Conformal Field Theory on the Riemann Sphere \&
 its Boundary Version for SLE
 based on joint work with N. Makarov

Nam-Gyu Kang
School of Mathematics, KIAS

Probability and Quantum Field Theory: discrete models, CFT, SLE and constructive aspects

June 20, 2019

WC 2020 Satellite Conference

organized by Tom Alberts, Nam-Gyu Kang, and Fredrik Viklund

WC in Probability \& Statistics
August 17 - 21, 2020
Seoul National University Seoul, Korea

WC 2020 Satellite Conference
August 10 - 14, 2020
or
August 24 - 28, 2020
Jeju island, Korea

WC 2020 Satellite Conference will be held in Jeju island, Korea

Jeju island has three UNESCO World Heritage sites. It is packed with museums and theme parks and also has horses, mountains, lava tube caves, and waterfalls with clear blue ocean lapping its beaches.

Outline

- In the semi-expository paper "(with N. Makarov) Gaussian free field and conformal field theory, Astérisque $\mathbf{3 5 3}$ (2013)," we presented the link between CFT and chordal SLE (κ).
- In the paper "(with N. Makarov) Calculus of conformal fields on a compact Riemann surface, arXiv:1708.07361," we presented analytical implementation of conformal field theory on a compact Riemann surface.
- We treat a stress tensor and the Virasoro field in terms of Lie derivatives.
- We construct a version of CFT on $\widehat{\mathbb{C}}$ and its boundary version for chordal/radial $\operatorname{SLE}(\kappa, \rho)$ from Gaussian free field and its background charge modifications.

Outline

This approach can be extended to

- various patterns of insertion, e.g., N-leg operators, screening for multiple SLEs (with T. Alberts \& N. Makarov, in preparation, $2019+\varepsilon, \varepsilon \geq 171 / 365$),

- several conformal settings, e.g., annulus SLE with Dirichlet/excursion reflected boundary conditions (with S. Byun \& H. Tak, arXiv:1806.03638) using the Eguchi-Ooguri version of Ward's equations.

Conformal Field Theory of Mathematics (SLEs),

by Mathematicians,
for Mathematicians

Gaussian Free Field Φ

and its approximation Φ_{n}

- Φ : Gaussian Free Field

$$
\Phi=\sum_{n=1}^{\infty} a_{n} f_{n}
$$

- f_{n} : O.N.B. for $W_{0}^{1,2}(D)$ with Dirichlet inner product.
- a_{n} : i.i.d. $\sim N(0,1)$.
- $\Phi_{n}(z)=\sqrt{2} \sum_{j=1}^{n}\left(G\left(z, \lambda_{j}\right)-G\left(z, \mu_{j}\right)\right)$.

Figure: the graph of Φ_{n}

$$
\begin{gathered}
\mathbb{E}[\Phi(f) \Phi(g)]=\iint \mathbf{E}[\Phi(z) \Phi(w)] f(z) g(w) d A(z) d A(w) \\
" \mathbb{E} "[\Phi(z) \Phi(w)]=2 G(z, w)=: \mathbf{E}[\Phi(z) \Phi(w)] \equiv\langle\Phi(z) \Phi(w)\rangle,
\end{gathered}
$$

Singularities of Φ_{n}

- $\Phi_{n}(z)=\sqrt{2} \sum_{j=1}^{n}\left(G\left(z, \lambda_{j}\right)-G\left(z, \mu_{j}\right)\right)$.
- $\left\{\lambda_{j}\right\}_{j=1}^{n}$: eigenvalues of the Ginibre ensemble, $\left\{\mu_{j}\right\}_{j=1}^{n}$: an independent copy.
- Ginibre ensemble is the $n \times n$ random matrix $\left(a_{j, k}\right)_{j, k=1}^{n}$.
- $a_{j, k}$: i.i.d. complex Gaussians with mean zero and variance $1 / n$.
- $\Phi_{n}(f) \xrightarrow{\text { law }} \Phi(f)$.

Figure: Ginibre eigenvalues and uniform points ($n=4096$)

Dirichlet Boundary Conditions

GFF + a height function

$$
H_{\lambda}(z)=\sqrt{2} \lambda(\arg (1+z)-\arg (1-z))
$$

Level Lines

$\lambda=1$

Figure: $\Phi_{n}(z)+H_{(\lambda=1)}(z)=0$.

Zero Sets: SLE(4)

O. Schramm and S. Sheffield

Figure: $\Phi_{n}(z)+H_{(\lambda=1)}(z)=0$.

Relation between CFT and Chordal SLE (κ)

Let $a=\sqrt{2 / \kappa}, b=a(\kappa / 4-1)$ and

$$
\Phi_{(b)}:=\Phi-\underset{\substack{\text { the background charge } 2 b \text { at } q}}{2 b \arg w^{\prime}} \quad, \quad \widehat{\Phi}:=\Phi_{(b)}+\underset{\substack{\text { the height function }}}{2 a \arg w,}
$$

where w is a conformal map from (D, p, q) onto $(\mathbb{H}, 0, \infty)$.
Field Markov Property: for fields F_{j} generated by $\widehat{\Phi}$ under the OPE multiplication *,

Chordal Schramm-Loewner Evolution

- SLE (κ) map $g_{t}(z): D_{t} \rightarrow \mathbb{H}$

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-\sqrt{\kappa} B_{t}}, \quad g_{0}(z)=z
$$

- B_{t} : a 1-D standard Brownian motion on $\mathbb{R}, B_{0}=0$.
- $g_{t}(z)$ is well-defined up to the first time $\tau(z)$ such that

$$
\lim _{t \uparrow \tau(z)} g_{t}(z)-\sqrt{\kappa} B_{t}=0
$$

- $D_{t}:=\{z \in \mathbb{H}: \tau(z)>t\}$.
- SLE hulls: $K_{t}:=\{z \in \overline{\mathbb{H}}: \tau(z) \leq t\}$.
- SLE trace: $\gamma(t)=g_{t}^{-1}\left(\sqrt{\kappa} B_{t}\right)$.

Harmonic Explorer

O. Schramm and S. Sheffield

Harmonic Explorer

O. Schramm and S. Sheffield

Harmonic Explorer

O. Schramm and S. Sheffield

Figure: As the mesh gets finer, does the HE converge?

Harmonic Explorer and SLE(4)

O. Schramm and S. Sheffield

Figure: As the mesh gets finer, the HE converges to chordal SLE(4).

Percolation Formula

$\mathbb{P}[z$ is to the left of $\operatorname{SLE}(4) \operatorname{trace}]=(1 / \pi) \arg z$.

- The harmonic measure $(1 / \pi) \arg z=\omega(z,(-\infty, 0), \mathbb{H})$ gives the probability that a 2D BM starting at z first exits \mathbb{H} in $(-\infty, 0)$.
- Let $Z_{t}=Z(t, z):=g_{t}(z)-\sqrt{\kappa} B_{t}$. Due to the conformal invariance, the harmonic measure $(1 / \pi) \arg Z$ gives the probability that a 2 D BM starting at z first exits $\mathbb{H} \backslash \gamma[0, t]$ either in $(-\infty, 0)$ or on the LHS of $\gamma[0, t]$.

Martingale Observable for SLE(4)

- By Itô calculus,

$$
d \log Z_{t}=\frac{(4-\kappa)}{2 Z_{t}^{2}} d t-\frac{\sqrt{\kappa}}{Z_{t}} d B_{t}
$$

- When $\kappa=4$, we have

$$
d \arg Z_{t}=-\operatorname{Im} \frac{2}{Z_{t}} d B_{t}
$$

- Hence, at a fixed time t, the martingale $(1 / \pi) \arg Z(t, z)$ represents the probability that, conditioned on the $\operatorname{SLE}(4)$ path $\gamma[0, t]$ up until time t, the point z will lie to the left of the path $\gamma[0, \infty)$.
- A discrete version of this property holds for the harmonic explorer.
- Under quite general conditions, just one MO determines the law uniquely. This is the main method due to Lawler-Schramm-Werner of proving the scaling limit convergence of interface curves in lattice models. In almost all known cases, there is a discrete MO.
- CFT is a provider for SLE MOs.

Gaussian Free Field

on a compact Riemann surface M
We introduce the Gaussian free field Ψ on M as a bi-variant Fock space functionals $\Psi\left(z, z_{0}\right)$, "generalized" elements of Fock space

$$
\Psi\left(z, z_{0}\right)=\Psi\left(\delta_{z}-\delta_{z_{0}}\right)
$$

where $\delta_{z}-\delta_{z_{0}}$ is the "generalized" elements of $\mathcal{E}(M)$.
We now define the correlation function of Gaussian free field by

$$
\mathbf{E}[\Psi(p, q) \Psi(\tilde{p}, \tilde{q})]=2\left(G_{p, q}(\tilde{p})-G_{p, q}(\tilde{q})\right), \quad(\tilde{p}, \tilde{q} \notin\{p, q\})
$$

On the Riemann sphere,

$$
\mathbf{E} \Psi(p, q) \Psi(\tilde{p}, \tilde{q})=\log |\lambda(p, q ; \tilde{p}, \tilde{q})|^{2}
$$

where

$$
\lambda(p, q ; \tilde{p}, \tilde{q})=\frac{(\tilde{p}-q)(\tilde{q}-p)}{(\tilde{p}-p)(\tilde{q}-q)}
$$

Fock Space Fields

Fock space fields are obtained from the Gaussian free field (GFF) Ψ by applying the basic operations:
i. derivatives;
ii. Wick's products : : $\equiv \odot$;
iii. multiplying by scalar functions and taking linear combinations.

Examples

$$
J=\partial \Psi, \quad \Psi \odot \Psi(\equiv: \Psi \Psi:), \quad J \odot \Psi, \quad J \odot J, \quad e^{\odot \alpha \Psi}=\sum_{n=0}^{\infty} \frac{\alpha^{n} \Psi^{\odot n}}{n!} .
$$

Examples

- $\mathbf{E}[J(\zeta) J(z)]=\partial_{\zeta} \partial_{z} \mathbf{E}\left[\Phi\left(\zeta, \zeta_{0}\right) \Phi\left(z, z_{0}\right)\right]$.
- $J(\zeta) \odot J(z)=J(\zeta) J(z)-\mathbf{E}[J(\zeta) J(z)]$.

Chiral Fields

The GFF $\Psi=\Psi^{+}+\Psi^{-}$is decomposed into a chiral bosonic holomorphic field Ψ^{+} and its anti-holomorphic part $\Psi^{-}=\overline{\Psi^{+}}$:

$$
\Psi^{+}\left(z, z_{0}\right):=\left\{\int_{\gamma: z_{0} \rightarrow z} \partial_{\zeta} \Psi\left(\zeta, \zeta_{0}\right) \mathrm{d} \zeta\right\}
$$

On the Riemann sphere,

$$
\mathbf{E} \Psi^{+}(p, q) \Psi^{+}(\tilde{p}, \tilde{q})=\log \lambda(p, q ; \tilde{p}, \tilde{q})
$$

where

$$
\lambda(p, q ; \tilde{p}, \tilde{q})=\frac{(\tilde{p}-q)(\tilde{q}-p)}{(\tilde{p}-p)(\tilde{q}-q)}
$$

We introduce formal 1-point fields $\Psi^{+}, \Psi^{-}=\overline{\Psi^{+}}$with formal correlations:

$$
\mathbf{E} \Psi^{+}(z) \Psi^{+}\left(z_{0}\right)=\log \frac{1}{z-z_{0}}, \quad \mathbf{E} \Psi^{+}(z) \Psi^{-}\left(z_{0}\right)=0
$$

OPE

We write the OPE of two (holomorphic) fields $X(\zeta)$ and $Y(z)$ as

$$
X(\zeta) Y(z)=\sum C_{j}(z)(\zeta-z)^{j} \quad(\zeta \rightarrow z, \zeta \neq z)
$$

Write $X * Y$ for C_{0}.
(Cf. Vichi's, Peltola's, Kupiainen's, Litvinov's, and Viklund's talks.)
Example

$$
\begin{aligned}
J(\zeta) J(z) & =\mathbf{E}[J(\zeta) J(z)]+J(\zeta) \odot J(z)=-\frac{w^{\prime}(\zeta) w^{\prime}(z)}{(w(\zeta)-w(z))^{2}}+J(\zeta) \odot J(z) \\
& =-\frac{1}{(\zeta-z)^{2}} \underbrace{-\frac{1}{6} S_{w}(z)+J(z) \odot J(z)}_{J * J(z)}+\cdots
\end{aligned}
$$

Examples

$$
\begin{gathered}
\Phi^{* 2}=\Phi^{\odot 2}+2 c, \quad c=\log C \\
\mathcal{V}^{\alpha}=e^{* \alpha \Phi}=\sum_{n=0}^{\infty} \frac{\alpha^{n} \Phi^{* n}}{n!}=C^{\alpha^{2}} e^{\odot \alpha \Phi}, \quad C=\frac{2 \operatorname{Im} w}{\left|w^{\prime}\right|}
\end{gathered}
$$

OPE Exponentials

Example

$$
e^{* i a \Phi}=\sum_{n=0}^{\infty} \frac{(i a)^{n} \Phi^{* n}}{n!}=C^{-a^{2}} e^{\odot i a \Phi}, \quad C=\frac{2 \operatorname{Im} w}{\left|w^{\prime}\right|}
$$

For a divisor $\boldsymbol{\tau}=\sum_{j} \tau_{j} \cdot z_{j} \equiv \sum_{j} \tau_{j} \cdot \delta_{z_{j}}$ with the neutrality condition $\sum \tau_{j}=0$, we define the OPE exponential as

$$
\mathcal{O}[\boldsymbol{\tau}]=C[\boldsymbol{\tau}] e^{\odot i \Psi^{+}[\boldsymbol{\tau}]}, \quad \Psi^{+}[\boldsymbol{\tau}]=\sum \tau_{j} \Psi^{+}\left(z_{j}\right)
$$

where $C[\boldsymbol{\tau}]$ is the Coulomb gas correlation function defined by

$$
C[\boldsymbol{\tau}]=\prod_{j<k}\left(z_{j}-z_{k}\right)^{\tau_{j} \tau_{k}} \text { in } \mathrm{id}_{\widehat{\mathbb{C}}}
$$

and $C[\boldsymbol{\tau}]$ is a λ_{j}-differential at z_{j} with $\lambda_{j}=\frac{1}{2} \tau_{j}^{2}$.
The Coulomb gas correlation function $C\left[a \cdot p+\sum \beta_{k} \cdot q_{k}-\left(a+\sum \beta_{k}\right) \cdot q\right]$ is the partition function of chordal $\operatorname{SLE}(4, \boldsymbol{\rho})\left(a=\sqrt{2 / \kappa}, \rho_{k}=\sqrt{2 \kappa} \beta_{k}\right)$.

GFF with Dirichlet/Neumann Boundary Conditions

 in a simply connected domain DGFF with Dirichlet/Neumann boundary conditions in D can be constructed from Ψ :

$$
\begin{aligned}
\Phi(z) & =\Psi^{+}\left(z, z_{*}\right) \equiv \Psi^{+}(z)-\Psi^{+}\left(z^{*}\right) \\
\Phi^{\mathcal{N}}(z) & =i\left(\Psi^{+}(z)+\Phi^{+}\left(z^{*}\right)\right)
\end{aligned}
$$

In the upper-half plane \mathbb{H},

$$
\mathbf{E} \Phi(\zeta) \Phi(z)=2 G_{H}(\zeta, z)=2 \log \left|\frac{\zeta-\bar{z}}{\zeta-z}\right|
$$

and

$$
\mathbf{E} \Phi^{\mathcal{N}}(\zeta) \Phi^{\mathcal{N}}(z)=2 G_{\mathbb{H}}^{\mathcal{N}}(\zeta, z)=2 \log |(\zeta-\bar{z})(\zeta-z)|
$$

More generally,

$$
\Phi\left[\boldsymbol{\tau}, \boldsymbol{\tau}_{*}\right]=\sum \tau_{j} \Phi^{+}\left(z_{j}\right)-\tau_{* j} \Phi^{-}\left(z_{j}\right)
$$

can be constructed as

$$
\Phi\left[\boldsymbol{\tau}, \boldsymbol{\tau}_{*}\right]=\Psi^{+}\left[\boldsymbol{\tau}+\boldsymbol{\tau}_{*}^{\#}\right], \quad \boldsymbol{\tau}_{*}^{\#}=\sum \tau_{* k} \cdot z_{k}^{*}
$$

Simple PPS Forms

A non-random field ψ is called a $\operatorname{PPS}(i b)$ form if the transformation law is

$$
\psi=\tilde{\psi} \circ h+i b \log h^{\prime}
$$

where $\psi=(\psi \| \phi)$ in a chart $\phi, \tilde{\psi} \underset{\tilde{\phi}}{=}(\psi \| \tilde{\phi})$ in a chart $\tilde{\phi}$, and h is the transition map between two overlapping charts $\phi, \tilde{\phi}$.

We'll be mostly concern with (holomorphic) PPS forms ψ with logarithmic singularities such that $\bar{\partial} \partial \psi$ is a finite linear combination of δ-measures, and we'll call such forms simple.

Background Charges

Let ψ be a simple PPS $(i b)$ form (which determines a GFF modification). Denote

$$
\boldsymbol{\beta} \equiv \boldsymbol{\beta}_{\psi}=\frac{i}{\pi} \bar{\partial} \partial \psi .
$$

We think of β as a measure,

$$
\boldsymbol{\beta}=\sum \beta_{k} \delta_{q_{k}},
$$

a (1,1)-differential, or a divisor $\left(\sum \beta_{k} \cdot q_{k}\right)$, and call it the background charge of ψ.
We now define the background modification $\Psi_{\boldsymbol{\beta}}^{+}$of Ψ^{+}as

$$
\Psi_{\boldsymbol{\beta}}^{+}=\Psi^{+}+\psi_{\boldsymbol{\beta}}^{+}, \quad \boldsymbol{\beta}=\frac{i}{\pi} \bar{\partial} \partial \psi_{\boldsymbol{\beta}}^{+} .
$$

More precisely, $\psi_{\boldsymbol{\beta}}^{+}=i b \log w^{\prime}+\sum \beta_{k} \log \left(w-w\left(q_{k}\right)\right), \quad w: S \rightarrow \widehat{\mathbb{C}}$.

Neutrality Condition

Recall the Gauss-Bonnet formula: for every conformal metric ρ we have

$$
\int_{M} \kappa \rho d x \wedge d y=2 \pi \chi(M), \quad \kappa=-\frac{2 \bar{\partial} \partial \log \rho}{\rho}
$$

The Gauss-Bonnet formula extends to simple PPS(1) forms ψ :

$$
-\int_{M} \bar{\partial} \partial \psi=\pi \chi(M)
$$

We have the neutrality condition for $\boldsymbol{\beta} \equiv \boldsymbol{\beta}_{\psi}, \psi \in \operatorname{PPS}(i b)$,

$$
\begin{equation*}
\int \boldsymbol{\beta}\left(=\sum \beta_{k}\right)=b \chi(M) \tag{b}
\end{equation*}
$$

OPE Exponentials with Background Charges

OPE exponentials on the Riemann sphere are modified as

$$
\mathcal{O}_{\boldsymbol{\beta}}[\boldsymbol{\tau}]=\frac{C_{(b)}[\boldsymbol{\tau}+\boldsymbol{\beta}]}{C_{(b)}[\boldsymbol{\beta}]} e^{\odot i \Psi^{+}[\boldsymbol{\tau}]}, \quad \boldsymbol{\tau} \in\left(\mathrm{NC}_{0}\right), \quad \boldsymbol{\beta} \in\left(\mathrm{NC}_{b}\right), \quad\left(\int \boldsymbol{\beta}=2 b\right),
$$

where $C_{(b)}[\boldsymbol{\sigma}]\left(\boldsymbol{\sigma}=\sum \sigma_{j} \cdot z_{j} \in\left(\mathrm{NC}_{b}\right)\right)$ is a λ_{j}-differential at $z_{j}: \lambda_{j}=\frac{1}{2} \sigma_{j}^{2}-b \sigma_{j}$ and

$$
C_{(b)}[\boldsymbol{\sigma}]=\prod_{j<k}\left(z_{j}-z_{k}\right)^{\sigma_{j} \sigma_{k}} \quad \text { in } \operatorname{id}_{\widehat{\mathbb{C}}}
$$

Their correlations are

$$
\mathbf{E} \mathcal{O}_{\boldsymbol{\beta}}[\boldsymbol{\tau}]=\frac{C_{(b)}[\boldsymbol{\tau}+\boldsymbol{\beta}]}{C_{(b)}[\boldsymbol{\beta}]}=\prod_{j<k}\left(z_{j}-z_{k}\right)^{\tau_{j} \tau_{k}} \prod_{j, k}\left(z_{j}-q_{k}\right)^{\tau_{j} \beta_{k}}
$$

if $\operatorname{supp} \boldsymbol{\beta} \cap \operatorname{supp} \boldsymbol{\tau}=\emptyset$.
Note that there are no interactions between background charges in $\mathbf{E} \mathcal{O}_{\boldsymbol{\beta}}[\boldsymbol{\tau}]$.
The Coulomb gas correlation function $C_{(b)}\left[a \cdot p+\sum \beta_{k} \cdot q_{k}-\left(a+\sum \beta_{k}\right) \cdot q\right]$ is the partition function of chordal $\operatorname{SLE}(\kappa, \boldsymbol{\rho})\left(a=\sqrt{2 / \kappa}, b=a(\kappa / 4-1), \rho_{k}=\sqrt{2 \kappa} \beta_{k}\right)$.

Background Charge Modifications

For double divisors $\left(\boldsymbol{\beta}, \boldsymbol{\beta}_{*}\right),\left(\boldsymbol{\tau}, \boldsymbol{\tau}_{*}\right)$ with the neutrality conditions $\boldsymbol{\beta}+\boldsymbol{\beta}_{*} \in(\mathrm{NC})_{b}, \boldsymbol{\tau}+\boldsymbol{\tau}_{*} \in(\mathrm{NC})_{0}$, we define

$$
\Phi_{\boldsymbol{\beta}, \boldsymbol{\beta}_{*}}\left[\boldsymbol{\tau}, \boldsymbol{\tau}_{*}\right]:=\Psi_{\boldsymbol{\beta}+\boldsymbol{\beta}_{*}^{\#}}^{+}\left[\boldsymbol{\tau}+\boldsymbol{\tau}_{*}^{\#}\right] .
$$

The simplest chordal case:
$q \in \partial D, \boldsymbol{\beta}=2 b \cdot q, \boldsymbol{\beta}_{*}=\mathbf{0}$

$$
\begin{aligned}
& \Phi_{\boldsymbol{\beta}}=\Phi-2 b \arg w^{\prime}, \\
& w:(D, q) \rightarrow(\mathbb{H}, \infty)
\end{aligned}
$$

The simplest radial case:

$$
q \in D, \boldsymbol{\beta}=\boldsymbol{\beta}_{*}=b \cdot q
$$

$$
\begin{gathered}
\Phi_{\boldsymbol{\beta}, \boldsymbol{\beta}_{*}}=\Phi-2 b \arg w^{\prime} / w, \\
w:(D, q) \rightarrow(\mathbb{D}, 0)
\end{gathered}
$$

OPE Exponentials

For double divisors $\left(\boldsymbol{\beta}, \boldsymbol{\beta}_{*}\right),\left(\boldsymbol{\tau}, \boldsymbol{\tau}_{*}\right)$ with the neutrality conditions $\boldsymbol{\beta}+\boldsymbol{\beta}_{*} \in(\mathrm{NC})_{b}, \boldsymbol{\tau}+\boldsymbol{\tau}_{*} \in(\mathrm{NC})_{0}$, we define

$$
\mathcal{O}_{\boldsymbol{\beta}, \boldsymbol{\beta}_{*}}^{D}\left[\boldsymbol{\tau}, \boldsymbol{\tau}_{*}\right]:=\mathcal{O}_{\boldsymbol{\beta}+\boldsymbol{\beta}_{*}^{\#}}^{S}\left[\boldsymbol{\tau}+\boldsymbol{\tau}_{*}^{\#}\right] .
$$

The simplest chordal case:
$q \in \partial D, \boldsymbol{\beta}=2 b \cdot q, \boldsymbol{\beta}_{*}=\mathbf{0}$

The simplest radial case:
$q \in D, \boldsymbol{\beta}=\boldsymbol{\beta}_{*}=b \cdot q$

$\operatorname{SLE}(\kappa, \boldsymbol{\rho})$

For $\boldsymbol{\rho}=\sum \rho_{k} \cdot q_{k}$, the chordal $\operatorname{SLE}(\kappa, \boldsymbol{\rho})$ is the Loewner evolution

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-\xi_{t}},
$$

driven by

$$
d \xi_{t}=\sqrt{\kappa} d B_{t}+\sum_{k} \frac{\rho_{k} d t}{\xi_{t}-q_{k}(t)}, \quad " q_{k}(t)=g_{t}\left(q_{k}\right) "
$$

For $\eta \in \mathbb{R}$ and $\boldsymbol{\rho}=\sum \rho_{k} \cdot q_{k}$, the radial $\operatorname{SLE}_{\eta}(\kappa, \boldsymbol{\rho})$ (with spin $s=\lambda_{q}-\lambda_{* q}$) is the Loewner evolution

$$
\partial_{t} g_{t}(z)=g_{t}(z) \frac{\zeta_{t}+g_{t}(z)}{\zeta_{t}-g_{t}(z)}
$$

driven by

$$
\zeta_{t}=e^{i \theta_{t}}, \quad d \theta_{t}=\sqrt{\kappa} d B_{t}+\eta d t+i \sum_{k} \frac{\rho_{k}}{2} \frac{\zeta_{t}+q_{k}(t)}{\zeta_{t}-q_{k}(t)} d t, \quad " q_{k}(t)=g_{t}\left(q_{k}\right) "
$$

Zero Sets

Various versions of SLE(4)

$$
H_{\lambda}(z)=\sqrt{2} \lambda(\arg (1+z)-\arg (1-z))
$$

Figure: $\Phi_{n}(z)+H_{(\lambda \nearrow)}(z)=0$.

Insertions

Suppose that the numbers a, b and β_{k} 's are related to κ and ρ_{k} 's as

$$
a=\sqrt{\frac{2}{\kappa}}, \quad b=a\left(\frac{\kappa}{4}-1\right), \quad \rho_{k}=\sqrt{2 \kappa} \beta_{k} .
$$

Under the insertion of a one-leg operator

$$
\frac{\mathcal{O}_{\boldsymbol{\beta}}[\boldsymbol{\alpha}]}{\mathbf{E} \mathcal{O}_{\boldsymbol{\beta}}[\boldsymbol{\alpha}]}=e^{\odot i \Phi^{+}[\boldsymbol{\alpha}]}, \quad\left(\boldsymbol{\alpha}=a \cdot p-a \cdot q, \quad \boldsymbol{\beta}=\sum \beta_{k} \cdot q_{k}+\left(2 b-\sum \beta_{k}\right) \cdot q\right)
$$

we have

$$
\Phi_{\boldsymbol{\beta}} \mapsto \Phi_{\boldsymbol{\beta}}+2 a \arg w, \quad w:(D, p, q) \rightarrow(\mathbb{H}, 0, \infty)
$$

Remark. Under the insertion of $e^{\odot i \Phi^{+}\left[\boldsymbol{\beta}_{2}-\boldsymbol{\beta}_{1}\right]}$, we have $\Phi_{\boldsymbol{\beta}_{1}} \mapsto \Phi_{\boldsymbol{\beta}_{2}}$.

Insertions

Example: chordal case $(q \in \partial D)$ with $\beta=2 b \cdot q$

$+$

For $w:(D, p, q) \rightarrow(\mathbb{H}, 0, \infty)$,

$$
\begin{aligned}
\mathbf{E} \Phi_{\boldsymbol{\beta}}(z) \frac{\mathcal{O}_{\boldsymbol{\beta}}[\boldsymbol{\alpha}]}{\mathbf{E} \mathcal{O}_{\boldsymbol{\beta}}[\boldsymbol{\alpha}]} & =\mathbf{E}\left[\Phi_{\boldsymbol{\beta}}(z) e^{i a \odot \Phi^{+}(p, q)}\right]=i a \mathbf{E}\left[\Phi(z)\left(\Phi^{+}(p, q)\right)\right]+\mathbf{E} \Phi_{\boldsymbol{\beta}}(z) \\
& =i a \log \frac{w(p)-\overline{w(z)}}{w(p)-w(z)}-i a \log \frac{w(q)-\overline{w(z)}}{w(q)-w(z)}+\mathbf{E} \Phi_{\boldsymbol{\beta}}(z) \\
& =2 a \arg w(z)+\mathbf{E} \Phi_{\boldsymbol{\beta}}(z) \\
& =2 a \arg w(z)-2 b \arg w^{\prime}(z)
\end{aligned}
$$

Martingale-Observables for Chordal SLE $(\kappa, \boldsymbol{\rho})$

Let $\boldsymbol{\beta}=a \cdot p+\boldsymbol{\eta} \in(\mathrm{NC})_{b}, \quad a=\sqrt{2 / \kappa}, \quad b=a(\kappa / 4-1)$.
We say that a non-random function M is a martingale-observable for $\operatorname{SLE}(\kappa, \boldsymbol{\rho})$ if for any $z_{1}, \cdots, z_{n} \in D$, the process

$$
M_{t}\left(z_{1}, \cdots, z_{n}\right)=M_{D_{t}, a \cdot \gamma_{t}+\boldsymbol{\eta}}\left(z_{1}, \cdots, z_{n}\right)
$$

(stopped when any z_{j} or any q_{k} is absorbed by the Loewner hull K_{t}) is a local martingale on SLE probability space.

Theorem (K-Makarov; Bauer-Bernard, Cardy, Kytölä, Rushkin-Bettelheim-Gruzberg-Wiegmann)

The correlation function in the OPE family of $\Phi_{\boldsymbol{\beta}}$ forms

$$
\text { a chordal SLE }(\kappa, \rho) \text { martingale-observable. }
$$

Example.

$$
\varphi_{t}=2 a \arg w_{t}-2 b \arg w_{t}^{\prime}+2 \sum \beta_{k} \arg \left(w_{t}-w_{t}\left(q_{k}\right)\right)
$$

Sketch of Proof

Let $\boldsymbol{\beta}=a \cdot \xi+\boldsymbol{\eta} \in(\mathrm{NC})_{b}$ and g_{t} be the SLE conformal maps, $g_{t}\left(\gamma_{t}\right)=\xi_{t}$. Denote

$$
R_{\xi}(z) \equiv \mathbf{E}\left[e^{\odot i a \Phi^{+}(\xi, q)} X_{1}\left(z_{1}\right) \cdots X_{n}\left(z_{n}\right)\right] \equiv \frac{\mathbf{E} \mathcal{O}_{\widetilde{\boldsymbol{\beta}}}[a \cdot \xi-a \cdot q] X_{1}\left(z_{1}\right) \cdots X_{n}\left(z_{n}\right)}{\mathbf{E} \mathcal{O}_{\widetilde{\boldsymbol{\beta}}}[a \cdot \xi-a \cdot q]}
$$

on (D, ξ, q). Here, $\boldsymbol{\beta}=\widetilde{\boldsymbol{\beta}}+a \cdot \xi-a \cdot q$. Then

$$
M_{t}=m\left(\xi_{t}, t\right),
$$

where $m(\xi, t)=\left(R_{\xi} \| g_{t}^{-1}\right)$. Apply Itô's to M_{t} :

$$
d M_{t}=\left.\partial_{\xi}\right|_{\xi=\xi_{t}} m(\xi, t) d \xi_{t}+\left.\frac{\kappa}{2} \partial_{\xi}^{2}\right|_{\xi=\xi_{t}} m(\xi, t) d t-2\left(\mathcal{L}_{\xi_{\xi_{t}}} R_{\xi_{t}} \| g_{t}^{-1}\right) d t
$$

where $v_{\xi}(z)=1 /(\xi-z)$ and

$$
d \xi_{t}=\sqrt{\kappa} B_{t}+\Lambda\left(\xi_{t}, \boldsymbol{q}(t)\right) d t, \quad \Lambda(\xi, \boldsymbol{q})=\kappa \partial_{\xi} \log Z(\xi, \boldsymbol{q})
$$

where

$$
Z(\xi, \boldsymbol{q})=\mathbf{E} \mathcal{O}_{\widetilde{\boldsymbol{\beta}}}^{\mathrm{eff}}[a \cdot \xi-a \cdot q]=C_{(b)}[\boldsymbol{\beta}] .
$$

The drift term of $d M_{t}$ vanishes by the BPZ-Cardy equation (Ward's equation and the level two degeneracy equation for the one-leg operator $\mathcal{O}_{\tilde{\boldsymbol{\beta}}}[a \cdot \xi-a \cdot q]$).

Lie Derivative

Let

$$
\left(X_{t} \| \phi\right)(z)=\left(X \| \phi \circ \psi_{-t}\right)(z)
$$

where ψ_{t} is a local flow of v.
We define the Lie derivative (or fisherman's derivative) of X by

$$
\left(\mathcal{L}_{v} X \| \phi\right)(z)=\left.\frac{d}{d t}\right|_{t=0}\left(X \| \phi \circ \psi_{-t}\right)(z) .
$$

The flow carries all possible differential geometric objects past the fisherman, and the fisherman sits there and differentiates them.

Cf. V. I. Arnold, Mathematical Methods of Classical Mechanics.

Lie derivative

If X is a differential, then

$$
X_{t}(z)=\left(X\left(\psi_{t} z\right) \| \psi_{-t}\right)=\left(\psi_{t}^{\prime}(z)\right)^{\lambda}\left(\overline{\psi_{t}^{\prime}(z)}\right)^{\lambda_{*}} X\left(\psi_{t} z\right)
$$

and

$$
\mathcal{L}_{v} X=\left(v \partial+\lambda v^{\prime}+\bar{v} \bar{\partial}+\lambda_{*} \overline{v^{\prime}}\right) X .
$$

The Lie derivative operator $v \mapsto \mathcal{L}_{v}$ depends \mathbb{R}-linearly on v. Denote

$$
\mathcal{L}_{v}^{+}=\frac{\mathcal{L}_{v}-i \mathcal{L}_{i v}}{2}, \quad \mathcal{L}_{v}^{-}=\frac{\mathcal{L}_{v}+i \mathcal{L}_{i v}}{2},
$$

so that

$$
\mathcal{L}_{v}=\mathcal{L}_{v}^{+}+\mathcal{L}_{v}^{-}
$$

If X is a differential, then

$$
\mathcal{L}_{v}^{+} X=\left(v \partial+\lambda v^{\prime}\right) X
$$

Stress Tensor

- A pair of quadratic differentials $W=\left(A_{+}, A_{-}\right)$is called a stress tensor for X if "residue form of Ward's identity" holds:

$$
\begin{aligned}
\mathcal{L}_{v}^{+} X(z) & =\frac{1}{2 \pi i} \oint_{(z)} v A_{+} X(z) \\
\mathcal{L}_{v}^{-} X(z) & =-\frac{1}{2 \pi i} \oint_{(z)} \bar{v} A_{-} X(z)
\end{aligned}
$$

where $\mathcal{L}_{v}^{ \pm}=\frac{\mathcal{L}_{v} \mp i \mathcal{L}_{i v}}{2}$.
Notation: $\mathcal{F}(W)$ is the family of fields with stress tensor $W=\left(A_{+}, A_{-}\right)$.

- If $X, Y \in \mathcal{F}(W)$, then $\partial X, X * Y \in \mathcal{F}(W)$.
- We have a stress tensor

$$
W=(A, \bar{A}), \quad A=-\frac{1}{2} J \odot J
$$

for Φ and its OPE family.

Virasoro Field

By definition, a Fock space field T is the Virasoro field for the family $\mathcal{F}(A, \bar{A})$ if
a. $T \in \mathcal{F}(A, \bar{A})$, and
b. $T-A$ is a non-random holomorphic Schwarzian form.

The OPE family $\mathcal{F}_{\boldsymbol{\beta}}$ of $\Phi_{\boldsymbol{\beta}}$ has the central charge $c=1-12 b^{2}$ and the Virasoro field

$$
T_{\boldsymbol{\beta}}=-\frac{1}{2} J_{\boldsymbol{\beta}} * J_{\boldsymbol{\beta}}+i b \partial J_{\boldsymbol{\beta}}, \quad J_{\boldsymbol{\beta}}=J+j_{\boldsymbol{\beta}}, \quad J=\partial \Phi, \quad j_{\boldsymbol{\beta}}=\partial \varphi_{\boldsymbol{\beta}}
$$

Theorem (Ward's equations)
For the tensor product X of fields in $\mathcal{F}_{\boldsymbol{\beta}}$, in the identity chart of \mathbb{H},

$$
\mathbf{E} T_{\boldsymbol{\beta}}(\xi) X=\mathbf{E} T_{\boldsymbol{\beta}}(\xi) \mathbf{E} X+\mathbf{E} \mathcal{L}_{k_{\xi}} X, \quad \xi \in \mathbb{R}, \quad k_{\xi}(z)=\frac{1}{\xi-z}
$$

Virasoro Generators

It is well known in the algebraic literature that if the generators \tilde{L}_{n} are constructed (Fairlie's construction ${ }^{1)}$) as

$$
\tilde{L}_{n}=L_{n}-i b(n+1) J_{n},
$$

where J_{n} 's and L_{n} 's are the modes of J and $T=-\frac{1}{2} J * J$:

$$
J_{n}(z):=\frac{1}{2 \pi i} \oint_{(z)}(\zeta-z)^{n} J(\zeta) d \zeta, \quad L_{n}(z):=\frac{1}{2 \pi i} \oint_{(z)}(\zeta-z)^{n+1} T(\zeta) d \zeta
$$

then \tilde{L}_{n} represent the Virasoro algebra with central charge $c=1-12 b^{2}$:

$$
\left[\tilde{L}_{m}, \tilde{L}_{n}\right]=(m-n) \tilde{L}_{m+n}+\frac{c}{12} m\left(m^{2}-1\right) \delta_{m+n, 0}
$$

(Cf. Peltola's, Litvinov's, and Viklund's talks.)
The one-leg operator $\mathcal{O}_{\boldsymbol{\beta}}[\boldsymbol{\tau}](\boldsymbol{\tau}=a \cdot \xi-a \cdot q)$ satisfies the level two degeneracy equations:

$$
\left(\tilde{L}_{-2}(\xi)-\frac{\kappa}{4} \tilde{L}_{-1}(\xi)^{2}\right) \mathcal{O}_{\boldsymbol{\beta}}[\boldsymbol{\tau}]=0
$$

or

$$
T_{\boldsymbol{\beta}} *_{\xi} \mathcal{O}_{\boldsymbol{\beta}}[\boldsymbol{\tau}]=\frac{\kappa}{4} \partial_{\xi}^{2} \mathcal{O}_{\boldsymbol{\beta}}[\boldsymbol{\tau}]
$$

Martingale-Observables for radial $\operatorname{SLE}_{\eta}(\kappa, \boldsymbol{\rho})$

For $\eta \in \mathbb{R}$ and $\boldsymbol{\rho}=\sum \rho_{k} \cdot q_{k}$, the radial $\operatorname{SLE}_{\eta}(\kappa, \boldsymbol{\rho})$ is the Loewner evolution

$$
\partial_{t} g_{t}(z)=g_{t}(z) \frac{\zeta_{t}+g_{t}(z)}{\zeta_{t}-g_{t}(z)}
$$

driven by

$$
\zeta_{t}=e^{i \theta_{t}}, \quad d \theta_{t}=\sqrt{\kappa} d B_{t}+\eta d t+i \sum_{k} \frac{\rho_{k}}{2} \frac{\zeta_{t}+q_{k}(t)}{\zeta_{t}-q_{k}(t)} d t, \quad " q_{k}(t)=g_{t}\left(q_{k}\right) "
$$

Let $\delta=i a \eta$ and
$\boldsymbol{\beta}=a \cdot p+\sum \beta_{k} \cdot q_{k}+\left(b-\frac{1}{2} \sum \beta_{k}-\frac{a+\delta}{2}\right) \cdot q, \quad \boldsymbol{\beta}_{*}=\left(b-\frac{1}{2} \sum \beta_{k}-\frac{a-\delta}{2}\right) \cdot q$.
Theorem (K-Makarov; Bauer-Bernard, Cardy)
The correlation function in the OPE family of $\Phi_{\boldsymbol{\beta}, \boldsymbol{\beta}_{*}}$ forms

$$
\text { a radial } \operatorname{SLE}_{\eta}(\kappa, \boldsymbol{\rho}) \text { martingale-observable. }
$$

Example.

$$
\varphi_{t}=-a \arg \frac{w_{t}}{\left(1-w_{t}\right)^{2}}-2 b \arg \frac{w_{t}^{\prime}}{w_{t}}-\eta a \log \left|w_{t}\right|-\sum \beta_{k} \arg \frac{w_{t} / q_{k}(t)}{\left(1-w_{t} / q_{k}(t)\right)^{2}}
$$

Thanks!

