦ/χ ≈ eiγΦ/2 Bi-infinite flow-line of eiϕ

is an SLEκ loop measurable wrt. Φ. is a finite energy curve
DC(ϕ) = IL(η) +DC(ϕ0).

(work in progress) Complex identity ⇔ welding+flow-line.
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Thanks for your attention!
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