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WC 2020 Satellite Conference will be held in Jeju island, Korea

Jeju island has three UNESCO World Heritage sites. It is packed with museums and
theme parks and also has horses, mountains, lava tube caves, and waterfalls with
clear blue ocean lapping its beaches.
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Outline

I In the semi-expository paper “(with N. Makarov) Gaussian free field and
conformal field theory, Astérisque 353 (2013),” we presented the link between
CFT and chordal SLE(κ).

I In the paper “(with N. Makarov) Calculus of conformal fields on a compact
Riemann surface, arXiv:1708.07361,” we presented analytical implementation
of conformal field theory on a compact Riemann surface.

I We treat a stress tensor and the Virasoro field in terms of Lie derivatives.

I We construct a version of CFT on Ĉ and its boundary version for chordal/radial
SLE(κ,ρ) from Gaussian free field and its background charge modifications.
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Outline
This approach can be extended to

I various patterns of insertion, e.g., N-leg operators, screening for multiple SLEs
(with T. Alberts & N. Makarov, in preparation, 2019 + ε, ε ≥ 171/365),

I several conformal settings, e.g., annulus SLE with Dirichlet/excursion reflected
boundary conditions (with S. Byun & H. Tak, arXiv:1806.03638) using the
Eguchi-Ooguri version of Ward’s equations.
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Conformal Field Theory

of Mathematics (SLEs),

by Mathematicians,

for Mathematicians
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Gaussian Free Field Φ
and its approximation Φn

Figure: the graph of Φn

I Φ : Gaussian Free Field

Φ =
∞∑

n=1

anfn.

I fn: O.N.B. for W1,2
0 (D) with Dirichlet inner

product.
I an: i.i.d. ∼ N(0, 1).

I Φn(z) =
√

2
∑n

j=1(G(z, λj)− G(z, µj)).

E[Φ(f )Φ(g)] =

∫∫
E[Φ(z)Φ(w)] f (z)g(w) dA(z) dA(w).

“E”[Φ(z)Φ(w)] = 2G(z,w) =: E[Φ(z)Φ(w)] ≡ 〈Φ(z)Φ(w)〉,
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Singularities of Φn

I Φn(z) =
√

2
∑n

j=1(G(z, λj)− G(z, µj)).

I {λj}n
j=1 : eigenvalues of the Ginibre ensemble, {µj}n

j=1: an independent copy.
I Ginibre ensemble is the n× n random matrix (aj,k)

n
j,k=1.

I aj,k : i.i.d. complex Gaussians with mean zero and variance 1/n.

I Φn(f )
law→ Φ(f ).

Figure: Ginibre eigenvalues and uniform points (n = 4096)
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Dirichlet Boundary Conditions
GFF + a height function

= +

Hλ(z) =
√

2λ(arg(1 + z)− arg(1− z))
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Level Lines
λ = 1

Figure: Φn(z) + H(λ=1)(z) = 0.
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Zero Sets: SLE(4)
O. Schramm and S. Sheffield

Figure: Φn(z) + H(λ=1)(z) = 0.
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Relation between CFT and Chordal SLE(κ)

Let a =
√

2/κ, b = a(κ/4− 1) and

Φ(b) := Φ− 2b arg w′
↑

the background charge 2b at q

, Φ̂ := Φ(b) + 2a arg w
↑

the height function

,

where w is a conformal map from (D, p, q) onto (H, 0,∞).

Field Markov Property: for fields Fj generated by Φ̂ under the OPE multiplication ∗,
“E[F1(z1) · · ·Fn(zn) | γ[0, t]]” = E[F1t(z1) · · ·Fnt(zn)].

= +

= + p q
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Chordal Schramm-Loewner Evolution

γ(t)

Dt

ygt

H
√
κBt

I SLE(κ) map gt(z): Dt → H

∂tgt(z) =
2

gt(z)−
√
κBt

, g0(z) = z.

I Bt : a 1-D standard Brownian motion on R, B0 = 0.
I gt(z) is well-defined up to the first time τ(z) such that

lim
t↑τ(z)

gt(z)−
√
κBt = 0.

I Dt := {z ∈ H : τ(z) > t}.
I SLE hulls: Kt := {z ∈ H : τ(z) ≤ t}.
I SLE trace: γ(t) = g−1

t (
√
κBt).
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Harmonic Explorer
O. Schramm and S. Sheffield
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Harmonic Explorer
O. Schramm and S. Sheffield
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Harmonic Explorer
O. Schramm and S. Sheffield

Figure: As the mesh gets finer, does the HE converge?
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Harmonic Explorer and SLE(4)
O. Schramm and S. Sheffield

Figure: As the mesh gets finer, the HE converges to chordal SLE(4).
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Percolation Formula
P[z is to the left of SLE(4) trace]=(1/π) arg z.

I The harmonic measure (1/π) arg z = ω(z, (−∞, 0),H) gives the probability
that a 2D BM starting at z first exits H in (−∞, 0).

I Let Zt = Z(t, z) := gt(z)−
√
κBt. Due to the conformal invariance, the

harmonic measure (1/π) arg Z gives the probability that a 2D BM starting at z
first exits H \ γ[0, t] either in (−∞, 0) or on the LHS of γ[0, t].
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Martingale Observable for SLE(4)

I By Itô calculus,

d log Zt =
(4− κ)

2Z2
t

dt −
√
κ

Zt
dBt.

I When κ = 4, we have

d arg Zt = − Im
2
Zt

dBt.

I Hence, at a fixed time t, the martingale (1/π) arg Z(t, z) represents the
probability that, conditioned on the SLE(4) path γ[0, t] up until time t, the point
z will lie to the left of the path γ[0,∞).

I A discrete version of this property holds for the harmonic explorer.
I Under quite general conditions, just one MO determines the law uniquely. This

is the main method due to Lawler-Schramm-Werner of proving the scaling limit
convergence of interface curves in lattice models. In almost all known cases,
there is a discrete MO.

I CFT is a provider for SLE MOs.
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Gaussian Free Field
on a compact Riemann surface M

We introduce the Gaussian free field Ψ on M as a bi-variant Fock space functionals
Ψ(z, z0), “generalized” elements of Fock space

Ψ(z, z0) = Ψ(δz − δz0 ),

where δz − δz0 is the “generalized” elements of E(M).

We now define the correlation function of Gaussian free field by

E[Ψ(p, q)Ψ(p̃, q̃)] = 2(Gp,q(p̃)− Gp,q(q̃)), (p̃, q̃ /∈ {p, q}).

On the Riemann sphere,

E Ψ(p, q)Ψ(p̃, q̃) = log |λ(p, q; p̃, q̃)|2,

where

λ(p, q; p̃, q̃) =
(p̃− q)(q̃− p)

(p̃− p)(q̃− q)
.
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Fock Space Fields

Fock space fields are obtained from the Gaussian free field (GFF) Ψ by applying the
basic operations:

i. derivatives;

ii. Wick’s products : :≡ �;

iii. multiplying by scalar functions and taking linear combinations.

Examples

J = ∂Ψ, Ψ�Ψ(≡:ΨΨ:), J �Ψ, J � J, e�αΨ =
∞∑

n=0

αnΨ�n

n!
.

Examples
I E[J(ζ)J(z)] = ∂ζ∂zE[Φ(ζ, ζ0)Φ(z, z0)].

I J(ζ)� J(z) = J(ζ)J(z)− E[J(ζ)J(z)].
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Chiral Fields

The GFF Ψ = Ψ+ + Ψ− is decomposed into a chiral bosonic holomorphic field Ψ+

and its anti-holomorphic part Ψ− = Ψ+ :

Ψ+(z, z0) :=
{∫

γ:z0→z
∂ζΨ(ζ, ζ0) dζ

}
.

z0 z

γ

On the Riemann sphere,

E Ψ+(p, q)Ψ+(p̃, q̃) = logλ(p, q; p̃, q̃),

where

λ(p, q; p̃, q̃) =
(p̃− q)(q̃− p)

(p̃− p)(q̃− q)
.

We introduce formal 1-point fields Ψ+,Ψ− = Ψ+ with formal correlations:

E Ψ+(z)Ψ+(z0) = log
1

z− z0
, E Ψ+(z)Ψ−(z0) = 0.
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OPE
We write the OPE of two (holomorphic) fields X(ζ) and Y(z) as

X(ζ)Y(z) =
∑

Cj(z)(ζ − z)j (ζ → z, ζ 6= z).

Write X ∗ Y for C0.

(Cf. Vichi’s, Peltola’s, Kupiainen’s, Litvinov’s, and Viklund’s talks.)

Example
J(ζ)J(z) = E[J(ζ)J(z)] + J(ζ)� J(z) = − w′(ζ)w′(z)

(w(ζ)− w(z))2 + J(ζ)� J(z)

= − 1
(ζ − z)2 −

1
6

Sw(z) + J(z)� J(z)︸ ︷︷ ︸+ · · · .

J ∗ J(z)

Examples Φ∗2 = Φ�2 + 2c, c = log C.

Vα = e∗αΦ =
∞∑

n=0

αnΦ∗n

n!
= Cα

2
e�αΦ, C =

2 Im w
|w′| .
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OPE Exponentials

Example

e∗iaΦ =

∞∑
n=0

(ia)nΦ∗n

n!
= C−a2

e�iaΦ, C =
2 Im w
|w′| .

For a divisor τ =
∑

j τj · zj ≡
∑

j τj · δzj with the neutrality condition
∑
τj = 0, we

define the OPE exponential as

O[τ ] = C[τ ]e�iΨ+[τ ], Ψ+[τ ] =
∑

τjΨ
+(zj),

where C[τ ] is the Coulomb gas correlation function defined by

C[τ ] =
∏
j<k

(zj − zk)
τjτk in idĈ

and C[τ ] is a λj-differential at zj with λj = 1
2τ

2
j .

The Coulomb gas correlation function C[a · p +
∑
βk · qk − (a +

∑
βk) · q] is the

partition function of chordal SLE(4,ρ) (a =
√

2/κ, ρk =
√

2κβk).
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GFF with Dirichlet/Neumann Boundary Conditions
in a simply connected domain D

GFF with Dirichlet/Neumann boundary conditions in D can be constructed from Ψ :

Φ(z) = Ψ+(z, z∗) ≡ Ψ+(z)−Ψ+(z∗),

ΦN (z) = i(Ψ+(z) + Φ+(z∗)).

In the upper-half plane H,

E Φ(ζ)Φ(z) = 2GH(ζ, z) = 2 log
∣∣∣ζ − z̄
ζ − z

∣∣∣
and

E ΦN (ζ)ΦN (z) = 2GNH (ζ, z) = 2 log |(ζ − z̄)(ζ − z)|.
More generally,

Φ[τ , τ ∗] =
∑

τjΦ
+(zj)− τ∗jΦ

−(zj)

can be constructed as

Φ[τ , τ ∗] = Ψ+[τ + τ#
∗ ], τ#

∗ =
∑

τ∗k · z∗k .
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Simple PPS Forms
A non-random field ψ is called a PPS(ib) form if the transformation law is

ψ = ψ̃ ◦ h + ib log h′,

where ψ = (ψ ‖φ) in a chart φ, ψ̃ = (ψ ‖ φ̃) in a chart φ̃, and h is the transition map
between two overlapping charts φ, φ̃.

M U Ũ

φ̃φ

h

ψ = (ψ ‖φ) ψ̃ = (ψ ‖ φ̃)

We’ll be mostly concern with (holomorphic) PPS forms ψ with logarithmic
singularities such that ∂̄∂ψ is a finite linear combination of δ-measures, and we’ll
call such forms simple.
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Background Charges

Let ψ be a simple PPS(ib) form (which determines a GFF modification). Denote

β ≡ βψ =
i
π
∂̄∂ψ.

We think of β as a measure,
β =

∑
βkδqk ,

a (1,1)-differential, or a divisor (
∑
βk · qk), and call it the background charge of ψ.

We now define the background modification Ψ+
β of Ψ+ as

Ψ+
β = Ψ+ + ψ+

β , β =
i
π
∂̄∂ψ+

β .

More precisely, ψ+
β = ib log w′ +

∑
βk log(w− w(qk)), w : S→ Ĉ.
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Neutrality Condition

Recall the Gauss-Bonnet formula: for every conformal metric ρ we have∫
M
κ ρ dx ∧ dy = 2πχ(M), κ = −2∂̄∂ log ρ

ρ
.

The Gauss-Bonnet formula extends to simple PPS(1) forms ψ :

−
∫

M
∂̄∂ψ = πχ(M).

We have the neutrality condition for β ≡ βψ, ψ ∈ PPS(ib),∫
β(=

∑
βk) = bχ(M). (NCb)
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OPE Exponentials with Background Charges

OPE exponentials on the Riemann sphere are modified as

Oβ[τ ] =
C(b)[τ + β]

C(b)[β]
e�iΨ+[τ ], τ ∈ (NC0), β ∈ (NCb),

( ∫
β = 2b

)
,

where C(b)[σ](σ =
∑
σj · zj ∈ (NCb)) is a λj-differential at zj : λj = 1

2σ
2
j − bσj and

C(b)[σ] =
∏
j<k

(zj − zk)
σjσk in idĈ.

Their correlations are

EOβ[τ ] =
C(b)[τ + β]

C(b)[β]
=
∏
j<k

(zj − zk)
τjτk
∏
j,k

(zj − qk)
τjβk

if suppβ ∩ supp τ = ∅.

Note that there are no interactions between background charges in EOβ[τ ].

The Coulomb gas correlation function C(b)[a · p +
∑
βk · qk − (a +

∑
βk) · q] is the

partition function of chordal SLE(κ,ρ) (a =
√

2/κ, b = a(κ/4− 1), ρk =
√

2κβk).
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Background Charge Modifications

For double divisors (β,β∗), (τ , τ ∗) with the neutrality conditions
β + β∗ ∈ (NC)b, τ + τ ∗ ∈ (NC)0, we define

Φβ,β∗ [τ , τ ∗] := Ψ+

β+β
#
∗

[τ + τ#
∗ ].

The simplest chordal case:
q ∈ ∂D,β = 2b · q,β∗ = 0

Φβ = Φ− 2b arg w′,

w : (D, q)→ (H,∞)

The simplest radial case:
q ∈ D,β = β∗ = b · q

Φβ,β∗ = Φ− 2b arg w′/w,

w : (D, q)→ (D, 0) 27/ 40



OPE Exponentials

For double divisors (β,β∗), (τ , τ ∗) with the neutrality conditions
β + β∗ ∈ (NC)b, τ + τ ∗ ∈ (NC)0, we define

OD
β,β∗ [τ , τ ∗] := OS

β+β
#
∗

[τ + τ#
∗ ].

The simplest chordal case:
q ∈ ∂D,β = 2b · q,β∗ = 0

The simplest radial case:
q ∈ D,β = β∗ = b · q
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SLE(κ,ρ)

For ρ =
∑
ρk · qk, the chordal SLE(κ,ρ) is the Loewner evolution

∂tgt(z) =
2

gt(z)− ξt
,

driven by

dξt =
√
κ dBt +

∑
k

ρk dt
ξt − qk(t)

, “qk(t) = gt(qk)”.

For η ∈ R and ρ =
∑
ρk · qk, the radial SLEη(κ,ρ) (with spin s = λq − λ∗q) is the

Loewner evolution

∂tgt(z) = gt(z)
ζt + gt(z)
ζt − gt(z)

driven by

ζt = eiθt , dθt =
√
κ dBt + η dt + i

∑
k

ρk

2
ζt + qk(t)
ζt − qk(t)

dt, “qk(t) = gt(qk)”.
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Zero Sets
Various versions of SLE(4)

Hλ(z) =
√

2λ(arg(1 + z)− arg(1− z))

Figure: Φn(z) + H(λ↗)(z) = 0.
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Insertions

Suppose that the numbers a, b and βk’s are related to κ and ρk’s as

a =

√
2
κ
, b = a

(κ
4
− 1
)
, ρk =

√
2κβk.

Under the insertion of a one-leg operator

Oβ[α]

EOβ[α]
= e�iΦ+[α], (α = a · p− a · q, β =

∑
βk · qk + (2b−

∑
βk) · q),

we have Φβ 7→ Φβ + 2a arg w, w : (D, p, q)→ (H, 0,∞).

= +

Remark. Under the insertion of e�iΦ+[β2−β1], we have Φβ1 7→ Φβ2 .
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Insertions
Example: chordal case (q ∈ ∂D) with β = 2b · q

= +

For w : (D, p, q)→ (H, 0,∞),

EΦβ(z)
Oβ[α]

EOβ[α]
= E[Φβ(z)eia�Φ+(p,q)] = iaE[Φ(z)(Φ+(p, q))] + EΦβ(z)

= ia log
w(p)− w(z)
w(p)− w(z)

− ia log
w(q)− w(z)
w(q)− w(z)

+ EΦβ(z)

= 2a arg w(z) + EΦβ(z)

= 2a arg w(z)− 2b arg w′(z).
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Martingale-Observables for Chordal SLE(κ,ρ)

Let β = a · p + η ∈ (NC)b, a =
√

2/κ, b = a(κ/4− 1).

We say that a non-random function M is a martingale-observable for SLE(κ,ρ) if
for any z1, · · · , zn ∈ D, the process

Mt(z1, · · · , zn) = MDt,a·γt+η(z1, · · · , zn)

(stopped when any zj or any qk is absorbed by the Loewner hull Kt) is a local
martingale on SLE probability space.

Theorem (K-Makarov; Bauer-Bernard, Cardy, Kytölä,
Rushkin-Bettelheim-Gruzberg-Wiegmann)

The correlation function in the OPE family of Φβ forms

a chordal SLE(κ,ρ) martingale-observable.

Example.

ϕt = 2a arg wt − 2b arg w′t + 2
∑

βk arg(wt − wt(qk)).
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Sketch of Proof
Let β = a · ξ + η ∈ (NC)b and gt be the SLE conformal maps, gt(γt) = ξt. Denote

Rξ(z) ≡ E[e�iaΦ+(ξ,q)X1(z1) · · ·Xn(zn)] ≡
EOβ̃[a · ξ − a · q]X1(z1) · · ·Xn(zn)

EOβ̃[a · ξ − a · q]

on (D, ξ, q). Here, β = β̃ + a · ξ − a · q. Then

Mt = m(ξt, t),

where m(ξ, t) =
(
Rξ ‖ g−1

t

)
. Apply Itô’s to Mt :

dMt = ∂ξ

∣∣∣
ξ=ξt

m(ξ, t) dξt +
κ

2
∂2
ξ

∣∣∣
ξ=ξt

m(ξ, t) dt − 2
(
Lvξt

Rξt ‖ g−1
t
)

dt,

where vξ(z) = 1/(ξ − z) and

dξt =
√
κBt + Λ(ξt, q(t)) dt, Λ(ξ, q) = κ ∂ξ log Z(ξ, q),

where
Z(ξ, q) = EOeff

β̃
[a · ξ − a · q] = C(b)[β].

The drift term of dMt vanishes by the BPZ-Cardy equation (Ward’s equation and the
level two degeneracy equation for the one-leg operator Oβ̃[a · ξ − a · q]).
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Lie Derivative

φ

ψt

φ ◦ ψ−t

Let
(Xt ‖ φ)(z) = (X ‖ φ ◦ ψ−t)(z),

where ψt is a local flow of v.

We define the Lie derivative (or fisherman’s derivative) of X by

(LvX ‖ φ)(z) =
d
dt

∣∣∣
t=0

(X ‖ φ ◦ ψ−t)(z).

The flow carries all possible differential geometric objects past the fisherman, and the
fisherman sits there and differentiates them.

Cf. V. I. Arnold, Mathematical Methods of Classical Mechanics.
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Lie derivative

If X is a differential, then

Xt(z) = (X(ψtz) ‖ψ−t) = (ψ′t (z))λ (ψ′t (z))λ∗ X(ψtz);

and
LvX =

(
v∂ + λv′ + v̄∂̄ + λ∗v′

)
X.

The Lie derivative operator v 7→ Lv depends R-linearly on v. Denote

L+
v =

Lv − iLiv

2
, L−v =

Lv + iLiv

2
,

so that
Lv = L+

v + L−v .

If X is a differential, then
L+

v X =
(
v∂ + λv′

)
X.
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Stress Tensor
I A pair of quadratic differentials W = (A+,A−) is called a stress tensor for X if

“residue form of Ward’s identity” holds:

L+
v X(z) =

1
2πi

∮
(z)

vA+X(z)

L−v X(z) = − 1
2πi

∮
(z)

v̄A−X(z),

where L±v =
Lv ∓ iLiv

2
.

Notation: F(W) is the family of fields with stress tensor W = (A+,A−).

I If X, Y ∈ F(W), then ∂X,X ∗ Y ∈ F(W).

I We have a stress tensor

W = (A, Ā), A = −1
2

J � J

for Φ and its OPE family.
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Virasoro Field

By definition, a Fock space field T is the Virasoro field for the family F(A, Ā) if

a. T ∈ F(A, Ā), and

b. T − A is a non-random holomorphic Schwarzian form.

The OPE family Fβ of Φβ has the central charge c = 1− 12b2 and the Virasoro field

Tβ = −1
2

Jβ ∗ Jβ + ib∂Jβ, Jβ = J + jβ, J = ∂Φ, jβ = ∂ϕβ.

Theorem (Ward’s equations)
For the tensor product X of fields in Fβ, in the identity chart of H,

E Tβ(ξ)X = E Tβ(ξ) E X + ELkξX, ξ ∈ R, kξ(z) =
1

ξ − z
.
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Virasoro Generators

It is well known in the algebraic literature that if the generators L̃n are constructed
(Fairlie’s construction1)) as

L̃n = Ln − ib(n + 1)Jn,

where Jn’s and Ln’s are the modes of J and T = − 1
2 J ∗ J :

Jn(z) :=
1

2πi

∮
(z)

(ζ − z)nJ(ζ) dζ, Ln(z) :=
1

2πi

∮
(z)

(ζ − z)n+1T(ζ) dζ.

then L̃n represent the Virasoro algebra with central charge c = 1− 12b2 :

[L̃m, L̃n] = (m− n)L̃m+n +
c

12
m(m2 − 1)δm+n,0.

(Cf. Peltola’s, Litvinov’s, and Viklund’s talks.)

The one-leg operator Oβ[τ ] (τ = a · ξ − a · q) satisfies the level two degeneracy
equations: (

L̃−2(ξ)−
κ

4
L̃−1(ξ)

2
)
Oβ[τ ] = 0,

or
Tβ ∗ξ Oβ[τ ] =

κ

4
∂2
ξOβ[τ ].

1) V. G. Kac, and A. K. Raina, Bombay lectures on highest weight representations of infinite-dimensional Lie algebras,

World Scientific Publishing Co. Inc., 1987.
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Martingale-Observables for radial SLEη(κ,ρ)

For η ∈ R and ρ =
∑
ρk · qk, the radial SLEη(κ,ρ) is the Loewner evolution

∂tgt(z) = gt(z)
ζt + gt(z)
ζt − gt(z)

driven by

ζt = eiθt , dθt =
√
κ dBt + η dt + i

∑
k

ρk

2
ζt + qk(t)
ζt − qk(t)

dt, “qk(t) = gt(qk)”.

Let δ = iaη and

β = a·p+
∑

βk ·qk +(b− 1
2

∑
βk−

a + δ

2
)·q, β∗ = (b− 1

2

∑
βk−

a− δ
2

)·q.

Theorem (K-Makarov; Bauer-Bernard, Cardy)
The correlation function in the OPE family of Φβ,β∗ forms

a radial SLEη(κ,ρ) martingale-observable.
Example.

ϕt = −a arg
wt

(1− wt)2 − 2b arg
w′t
wt
− ηa log |wt| −

∑
βk arg

wt/qk(t)
(1− wt/qk(t))2 .
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Thanks!
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