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Chapitre 1

Background and warm-up

1.1 Background on Gaussian vectors

1.1.1 Real Gaussian Variables

A real random variable X follows the Gaussian distribution with mean m and variance σ2,
denoted N (m,σ2), if it has the density

fX : x 7→ 1√
2πσ2

exp

(
−(x−m)2

2σ2

)
.

We adopt the convention that σ = 0 corresponds to δm, the Dirac mass at m (i.e., the law of
a random variable equal to m almost surely).

Proposition 1.1.2. (i) If Y ∼ N (0, 1) then m+ σY ∼ N (m,σ2),

∀k ∈ N E(Y 2k+1) = 0 and E(Y 2k) = 2−k(2k)!/k!

(ii) If X1 ∼ N (m1, σ
2
1) and X2 ∼ N (m2, σ

2
2) are independent, then X1 + X2 ∼ N (m1 +

m2, σ
2
1 + σ2

2).

Démonstration. Use Fourier

Recall also that, for any constant c ∈ R, cX ∼ N (cm, c2σ2), so that we obtain :

Corollaire 1.1.3. Any linear (and even affine) combination of independent Gaussian variables
is Gaussian.

4
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1.1.4 Gaussian Vectors

As we will see, Gaussian vectors constitute the natural generalization to n dimensions of
univariate Gaussian variables. The convention adopted for σ = 0 turns out to be very convenient,
allowing us to avoid special cases. We begin with a rather formal definition, but we will later see
more natural ways to view them.

First, let us recall some definitions and notations :
— If A is an n× p matrix, its transpose A⊤ is the p× n matrix such that (A⊤)i,j = Aj,i for

all i ∈ {1, . . . , p} and j ∈ {1, . . . , n}. In this chapter, vectors in Rn will be written as
column vectors.

— For n ≥ 1, we denote by ⟨·, ·⟩ the usual inner product on Rn defined by

∀x = (x1, . . . , xn) ∈ Rn ∀y = (y1, . . . , yn) ∈ Rn ⟨x, y⟩ =
n∑

i=1

xiyi

The Euclidean norm of x ∈ Rn is defined by ∥x∥ =
√

⟨x, x⟩.
— A square matrix M of size n is said to be symmetric if M⊤ = M . It is said to be positive

semidefinite if ⟨Mx, x⟩ ≥ 0 for all x ∈ Rn. It is said to be positive definite if ⟨Mx, x⟩ > 0
for all x ∈ Rn\{0}.

Définition 1.1.5. A random variable X = (X1, . . . , Xn) in Rn is a Gaussian vector if for every
a = (a1, . . . , an) ∈ Rn, the real random variable ⟨a,X⟩ = a1X1 + . . . anXn is Gaussian.

The previous corollary shows that if we consider independent random variablesXi ∼ N (mi, σ
2
i ),

then X = (X1, . . . , Xn) is a Gaussian vector.

Définition 1.1.6. Let X = (X1, . . . , Xn) be a Gaussian vector. Its mean is the vector

m = E(X) = (E(X1), . . . ,E(Xn)) ∈ Rn

and its covariance matrix is Γ = (Cov(Xi, Xj))1≤i,j≤n defined by

∀(i, j) ∈ {1, . . . , n}2 Cov(Xi, Xj) = E([Xi−E(Xi)][Xj−E(Xj)]) = E(XiXj)−E(Xi)E(Xj)

Proposition 1.1.7. For all u ∈ Rn, ⟨Γu, u⟩ = Var(⟨u,X⟩). Consequently the matrix Γ is sym-
metric positive semidefinite.

Démonstration. Exercise
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The fact that Γ is symmetric positive semidefinite allows us to associate to it a unique square
root, i.e., a symmetric positive semidefinite matrix A such that A2 = Γ. This is a classical result
that follows from the diagonalization of symmetric matrices.

Recall that the Fourier transform of a random vector X in Rn characterizes the law of X . It
is the function

ϕX : u 7−→ E(ei⟨u,X⟩) = E
(
ei(u1X1+...+unXn)

)
Proposition 1.1.8. If X is a Gaussian vector with mean m and covariance matrix Γ, its Fourier
transform is

ϕX : u 7−→ exp

(
i⟨u,m⟩ − 1

2
⟨Γu, u⟩

)
Démonstration. Exercise

Corollaire 1.1.9. A Gaussian vectorX is characterized by its meanm and its symmetric positive
semidefinite covariance matrix Γ.

Définition 1.1.10. We denote by Nn(m,Γ) the law of a Gaussian vector X = (X1, . . . , Xn) with
mean m and covariance matrix Γ. If m = 0 and Γ = In, we say that X is a standard Gaussian
vector.

Characterization of Independence

If X1, . . . , Xn are independent real Gaussian random variables, then X is Gaussian and

∀i ̸= j Cov(Xi, Xj) = 0.

Thus Γ is a diagonal matrix. The converse is true :

Proposition 1.1.11. Let X1, . . . , Xn be real Gaussian random variables. Then the Xi are inde-
pendent if and only if the vector X = (X1, . . . , Xn) is Gaussian with a diagonal covariance
matrix.

Démonstration. Uses the Fourier transform.
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Existence of Gaussian Vectors

Let Mp,n(R) denote the set of p× n matrices with real entries.

Proposition 1.1.12. Let X ∼ Nn(m,Γ) and Y = AX+ b, with A ∈ Mp,n(R) and b ∈ Rp. Then
Y ∼ Np(Am+ b, AΓA⊤).

Démonstration. Exercise

Théorème 1.1.13. If m ∈ Rn and Γ is a symmetric positive semidefinite matrix then there exists
a Gaussian vector X with mean m and covariance matrix Γ.

Démonstration. Exercise. Uses the previous proposition.

Density of a Gaussian Vector

Proposition 1.1.14. The distribution n(m,Γ) admits a density if and only if Γ is invertible (i.e.,
symmetric positive definite). In that case, its density (with respect to dx1 . . . dxn) is

(x1, . . . , xn) 7−→
1√

(2π)n det Γ
exp

(
−1

2
⟨Γ−1(x−m), x−m⟩

)
Démonstration. Admitted (uses change of variables in higher dimensions).

Vector Central Limit Theorem

Théorème 1.1.15. Let X1, . . . , Xn be independent and identically distributed random vectors
in Rd such that E(X2

i (j)) < +∞ for all j ∈ {1, . . . , n}. Let m be the mean of X1 and Γ its
covariance matrix. Then

√
n

(
X1 + · · ·+Xn

n
−m

)
L−−−−→

n→+∞
Nd(0,Γ)

Démonstration. Cf M1 lectures.

1.2 Background on Gaussian processes

1.2.1 Stochastic processes
Définition 1.2.2. A stochastic process X = (Xt)t∈T is a family of random variables Xt indexed
by a set T .
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Usually T = R+, or Rd, or any subset of Rd.
If T is a finite set, the process is a random vector. If T = N then the process is a sequence of

random variables. More generally when T ⊂ Z, the process is said to be discrete.
For T ⊂ Rd, we speak of a random field (sheet when d = 2). A process depends on two

parameters : Xt(ω) depends on t (generally time) and on the randomness ω ∈ Ω.
For fixed t ∈ T , ω ∈ Ω 7→ Xt(ω) is a random variable on the probability space (Ω,F ,P).
For fixed ω ∈ Ω, t ∈ T 7→ Xt(ω) is a real-valued function, called a trajectory of the process.

It is an issue to know whether a process admits measurable, continuous, differentiable or even
more regular trajectories.

Définition 1.2.3. Given a stochastic process (Xt)t∈T , the finite-dimensional laws of X are the
laws of all vectors (Xt1 , . . . , Xtn) for t1, . . . , tn ∈ T and n ∈ N.

The set of finite-dimensional laws characterizes the law PX of the processX . In what follows,
when we write X ∼= Y equality in law of two processes, we will mean the equality of all finite-
dimensional laws of X and Y :

(Xt1 , . . . , Xtn)
∼= (Yt1 , . . . , Ytn)

for all t1, . . . , tn and n ∈ N.
There are several ways for stochastic processes X and Y to be equal :

Définition 1.2.4. — Two processes X and Y are said to be equivalent if they have the same
law (equality of all finite-dimensional laws). We will write X ∼= Y .

— We say that Y is a version of the process X if for every t ∈ T , P(Xt = Yt) = 1. We also
speak of strong equivalence.

— Two processes X and Y are said to be indistinguishable if P(Xt = Yt, ∀t ∈ T ) = 1.

It is easy to see that for two stochastic processes X and Y :

Proposition 1.2.5. Indistinguishable ⇒ strong equivalence ⇒ equivalence.

Strong equivalence defines an equivalence relation for stochastic processes : two strongly
equivalent processes are equivalent for this relation.

1.2.6 Regularity of trajectories
Often when considering a stochastic process X , we look for a version Y whose trajectories

have good regularity properties. This is not always possible as shown by the example below :
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Exemple 1.2.7. Let the probability space be ([0, 1],B([0, 1]), λ) and T = [0, 1]. Consider D the
diagonal of [0, 1]× [0, 1] and define

X(t, ω) = 0 ∀(t, ω), Y (t, ω) = 1D(t, ω).

For fixed t, we have X(t, ω) = 0 and Y (t, ω) = 0 for ω ̸= t, 1 for ω = t. Hence X(t, ω) =
Y (t, ω) for every ω ̸= t, i.e., almost surely. Therefore X, Y are strongly equivalent (versions of
the same process). Yet, the trajectories of X are continuous while those of Y are not.

Théorème 1.2.8 (Kolmogorov). Let T be an open subset of Rd. Let (Xt)t∈T be a process such
that there exist a, b, c > 0 satisfying for every s, t :

(2.1) E[|Xt −Xs|a] ≤ c|t− s|d+b.

Then there exists a continuous version X̃ of X .

In fact, the trajectories of X̃ are even γ-Hölder for every γ < b/a.

Remarque 1.2.9. - The condition of the theorem concerns the dimension 2 laws :

E[|Xt −Xs|a] =
∫
R2

|x− y|adP(X,Y )(dx, dy),

which in practice is not too difficult to compute. - A priori, in the theorem, a and b are unrelated.
In reality, we can always take a ≥ 1 + b. Indeed, if a < 1 + b, then (2.1) rewrites

E
[∣∣∣∣Xt −Xs

t− s

∣∣∣∣a] ≤ c|t− s|1+b−a

with 1 + b − a > 0. Taking s → t, the derivative in the La sense of (Xt)t is zero and (Xt)t
is thus constant. It is therefore not very interesting to use the theorem in such a case. Since the
initial process is in fact constant, it is obvious that it is also continuous. - The condition b > 0 is
crucial : For b = 0, we have a counterexample with the Poisson process : Let Xt = Πt − t where
(Πt)t is a Poisson process Πt ≃ P(t), E[Πt] = t and E[(Πt − t)] = t = Var(Πt). We have

E[|Xt −Xs|2] = Var(Πt − Πs) = Var(Πt−s) = t− s.

We thus have (2.1) with a = 2, b = 0 and c = 1. Yet the trajectories of the Poisson process are
step functions with jumps.

Démonstration. Admitted
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1.2.10 Examples of properties in law of processes.
There exist many classes of particular processes : Markov processes (and notably Markov

chains when T is discrete), martingales, Gaussian processes, Poisson processes, stable processes
or Lévy processes.

Examples of process properties. The finite-dimensional laws of processes sometimes satisfy
properties that can be useful for modeling real phenomena.

Définition 1.2.11. Let T be a subset of R. A process X is said to have independent increments if
for every 0 < t1 < t2 < · · · < tn, the r.v.’s Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent.

A process is said to be stationary if for every h, (Xt+h)t
L
= (Xt)t does not depend on h > 0,

i.e., for every h and every t1, . . . , tn, we have (Xt1+h, . . . , Xtn+h)
L
= (Xt1 , . . . , Xtn).

A process is said to have stationary increments if the law of the increments (Xt+h −Xh)t∈T
does not depend on h > 0.

Exemple 1.2.12. T = N. Let (Xi)i be a sequence of i.i.d. variables. Consider Sn =
∑n

i=0Xi

the process of partial sums. We speak of a random walk. Then (Sn)n∈N is a process with inde-
pendent increments. If in addition the r.v.’s Xi are identically distributed (i.i.d.), the process has
independent and stationary increments.

1.3 Gaussian Process
Définition 1.3.1. A process is said to be Gaussian if all its finite-dimensional laws L(Xt1 , . . . , Xtn)
are Gaussian (∀n ∈ N, ∀t1, . . . , tn ∈ T ).

It is known that the law of a Gaussian vector (Xt1 , . . . , Xtn) is known (via its characteristic
function) by the mean vector (E[Xt1 ], . . . ,E[Xtn ]) and the covariance matrix (Cov(Xti , Xtj)1≤i,j≤n).

We understand then that the entire law of a Gaussian process is known once we are given the
mean function a(t) = E[Xt] and the covariance operator K(s, t) = Cov(Xs, Xt). Indeed, for
say T ⊂ R, the finite-dimensional law of (Xt1 , . . . , Xtn) is then the n-dimensional normal law
N (an, Kn) with an = (a(t1), . . . , a(tn)) and Kn = (K(ti, tj))1≤i,j≤n. The functions a and K
thus define all finite-dimensional laws of X and hence also its law.

Good conditions for having a sufficiently regular version of a Gaussian process are given in
the following result due to Theorem 2.1.1.

Théorème 1.3.2 (Regularity). LetX be a centered Gaussian process E[Xt] = 0, with covariance
function r(s, t). Suppose there exists α > 0 such that for every s, t :

r(t, t) + r(s, s)− 2r(s, t) ≤ c|t− s|α.
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Then there exists a continuous version X̃ of X . Moreover, for every γ < α/2, the trajectories of
X̃ are almost surely Hölder of coefficient γ.

Démonstration. We have

E[|Xt −Xs|2] = E[X2
t ] + E[X2

s ]− 2E[XtXs] ≤ c|t− s|α.

We cannot directly apply Theorem 2.1.1 because α > 1 is not guaranteed. We rather consider
E[|Xt −Xs|2m]. Recall now that, if X ≈ N (0, 1), we have E[X2m] = (2m)!

2mm!
Var(X)m.

We deduce from the lemma that

E[|Xt −Xs|2m] ≤ c
(2m)!

2mm!
|t− s|mα.

We choose m such that mα > 1. According to Kolmogorov’s Theorem 2.1.1 with

b = mα− 1, a = 2m,
b

a
=
mα− 1

2m
→ α

2
, m→ +∞

we have a γ-Hölder version of X for every γ < α/2.

Let T = R. In the Gaussian case, we easily characterize stationarity of a process.

Proposition 1.3.3. A Gaussian processX is stationary iff E[Xt] is constant andK(s, t) = K(s−
t) (we speak of weak stationarity).

Démonstration. It is clear that these conditions are necessary, whether the process is Gaussian
or not (exercise). They are sufficient only in the Gaussian case. Indeed, in this case, the law is
characterized by t 7→ E[Xt] and by K(s, t). It is then easy to see in this case that a translation of
the indices does not modify the law.

A consequence of Kolmogorov’s extension theorem is that when T is a given set and K is a
real-valued symmetric bilinear form (defined on T ×T ) such that for all n, for all a1, . . . , an in T
and all λ1, . . . , λn in R,

∑
i,j λiλjK(ai, aj) ≥ 0 (we say that K is non-negative definite) then it

is possible to construct a probability space and a process (Xt)t∈T on this probability space, such
that X is a centred Gaussian process with covariance function K.



Chapitre 2

Le mouvement brownien

2.1 Définition et premières propriétés :
Définition 2.1.1. Un processus stochastique réel {Bt : t ≥ 0} est appelé mouvement brownien
(standard) si les trois conditions suivantes sont satisfaites :

i) Le processus B est à accroissements indépendants ie pour tout n-uple 0 ≤ t1 ≤ · · · ≤ tn
d’instants, les variables aléatoires Bt1 , Bt2 − Bt1 , . . . , Btn − Btn−1 qu’on appelle les
accroissements de B sont indépendants.

ii) Pour chaque t la v.a.r Bt suit la loi N (0, t).

iii) Pour presque tout ω, les trajectoires t→ Bt(ω) sont continues.

Commençons par montrer que les propriétés i) et ii) peuvent s’énoncer différemment.

Proposition 2.1.2. Un processus Bt, t ∈ IR+, dont les trajectoires sont p.s. continues est un
mouvement brownien ssi c’est un processus gaussien centré de covariance inf(s, t). De plus les
accroissements Bt −Bs, s < t, d’un mouvement brownien suivent la loi N (0, t− s).

Démonstration. Supposons d’abord que B satisfasse aux conditions de la définition 2.1.1. A
cause de ii) et de l’indépendance, la relation

Bt = Bs + (Bt −Bs)

se traduit au niveau des fonctions caractéristiques par

exp

(
−u

2t

2

)
= exp

(
−u

2s

s

)
ϕ(Bt−Bs)(u),

12
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d’oô il suit que la fonction caractéristique de Bt − Bs est exp
(
−u2(t−s)

2

)
, ce qui montre la

deuxième phrase de l’énoncé.
Pour montrer que B est gaussien il faut montrer que pour des instants 0 = t0 ≤ t1 ≤

· · · ≤ tn et des scalaires ai quelconques la v.a.
∑
aiBti est gaussienne ; mais en remplaçant Bti

par
∑i

k=1

(
Btk −Btk−1

)
on voit que cette variable est une combinaison linéaire de gaussiennes

indépendantes et est donc gaussienne.
Finalement pour s < t,

Cov (Bt, Bs) = IE [Bs (Bs +Bt −Bs)] = IE
[
B2

s

]
= s

ce qui démontre l’implication directe.
Réciproquement, on peut d’abord constater que si B est un processus centré gaussien de

covariance inf(s, t),Bt suit une loi N (0, t) et il reste alors juste à montrer que les accroissements
sont indépendants. Comme le processus est gaussien centré, il suffit donc de montrer que les
accroissements sont orthogonaux, soit que pour 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4,

Cov (Bt2 −Bt1,Bt4 −Bt3) = 0,

or ceci résulte facilement de l’hypothèse.

Il est alors aisé d’obtenir les lois temporelles du mouvement brownien.

Proposition 2.1.3. (Loi temporelle du mouvement brownien). Soit 0 < t1 < · · · < tn < +∞.
La loi temporelle du vecteur (Bt1 , . . . , Btn) est une loi normale à n dimensions, dont la densité
conjointe f(x1, . . . , xn) est donnée par :

f(x1, . . . , xn) =
1

(2π)
n
2

√
t1(t2 − t1) · · · (tn − tn−1)

× e
− 1

2

(
x21
t1

+
(x2−x1)

2

t2−t1
+···+ (xn−xn−1)

2

tn−tn−1

)
.

Démonstration. Nous avons si f ∈ Cb(IR
n) :

IE[f(Bt1 , . . . , Btn)] = IE[f(Bt1 , (Bt2 −Bt1) +Bt1 , . . . , Btn + (Btn−1 −Btn−2) + · · ·+Bt1)]

=

∫
IRn

f(y1, y2 + y1, . . . , yn + · · ·+ y1)

× e
− y21

t1

√
2πt1

× e
− y22

t2−t1√
2π(t2 − t1)

× · · · × e
− y2n

tn−tn−1√
2π(tn − tn−1)

=
f(x1, . . . , xn)

(2π)
n
2

√
t1(t2 − t1) · · · (tn − tn−1)

× exp

(
−1

2

(
x21
t1

+
(x2 − x1)

2

t2 − t1
+ · · ·+ (xn − xn−1)

2

tn − tn−1

))
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la dernière égalité s’obtenant par le changement de variables : xk = y1 + y2 + · · · + yk, ∀k ∈
{1, . . . , n} et ceci nous donne le résultat voulu.

Une autre façon d’énoncer ce résultat est de donner directement la matrice de covariance du
vecteur (Bt1 , . . . , Btn).

Proposition 2.1.4. Le vecteur (Bt1 , . . . , Btn) est centré et sa matrice des covariances est donnée
par :

Γ =


t1 t1 t1 · · · t1
t1 t2 t2 · · · t2
t1 t2 t3 · · · t3
...

...
... . . . ...

t1 t2 t3 · · · tn

 .

Démonstration. On peut obtenir ce résultat à l’aide de la proposition précédente mais il vaut
mieux utiliser la proposition 2.1.2 qui donne directement le résultat.

Exercice 2.1.5. Soit (Bt)t≥0 un mouvement brownien et a > 0. Montrer que le processus
(aBt/a2)t≥0 est un mouvement brownien.

Exercice 2.1.6. Soit (Bt)t≥0 un mouvement brownien et a > 0. Montrer que le processus (Bt+a−
Ba)t≥0 est un mouvement brownien.

2.2 Construction du mouvement brownien

2.2.1 Première méthode
On se donne pour commencer :

i) Une base orthonormale {φn, n ∈ IN} de L2(IR+).

ii) Une suite {ξn, n ∈ IN} de variables aléatoires indépendantes de loi normale centrée ré-
duite.

On définit :
∀t ≥ 0, Bt =

∑
n∈IN

φ̃n(t)ξn

oô l’on a posé φ̃n(t) =
∫ t

0
φn(s) ds, et comme la série converge dans L2(Ω), on a :

1. IE(B2
t ) =

∑
n∈IN φ̃n(t)

2 =< 1[0;t],1[0;t]> = t

2. IE(Bt) = 0
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3. IE(BtBs) =
∑

n∈IN φ̃n(t)φ̃n(s) =< 1[0;t],1[0;s] >= min(t, s)

Donc {Bt, t ≥ 0} est un processus gaussien centrée de covariance min(t, s). La seule chose
restant à montrer d’après la proposition 2.1.2 est la continuité des trajectoires presque sûrement.
On va prouver ceci en utilisant une base particulière deL2(IR+), la base de Haar. Soit φ : IR → IR
définie par :

φ(t) =


1 si t ∈]0; 1/2]
−1 si t ∈]1/2; 1]
0 sinon

Pour chaque n, k ∈ IN, on définit :

φn,k(t) = 2n/2φ(2nt− k), t ≥ 0

On remarque que φn,k(t) = 0 pour t ̸∈]k2−n; (k + 1)2−n].
Puis on définit les fonctions :

ψk = 1]k;k+1], k ∈ IN.

La famille de fonctions {ψk, k ∈ IN}∪{φn,k, n, k ∈ IN} est une base orthonormale deL2(IR+)
appelée base de Haar.

On remarque que la primitive φ̃ de φ est donnée par :

φ̃(t) =


t si t ∈]0; 1/2]

1− t si t ∈]1/2; 1]
0 sinon

et que la primitive φ̃n,k de φn,k est donnée par :

φ̃n,k(t) = 2n/2φ̃(2nt− k)

et s’annule en dehors de l’intervalle ]k2−n; (k + 1)2−n[.
Soit {ηk, k ∈ IN; ξn,k, n, k ∈ IN} une suite de variables aléatoires indépendantes de loi nor-

male centrée réduite. On définit :
βt =

∑
k∈IN

ψ̃k(t)ηk

Bn
t =

∑
k∈IN

φ̃n,k(t)ξn,k , n ∈ IN

Bt = βt +
∑
n∈IN

Bn
t , t ≥ 0
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On sait déjà que {Bt, t ≥ 0} est un processus gaussien centrée de fonction de covariance
min(t, s) et qu’il nous reste juste à montrer que P p.s. les trajectoires sont continues pour savoir
que ce processus est un mouvement brownien.

Remarquons tout d’abord que sur chaque intervalle compact [0;T ], {βt} et chaqueBn
t est une

combinaison linéaire finie de fonctions continues, donc continue. Il reste à montrer que
∑

nB
n
t

converge uniformément sur [0;T ]. Mais

Bn
t = φ̃n,k(t)ξn,k, pour k2−n ≤ t ≤ (k + 1)2−n

d’oô
max
0≤t≤T

|Bn
t | = 2−

n
2
−1 max

0≤k≤2nT
|ξn,k|,

et par conséquent :

P

(
max
0≤t≤T

|Bn
t | > a2−

n
2

)
= P

(
max

0≤k≤T2n
|ξn,k| > 2a

)
≤ T2nP (|ξ| > 2a)

≤ T2ne−2a2 , si a ≥ 1

car

P (|ξ| > 2a) ≤
IE
[
|ξ|1{|ξ|>2a}

]
2a

=
e−2a2

a
√
2T

.

On choisit a =
√
n :

∑
n≥1

P

(
max
0≤t≤T

|Bn
t | >

√
n2−n/2

)
≤ T

∑
n≥1

(2e−2)n <∞

Il résulte alors du lemme de Borel-Cantelli que P pour presque tout ω ∈ Ω, ∃n(ω), ∀n ≥
n(ω),

max
0≤t≤T

|Bn
t | ≤

√
n2−n/2

et la convergence uniforme découle alors du fait que
∑

n

√
n2−n/2 < ∞. On a ainsi redémontré

l’existence du mouvement brownien.
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2.2.2 Deuxième méthode : le critère de Kolmogorov-Centsov
Reprenons le début du raisonnement précédent jusqu’à obtenir l’existence d’un processus

gaussien centré Bt, t ≥ 0 de covariance min(s, t). Il ne nous restait alors qu’à démontrer l’exis-
tence d’un tel processus à trajectoires continues. Au lieu d’utiliser les bases de Haar, nous allons
maintenant utiliser un critère de continuité dû à Kolmogorov-Centsov :

Théorème 2.2.3. Soit (Ω,F ,P, (Xt, t ∈ [0, 1])) un processus aléatoire tel qu’il existe des constan-
tes α, β, C > 0 telles que pour tous s, t ∈ [0, 1],

IE [|Xt −Xs|α] ≤ C|t− s|1+β.

Alors il existe un processus X̃ à trajectoires Hölderiennes d’ordre γ (γ ∈]0, β
α
[), qui est une

modification de X .

Démonstration. La première partie de la preuve va consister à construire le processus X̃ sur
l’ensemble D des nombres dyadiques. Pour cela, si γ ∈]0, α/β[, on a :

P

(
max

k=1...2n
|X k

2n
−X k−1

2n
| > 1

2nγ

)
= P

(
2n⋃
k=1

{
|X k

2n
−X k−1

2n
| > 1

2nγ

})

≤
2n∑
k=1

P

({
|X k

2n
−X k−1

2n
|α > 1

2nαγ

})

≤
2n∑
k=1

2nαγIE
(
|X k

2n
−X k−1

2n
|α
)

(d’après l’inégalité de Markov)

≤
2n∑
k=1

2nαγC

(
1

2n

)1+β

(vu les hypothèses)

= 2n2nαγC2−n−nβ

= C2n(αγ−β)

Comme γ ∈]0, α/β[, on a
∑∞

n=1C2
n(αγ−β) <∞ donc d’après le lemme de Borel-Cantelli, on a

P

(
lim sup

n

{
max

k=1...2n
|X k

2n
−X k−1

2n
| > 1

2nγ

})
= 0

ce qui signifie que : ∃A ∈ F ,P (A) = 1 tel que ∀ω ∈ A, ∃Nω ∈ IN, ∀n ≥ Nω, |X k
2n
(ω) −

X k−1
2n

(ω)| ≤ 1
2nγ .
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Notons Dm =
{

k
2m
, 0 ≤ k ≤ 2m

}
l’ensemble des dyadiques d’ordre m. Soit m,n ∈ IN tels que

m > n ≥ Nω, et s, t ∈ Dm tels que s < t,|t− s| < 1
2n

.
Alors si s = k

2m
, il existe a1, . . . , am−n ∈ {0, 1} tels que t = k

2m
+ a1

2n+1 + · · ·+ am−n

2m
et on a

|Xt(ω)−Xs(ω)| = |X k
2m

+
a1

2n+1+···+am−n
2m

(ω)−X k
2m

(ω)|

≤
m−n∑
j=1

|X k
2m

+
a1

2n+1+···+
aj

2n+j
(ω)−X k

2m
+

a1
2n+1+···+

aj−1

2n+j−1
(ω)|

≤
m−n∑
j=1

1

2(n+j)γ
vu que ω ∈ A.

Considérons maintenant s, t ∈ D tels que |s− t| ≤ 1
2Nω . Soit alors n ∈ IN tel que |s− t| ≤ 1

2n
et

|s− t| > 1
2n+1 et m > n tel que s, t ∈ Dm. D’après l’inégalité obtenue précédemment, on a

|Xt(ω)−Xs(ω)| ≤
m∑

j=n+1

1

2jγ

≤ 2−γ(n+1)

∞∑
j=0

2−jγ

= 2−γ(n+1) 2γ

2γ − 1

≤ 2γ

2γ − 1
|t− s|γ

Comme la fonction t 7→ Xt(ω) est γ-hölderienne sur D∩ [0, 1], on peut la prolonger sur [0, 1] en
une fonction toujours γ-hölderienne t 7→ X̃t(ω). Puis si ω ̸∈ A, on pose X̃t(ω) = 0, ∀t ∈ [0, 1].
Le processus X̃ ainsi défini est à trajectoires hölderiennes d’ordre γ. Il ne reste plus qu’à montrer
que X̃ est une modification de X . Or si t ∈ D, comme X̃t(ω) = Xt(ω) pour ω ∈ A et P (A) = 1
on a X̃t = Xt P p.s. pour t ∈ D. Si t ̸∈ D, on a

∀ω ∈ A, X̃t(ω) = lim
s∈D,s→t

Xs(ω)

Soit donc (sn)n une suite de D qui converge vers t. Comme

IE [|Xt −Xsn|α] ≤ C|t− sn|1+β,

Xsn converge en probabilité vers Xt et quitte à extraire une sous-suite on peut supposer que Xsn

converge P p.s. vers Xt. Par unicité de la limite, on a donc, sur un ensemble de probabilité 1,
Xt(ω) = X̃t(ω), et ceci achève la preuve
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Il suffit alors d’appliquer ce critère à n’importe quel processus gaussien ayant les marginales
du mouvement brownien.

2.3 Comportement asymptotique :
Théorème 2.3.1. Soit (Bt)t≥0 un mouvement brownien alors on a :

lim
t→∞

Bt

t
= 0 P ps

Démonstration. On a :∀t ≥ 0, Bt

t
=

B[t]

[t]
[t]
t
+

Bt−B[t]

t
. D’après la loi des grands nombres on a :

lim
t→∞

B[t]

[t]
= lim

t→∞

[t]∑
k=1

Bk −Bk−1

[t]
= IE(B1) = 0

On pose pour n ∈ IN∗, ξn = sups∈[n,n+1]

∣∣Bs −B[s]

∣∣.
On obtient ainsi : ∀t ≥ 0,

∣∣∣Bt−B[t]

t

∣∣∣ ≤ ξ[t]
[t]

. Comme les var ξn, n ∈ IN sont iid et intégrables
(appliquer les inégalités maximales pour les martingales àBt), d’après la loi des grands nombres,
on a

lim
n→∞

ξn
n

= 0 P ps

d’où le résultat.

Exercice 2.3.2. Soit (Bt)t≥0 un mouvement brownien. Montrer que le processus (B̃t)t≥0 avec
B̃t = tB 1

t
pour t > 0 et B̃0 = 0 est un mouvement brownien.

Proposition 2.3.3. Soit (Bt)t≥0 un mouvement brownien alors on a :

lim sup
t→∞

Bt√
t
= +∞ et lim inf

t→∞

Bt√
t
= −∞ P ps

Démonstration. On a

P

({
lim sup

t

Bt√
t
= +∞

})
≥ P

({
lim sup

n

Bn√
n
= +∞

})
= P

( ⋂
M∈IN

{
lim sup

n

Bt√
t
≥M

})
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Or

∀M ∈ IN,P

({
lim sup

n

Bn√
n
≥M

})
≥ lim sup

n
P
(
Bn ≥M

√
n
)

et P (Bn ≥M
√
n) = P(B1 ≥M) > 0.

D’autre part
{
lim sup Bn√

n
≥M

}
est un évènement de la tribu asymptotique des va (Bn −

Bn−1)n qui sont indépendantes donc a pour probabilité 0 ou 1, et vu ce qui précède cela ne peut
être que 1.

Corollaire 2.3.4. On a : P ps,∀x ∈ IR, ∃t ≥ 0 tel que Bt = x.

Démonstration. Ceci résulte facilement de la proposition précédente et du théorème des valeurs
intermédiaires.

La proposition 2.3.3 est un premier résultat concernant les comportements asymptotiques du
mouvement brownien ne nécessitant que peu de travail. On peut en fait démontrer, sous peine
d’efforts supplémentaires, un résultat beaucoup plus fort : la loi du logarithme itéré, qui non
seulement donne une réponse sur le comportement de Bt quand t→ 0 ( ou t→ ∞ ) mais illustre
aussi l’irrégularité des trajectoires du mouvement brownien, ce qui sera l’objet de la section
suivante.

Théorème 2.3.5. (Loi du logarithme itéré) Soit B un (Ft)-mouvement brownien. Alors on a :

P

(
lim sup

t→0

Bt√
2t ln(ln(1/t))

= 1

)
= 1 et P

(
lim inf

t→0

Bt√
2t ln(ln(1/t))

= −1

)
= 1.

Démonstration. Soit θ ∈]0, 1[, δ > 0 et β > 0. On note

h(s) =
√

2s ln(ln(1/s))

et on pose pour n ∈ IN∗,

βn = βh(θn) et αn =
(1 + δ) ln(n)

βn
.
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En appliquant l’inégalité maximale à la martingale exponentielle
{
exp

(
αnBt − α2

nt
2

)
, t ≥ 0

}
on a

P

(
sup
0≤s≤1

exp

(
αnBs −

α2
ns

2

)
≥ exp(βnαn)

)
≤ exp(−βnαn)IE

[
exp(αnB1 − α2

n/2)
]

= exp(−βnαn)

d’oô on tire

P

(
sup
0≤s≤1

(
Bs −

αns

2

)
≥ βn

)
≤ exp(−βnαn).

Or

exp(−βnαn) = exp(−βh(θn)(1 + δ) ln(n)

βh(θn)

=
1

n1+δ

et comme
∑∞

n=1
1

n1+δ <∞ on peut appliquer le lemme de Borel-Cantelli qui assure donc que

P

(
lim sup

n

{
sup
0≤s≤1

(Bs − αns/2) ≥ βn

})
= 0.

On en déduit qu’il existe A ∈ F tel que P (A) = 1 et ∀ω ∈ A, ∃Nω ∈ IN, ∀n ≥ Nω

sup
0≤s≤1

(Bs(ω)− αns/2) ≤ βn.

Soit θ0 tel que s 7→ h(s) soit croissante sur l’intervalle ]0, θ0[, ω ∈ A, n ≥ max
(
Nω, 1 +

ln(θ0)
ln(θ)

)
,

on a

sup
s∈[θn,θn−1]

Bs(ω)

h(s)
= sup

s∈[θn,θn−1]

(
Bs(ω)− αns

2

h(s)
+

αns

2h(s)

)
≤ 1

h(θn)
sup

s∈[θn,θn−1]

(
Bs(ω)−

αns

2

)
+
αnθ

n−1

2h(θn)

≤ β +
αnθ

n−1

2h(θn)

= β +
(1 + δ) ln(n)

4βθ ln(ln(θ−n))

= β +
1 + δ

4βθ

ln(n)

ln(n) + ln(− ln(θ))
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On pose ε(n) = ln(n)
ln(n)+ln(− ln(θ))

− 1, donc ε(n) → 0 lorsque n→ ∞. Puis on choisit β =
√

1+δ
4θ

,
ce qui donne :

sup
s∈[θn,θn−1]

Bs(ω)

h(s)
≤
√

1 + δ

4θ
(1 + ε(n)).

On en déduit pour ω ∈ A

lim sup
s→0

Bs(ω)

h(s)
≤ lim sup

n→∞

√
1 + δ

4θ
(1 + ε(n)) =

√
1 + δ

4θ
, ∀δ > 0,∀θ ∈]0, 1[.

Choisissant θ → 1 et δ → 0 on obtient :

P p.s. lim sup
s→0

Bs(ω)

h(s)
≤ 1.(2.1)

On va montrer l’inégalité inverse. Soit maintenant θ ∈]0, 1[ et β ∈]0,
√
1− θ[, alors

P (Bθn −Bθn+1 > βn) = P

(
B1 >

βn√
θn(1− θ)

)

= P

(
B1 >

β
√

2θn ln(ln(θ−n))√
θn(1− θ)

)

= P

(
B1 > β

√
2 ln(ln(θ−n))

1− θ

)

=
1√
2π

∫ ∞

β

√
2 ln(ln(θ−n))

1−θ

e−
x2

2 dx

≈ 1

β

√
1− θ

4π ln(ln(θ−n))
e− ln(ln(θ−n)) β2

1−θ car
∫ ∞

x

e
−t2

2 dt ≈ e
−x2

2

x

≈ 1

2β(− ln θ)
β2

1−θ

√
1− θ

π

1

n
β2

1−θ

√
ln(n)

Or d’après le critère de Bertrand, la série
∑

1

n
β2

1−θ
√

ln(n)

diverge. On a donc

∞∑
n=1

P (Bθn −Bθn+1 > βn) = ∞
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et comme les accroissements sont indépendants, on peut utiliser la réciproque du lemme de Borel-
Cantelli qui assure que P p.s. on a pour une infinité de n, Bθn −Bθn+1 > βn.
D’autre part, en appliquant la formule 2.1 à {−Bt, t ≥ 0} qui est aussi un mouvement brownien,
on obtient

P p.s. lim inf
s→0

Bs(ω)

h(s)
≥ −1.

En combinant ces deux résultats, on obtient que P p.s., on a, pour une infinité de n,

Bθn ≥ βn − h(θn+1)

ce qui donne pour ces n là :

Bθn

h(θn)
≥ β − h(θn+1)

h(θn)

≥ β −
√
θ

√
ln(ln(θ−n−1))

ln(ln(θ−n))

= β −
√
θ(1 + ε(n))

On en déduit
P p.s. , lim sup

t→0

Bs

h(s)
≥ β −

√
θ , ∀β ∈]0,

√
1− θ[

d’oô
P p.s. , lim sup

t→0

Bs

h(s)
≥

√
1− θ −

√
θ ,∀θ ∈]0, 1[

et choisissant θ → 0, on obtient la minoration :

P p.s. , lim sup
t→0

Bs

h(s)
≥ 1

et ceci termine la preuve.

Corollaire 2.3.6. Soit B un mouvement brownien. Alors on a :

P

(
lim sup
t→∞

Bt√
2t ln(ln(t))

= 1

)
= 1 et P

(
lim inf
t→∞

Bt√
2t ln(ln(t))

= −1

)
= 1.

Démonstration. Il suffit d’appliquer le théorème 2.3.5 au mouvement brownien
{
tB 1

t
, t ≥ 0

}
.
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Corollaire 2.3.7. Soit B un mouvement brownien. Alors on a pour tout t > 0 :

P

(
lim sup

h→0

Bt+h −Bt√
2h ln(ln(1/h))

= 1

)
= 1 et P

(
lim inf
h→0

Bt+h −Bt√
2h ln(ln(1/h))

= −1

)
= 1.

Démonstration. Il suffit d’appliquer le théorème 2.3.5 au mouvement brownien {Bt+s −Bt, s ≥ 0}

2.4 Régularité du mouvement brownien

2.4.1 Variation quadratique du mouvement brownien

Proposition 2.4.2. Si (∆k)k est une suite de subdivisions de [s, t] telle que le pas de ces subdivi-
sions tende vers 0 alors les expressions

T∆k =
∑
i

(Bti −Bti−1
)2

convergent en moyenne quadratique vers (t− s).

Démonstration. En se servant du fait que pour une variable N(0, σ2) le moment d’ordre 4 est
égal à 3σ4 et que les accroissements (Bti −Bti−1

) sont indépendants, on obtient que :

IE
[(
T∆k − (t− s)

)2]
= 2

∑
i

(ti − ti−1)
2 ≤ 2|∆k|(t− s)

et cette dernière expression tend vers 0 lorsque k tend vers l’infini.

Traitons un cas particulier de ce dernier résultat : lorsque les subdivisions sont choisies de
telle sorte que ∀k,∆k+1 soit plus fine que ∆k. Dans ce cas-là on obtient la convergence presque
sûre de T∆k . Pour simplifier on choisit ∀n ∈ IN,∆n =

{
0, t

2n
, . . . , tk

2n
, . . . , t

}
.

Proposition 2.4.3. (Optionel) Supposons que ∀n ∈ IN,∆n =
{
0, t

2n
, . . . , tk

2n
, . . . , t

}
et soit

T∆n =
2n∑
i=1

(B it
2n

−B t(i−1)
2n

)2.

Alors T∆n converge vers t P ps.
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Démonstration. Nous avons déjà calculé IE
(
T∆n

)
qui vaut t. Ensuite nous avons :

Var
(
T∆n

)
=

2n∑
k=1

Var

((
B kt

2n
−B t(k−1)

2n

)2)

=
2n∑
k=1

3

(
t

2n

)2

=
3t2

2n
.

Puis d’après l’inégalité de Tchebycheff,on a :

P

(∣∣T∆n − t
∣∣ ≥ 1

k

)
≤ k2Var

(
T∆n

)
= k2

3t2

2n

Comme la série
∑

1
2n

converge on peut utiliser le lemme de Borel-Cantelli qui assure que

P

(
lim sup

n

{∣∣T∆n − t
∣∣ ≥ 1

k

})
= 0

On obtient ainsi :

P

(
∞⋃
k=1

lim sup
n

{∣∣T∆n − t
∣∣ ≥ 1

k

})
= 0

et ceci assure que T∆n converge P ps vers t.

Remarque : Il découle de la proposition 2.4.2 qu’un mouvement brownien n’est p.s. pas à
variation bornée sinon on aurait

T∆k ≤ ∥Bt∥ × sup
i

|Btki
−Btki−1

| → 0 lorsque k → ∞.

oô ∥Bt∥ représente la variation totale de Bt.

2.4.4 Non-différentiabilité
Proposition 2.4.5. Presque toute les trajectoires du mouvement brownien ne sont nulle part
différentiables sur IR+.
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Démonstration. Si l’application f : IR+ → IR est différentiable en un point s de [0;T [, alors il
existe n ∈ IN \ {0} tel que

|f(t)− f(s)| ≤ n(t− s)

pour (t− s) suffisamment petit et ceci entraîne que pour k suffisamment grand, i = [ks] + 1 et j
entier tel que i < j ≤ i+ 3,

|f(j/k)− f((j − 1)/k)| ≤ |f(j/k)− f(s)|+ |f(s)− f((j − 1)/k)| ≤ 7n

k

car pour de tels j les différences de j et j − 1 avec s sont au plus de 4
k

et 3
k
. En conséquence, si

on pose
D = {ω ∈ Ω; ∃s < T, t→ Bt(ω) est différentiable en s}

alors on a

D ⊂
⋃
n≥1

⋃
m≥1

⋂
k≥m

⋃
0<i<Tk+1

⋂
i<j≤i+3

{
|B j

k
−B j−1

k
| ≤ 7n

4

}
.

Notons

Fn,k =
⋃

0<i<Tk+1

⋂
i<j≤i+3

{
|B j

k
−B j−1

k
| ≤ 7n

4

}
,

on a alors

P (Fn,k) ≤ Tk

(
P

(
|ξ| ≤ 7n√

k

))3

d’oô

P (Fn,k) ≤ Tk

(
14n√
k

)3

=
(14n)3√

k

On en déduit alors que

P
(
lim inf

n
Fn,m

)
≤ lim inf

m
P (Fn,m) = 0 (par le lemme de Fatou)

et donc que P (D) = 0, ce qui prouve la proposition

2.4.6 Propriétés de Hölder
Proposition 2.4.7. ∀α < 1

2
, presque toutes les trajectoires du mouvement brownien sont α-

hölderiennes sur tout sous-ensemble compact de IR, ie ∀T > 0,

sup
s,t∈[0;T ];0<|t−s|<h

|Bt −Bs|
|t− s|α

→ 0 P p.s. lorsque h→ 0
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Démonstration. Utiliser le critère de Kolmogorov-Centsov.

Proposition 2.4.8. Pour α > 1
2
, ∀T > 0, P presque toutes les trajectoires du mouvement brow-

nien ne sont pas α-hölderiennes sur l’intervalle [0;T ].

Démonstration. Reprenons les notations de la proposition 2.4.2 de la page 28 . Soit ω ∈ Ω tel que
t 7→ Bt(ω) soit α-hölderienne sur l’intervalle [0;T ], oô α > 1/2. Soit δ > 0 tel que α = 1

2
+ δ.

On a

T∆n(ω) =
n∑

i=1

(
Bti −Bti−1

)2
≤ C

n∑
i=1

|ti − ti−1|2α

= C
n∑

i=1

|ti − ti−1|1+2δ

≤ T sup
i=1...n

|ti − ti−1|2δ

→ 0 lorsque n→ ∞

Donc

{ω ∈ Ω; t 7→ Bt(ω) soit α− hölderienne sur [0;T ]} ⊆
{
ω ∈ Ω;T∆n(ω) → 0 en n∞

}
et ce dernier ensemble est de probabilité nulle d’après la proposition 2.4.2

Le seul cas restant à traiter est le cas α = 1
2
.

Proposition 2.4.9. Pour α = 1
2
, P presque toutes les trajectoires du mouvement brownien ne

sont pas α-hölderiennes.
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Démonstration. On commence par une remarque. Si {Bt, t ≥ 0} est un mouvement brownien
alors il résulte du théorème 2.3.1 à la page 23 que

{
B′

t = tB 1
t
, t ≥ 0

}
est aussi un mouvement

brownien. Ensuite, d’après la proposition 2.3.3 page 23, on a P p.s. :

lim sup
u↘0

|Bu|√
u

= lim sup
t→∞

√
t|B1/t|

= lim sup
t→∞

tB 1
t√
t

= +∞.

Ceci suffit à prouver notre assertion.

2.5 Temps d’atteinte
Soit (Bt)t∈IR+ un mouvement brownien, ∀t ≥ 0 Ft la tribu engendrée par {Bs; 0 ≤ s ≤ t} et

pour a, b ∈ IR (a < 0 et b > 0), Sab, Ta les temps d’arrêt définis par :

Sab = inf
{
t ∈ IR+;Bt ̸∈ [a; b]

}
Ta = inf

{
t ∈ IR+;Bt < a

}
,

Tb = inf
{
t ∈ IR+;Bt > b

}
.

Lemme 2.5.1. Les temps d’arrêt Sab, Ta et Tb sont finis P p.s.

Démonstration. On peut soit utiliser le corollaire de la proposition 2.3.3 page 23 soit raisonner
comme suit.
On a :

P (Sab = +∞) = P ({∀t ≥ 0;Bt ∈ [a; b]})
≤ P ({∀n ∈ IN;Bn ∈ [a; b]})

= P

(⋂
n∈IN

{
B1 + (B2 −B1) + · · ·+ (Bn −Bn−1)√

n
∈
[
a√
n
;
b√
n

]})
−→ 0 lorsque n→ ∞ d’après le théorème de la limite centrale.

et ceci nous donne P (Sab = +∞) = 0.
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Comme eλBt−λ2t
2 est une Ft-martingale on peut appliquer le théorème d’arrêt au temps d’arrêt

borné Tb ∧ t et on alors :

IE

(
eλBt∧Tb

−λ2(t∧Tb)

2

)
= 1

Or Bt∧Tb
≤ b donc on a :

∀λ ≥ 0, IE

(
e−

λ2(t∧Tb)

2

)
≥ e−λb

On peut alors utiliser le théorème de Lebesgue pour avoir :

∀λ ≥ 0, IE

(
e−

λ2Tb
2

)
≥ e−λb

et comme
1{Tb<+∞} ≥ e−

λ2Tb
2

on a en prenant l’espérance :

P (Tb < +∞) ≥ e−λb, ∀λ ≥ 0.

En faisant tendre λ vers 0, on obtient :P (Tb < +∞) = 1 et pour des raisons de symétrie du
mouvement brownien on a aussi P (Ta < +∞) = 1

Proposition 2.5.2. On a les propriétés suivantes pour les temps d’arrêt Sab, Ta et Tb :
— IE(Sab) = |ab|
— P (Ta < Tb) =

b
b−a

et P (Tb < Ta) =
−a
b−a

— La transformée de Laplace de Tb est donnée par :∀λ ≥ 0, IE
(
e−λTb

)
= e−

√
2λb

— La densité de Tb est donnée par : f(t) =
√
2πt3e−

b2

2t

Démonstration. En appliquant le théorème d’arrêt à Bt on a :

IE (BSab∧t) = 0

et comme |BSab∧t| ≤ max(−a, b) on peut appliquer le théorème de Lebesgue qui donne :

IE (BSab
) = 0.
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Notons Pa = P (Ta < Tb) et Pb = P (Tb < Ta). On a :{
aPa + bPb = 0
Pa + Pb = 1

⇒
{

Pa =
b

b−a

Pb =
−a
b−a

Puis en appliquant le théorème d’arrêt à la martingale B2
t − t et en utilisant les mêmes argu-

ments que précédemment on obtient :

IE(Sab) = IE(B2
Sab

= a2Pa + b2Pb = −ab = |ab|.

Ensuite en reprenant la fin de la démonstration du lemme précédent, on a :

IE

(
eλBt∧Tb

−λ2(t∧Tb)

2

)
= 1

et d’après le théorème de Lebesgue (l’intégrand est majorée par eλb) on obtient :

IE

(
eλBTb

−λ2Tb
2

)
= 1

soit

IE

(
e−

λ2(Tb)

2

)
= e−λb

d’oô le résultat



Chapitre 3

Calcul stochastique d’Itô

3.1 Préambule : l’intégrale de Wiener
Comme nous avons pu le voir, un mouvement brownien n’est p.s. pas à variation bornée (voir

proposition 2.4.2) et l’on ne peut pas définir une intégrale par rapport àBt comme on peut le faire
traditionnellement avec des fonctions à variations bornées. On va donc construire une intégrale
stochastique, du type ∫ t

0

f(s) dBs

en utilisant des méthodes hilbertiennes (et probabilistes). On commence par le cas simple de
l’intégrale de Wiener oô l’intégrand est déterministe.

Dans ce qui suit, L2(IR+) désigne l’espace des classes de fonctions presque partout égales
de IR+ dans IR satisfaisant

∫
IR+ f

2(t) dt < ∞ et L2(Ω) = L2(Ω;F ; P). On note ⟨., .⟩ le produit
scalaire usuel sur L2(IR+).

Théorème 3.1.1. Etant donné un mouvement brownien (Bt, t ≥ 0), on peut associer à chaque
fonction f ∈ L2(IR+) une (classe de) variable aléatoire :

B(f) =

∫
IR+

f(t) dBt

telle que :
— Si f = 1]u;v] 0 ≤ u < v, alors B(f) = Bv −Bu.
— L’application f ∈ L2(IR+) 7→ B(f) ∈ L2(Ω) est linéaire et isométrique. On a ainsi :

∀f, g ∈ L2(IR+), IE(B(f)B(g)) = ⟨f, g⟩

31
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Plus précisément le sous-espace vectoriel {B(f); f ∈ L2(IR+)} de L2(Ω) coïncide avec l’es-
pace gaussien H(B) et la variable aléatoire B(f) est caractérisée par les deux propriétés :

i) B(f) ∈ H(B)

ii) IE(BtB(f)) =
∫ t

0
f(s) ds

Démonstration. Soit ∆ le sous-espace vectoriel de L2(IR+) formé des fonctions en escalier et
intégrables, ie de la forme :

f =
k∑

i=1

ai1]ti−1;ti],

avec k ∈ IN et 0 < t1 < · · · < tk, ai ∈ IR.
Pour f ∈ ∆ de la forme précédente, on associe la variable aléatoire :

B(f) =
k∑

i=1

ai(Bti −Bti−1
).

On peut remarquer que cela ne dépend pas de l’écriture choisie pour f car 1]u;v] = 1]u;w] +

1]w;v], u < w < v. On a ainsi construit une application
∆ → L2(Ω)
f 7→ B(f)

qui est clairement

linéaire. De plus, on a :
IE(B(f)) = 0,

IE(B(f)2) = IE

( k∑
i=1

ai(Bti −Bti−1
)

)2


=
k∑

i=1

a2i (ti − ti−1) par l’indépendance des accroissements de B

=

∫
IR+

f 2(t) dt.

Notre application est donc une isométrie et comme ∆ est dense dans L2(IR+) on peut la prolon-
ger en une isométrie linéaire de L2(IR+) dans L2(Ω).

Il est facile de voir que H(B) est l’adhérence de {B(f); f ∈ ∆} et celle-ci coïncide avec
{B(f); f ∈ L2(IR+)}. Puis comme {Bt; t ≥ 0} est total dans H(B), on en déduit la dernière
assertion.
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Notation : Pour T > 0 et f mesurable de IR+ dans IR telle que f1[0;T ] ∈ L2(IR+), on notera :∫ T

0

f(t) dBt = B
(
f1[0;T ]

)
.

On obtient alors la formule d’intégration par parties suivante :

Proposition 3.1.2. Soit f ∈ C1(IR+), T > 0. Alors :∫ T

0

f(t) dBt +

∫ T

0

f ′(t)Bt dt = f(T )BT

Si, de plus, f(t)Bt → 0 P p.s. quand t→ ∞ et
∫∞
0

|f ′(t)|
√
t dt <∞ alors :∫

IR+

f(t) dBt +

∫
IR+

f ′(t)Bt dt = 0.

Démonstration. On a trivialement :

f(t) +

∫ T

t

f ′(u) du

ce qui donne en intégrant pour s ≤ T :∫ s

0

f(t) dt+

∫ s

0

∫ T

t

f ′(u) dudt = sf(T )

soit d’après les propriétés de l’intégrale de Wiener :

IE[BsB(f1[0;T ])] +

∫ T

0

f ′(u)min(u, s) du = f(T )s

ou encore

IE[BsB(f1[0;T ])] +

∫ T

0

f ′(u)IE(BsBu) du = f(T )IE(BTBs).

On obtient ainsi :

∀s ≤ T, IE

[(
B(f1[0;T ]) +

∫ T

0

f ′(u)Bu du− f(T )BT

)
Bs

]
= 0.

Comme B(f1[0;T ]) +
∫ T

0
f ′(u)Bu du − f(T )BT ∈ H(Bt, t ≤ T ) et que (Bt, t ≤ T ) en est un

sous-ensemble total, on a :

B(f1[0;T ]) +

∫ T

0

f ′(u)Bu du− f(T )BT = 0
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d’oô la première assertion.
Pour la deuxième égalité, la seule chose à montrer vu la première partie est que les deux

intégrales du membre de gauche convergent P p.s., or :

IE

(∫ ∞

0

|f ′(u)Bu| du
)

=

∫ ∞

0

∫
Ω

∣∣∣∣Bu√
u

∣∣∣∣ |√(u)f ′(u)| dPdu

≤ IE(|B1|)×
∫ ∞

0

|f ′(u)
√

(u)| du

=

√
2

π

∫ ∞

0

|f ′(u)
√
(u)| du

< ∞

Donc P p.s. ,
∫∞
0
f ′(u)Bu du converge.

Pour la première intégrale, il suffit de montrer que f ∈ L2(IR+) :∫ ∞

0

f 2(t) dt =

∫ ∞

0

(∫ ∞

t

f ′(u) du

)2

dt

=

∫ ∞

0

(∫ ∞

t

∫ ∞

t

f ′(u)f ′(v) dudv

)
dt

≤
∫ ∞

0

∫ ∞

0

∫ ∞

0

1{t≤min(u,v)}|f ′(u)f ′(v)| dudvdt

≤
∫ ∞

0

∫ ∞

0

min(u, v)|f ′(u)f ′(v)| dudv

≤
∫ ∞

0

∫ ∞

0

√
uv|f ′(u)f ′(v)| dudv

=

(∫ ∞

0

√
u|f ′(u)| du

)2

< +∞

Donc f ∈ L2(IR+) est la proposition est démontrée.

Exercice 3.1.3. Soit f ∈ L2
loc(IR+), et Xt =

∫ t

0
f(s) dBs. On pose

a(t) =

∫ t

0

f 2(s) ds et c(t) = inf {u ≥ 0; a(u) > t} .

1) Montrer que le processus Wt = Xc(t) est pour 0 ≤ t <
∫∞
0
f 2(s) ds, un mouvement

brownien.
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2) Montrer que pour tout t ≥ 0, Xt = Wa(t) P p.s.

3) On considère le processus Zt =
∫ t

0
1−t
1−s

dBs, défini pour 0 ≤ t < 1. Montrer que Zt tend
presque sûrement vers 0 quand t tend vers 1.

Réponse :

1) Il est clair que a est continue et croissante, donc que c est croissante et continue à droite.
P p.s., le processus Xc(t) est donc continu en tout point de continuité de c et si t0 n’est
pas un point de continuité de c, en posant x = limt→t−0

c(t), f = 0 p.p. sur [x, c(t0)]
(raisonner par l’absurde) et alors si t < t0 on a

lim
t→t−0

|Xc(t0) −Xc(t)| = lim
t→t−0

∣∣∣∣∣
∫ c(t0)

c(t)

f(s) dBs

∣∣∣∣∣
=

∣∣∣∣∣
∫ c(t0)

x

f(s) dBs

∣∣∣∣∣
= 0 car f = 0 p.p. sur [x, c(t0)]

Donc X est un processus à trajectoires continues P p.s.
De plus on aXc(0) = 0 car comme précédemment f est nulle sur [0, c(0)]. Ensuite comme
Wt ⊂ H(B), ce processus est gaussien. Il est facile de voir qu’il est centré car X l’est,
puis

Cov(Wt,Ws) = IE
[
Xc(t)Xc(s)

]
= IE

[∫ c(t)

0

f(u) dBu

∫ c(s)

0

f(u) dBu

]

=

∫ c(t)∧c(s)

0

f 2(u) du

= a(c(t) ∧ c(s))
= a(c(t ∧ s)) = t ∧ s

Finalement W est bien un mouvement brownien.

2) On a évidemment
∀t ≥ 0,Wa(t) = Xc(a(t)).
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Comme c(a(t)) = inf {u ≥ 0; a(u) > a(t)} et que a est croissante, on a c(a(t)) ≥ t. Puis

a(c(a(t))) = a(t) ⇒
∫ c(a(t))

t

f 2(s) ds = 0

donc f = 0 p.p. sur [t, c(a(t))] et ceci implique aussi que

Xc(a(t)) =

∫ c(a(t))

0

f(s) dBs

=

∫ t

0

f(s) dBs +

∫ c(a(t))

t

f(s) dBs

=

∫ t

0

f(s) dBs

= Xt

d’oô le résultat.

3) Le fait que s 7→ 1
1−s

̸∈ L2
loc(IR+) ne permet pas d’appliquer directement les résultats

précédents. Soit δ ∈]0, 1[ . Alors la fonction s 7→ 1
1−s

1[0,δ](s) ∈ L2
loc(IR+) .

Si on pose Xt =
∫ t

0
1

1−s
1[0,δ](s) dBs et que l’on applique ce qui précède, on a

a(t) =

{
t

1−t
si t ∈ [0, δ]

δ
1−δ

si t > δ
et c(t) =

t

1 + t
pour t ∈

[
0,

δ

1− δ

[
Ainsi, on a montré que

∀δ < 1,Wt =

∫ t
1+t

0

1

1− s
ds

est un mouvement brownien sur
[
0, δ

1−δ

[
et Xt = W t

1−t
P p.s. (en appliquant la question

2 avec t < δ < 1).
En résumé,

Wt =

∫ t
1+t

0

1

1− s
dB(s), t ≥ 0

est un mouvement brownien et pour t < 1 on a∫ t

0

1

1− s
dBs = W t

1−t
.
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Utilisant le théorème 2.3.1, on a

lim
t→1−

1− t

t
W t

1−t
= 0 P p.s.

soit

lim
t→1−

Zt

t
= 0 P p.s.

ce qui donne le résultat voulu.

3.2 L’intégrale stochastique d’Itô

On suppose à partir de maintenant que l’on dispose d’un espace probabilisé (Ω;F ; P) muni
d’une filtration (Ft, t ≥ 0) et sur lequel est défini un Ft-mouvement brownien {Bt, t ≥ 0}. On
suppose de plus que F0 contient tous les ensembles de P-mesure nulle. Définissons alors une
première classe d’intégrands.

Définition 3.2.1. Un processus stochastique φt(ω) défini sur IR+ × Ω (resp sur [0, T ] × Ω ) est
dit progressivement mesurable si ∀t ∈ IR+ (resp t ∈ [0, T ]) l’application :

(s, ω) 7→ φs(ω)

de [0, t]× Ω dans IR est B([0, t])⊗Ft mesurable.

Proposition 3.2.2. Si X est un processus mesurable adapté, avec des trajectoires càd ou càg,
alors il est progressivement mesurable.

Démonstration. On définit

Xn
s (ω) = X(k+1)t2−n , s ∈]kt

2n
,
(k + 1)t

2n
], Xn

0 = X0(ω), k = 0, . . . , 2n − 1..

Il est clair que l’application (s, ω) 7→ Xn
s est B([0, t])⊗Ft mesurable. Par continuité à droite, la

suite (Xn)n converge versX simplement pour tout (s, ω) et donc la limite est aussi B([0, t])⊗Ft

mesurable.

Remarque 3.2.3. Si X est un processus mesurable adapté, il admet une modification progressi-
vement mesurable (voir Meyer 1966, page 68).



38 CHAPITRE 3. CALCUL STOCHASTIQUE D’ITÔ

On notera par la suite Λ2(IR+) (resp. Λ2([0, T ])) le sous-espace de L2(Ω× IR+,P (dω)⊗ dt)
(resp.L2(Ω×[0, T ],P (dω)⊗dt)) constitué des classes de processus progressivement mesurables.
Muni du produit scalaire

⟨φ, ψ⟩ = IE

[∫
IR+

φtψt dt

]
(resp = IE

[∫ T

0

φtψt dt

]
),

Λ(IR+) (resp Λ2([0, T ])) est un espace de Hilbert. Pour finir, on définit

Λ2 =
⋂
T>0

Λ2([0, T ]).

Soit E l’ensemble des classes de processus de la forme :

φt(ω) =
n−1∑
i=0

Xi(ω)1]ti,ti+1](t) , t ≥ 0

avec n ∈ IN, 0 < t1 < . . . , < tn et Xi Fti-mesurable et de carré intégrable pour 0 ≤ i ≤ n− 1.
(On remarque facilement que φ est progressivement mesurable).
Pour φ ∈ E de la forme précédente, on définit le processus stochastique intégral

B(φ)t =

∫ t

0

φs dBs

=
n−1∑
i=0

Xi(Bt∧ti+1
−Bt∧ti) , t ≥ 0.

Lemme 3.2.4. Si φ ∈ E , alors ∀t > 0,

IE(B(φ)t) = 0 et IE
[
B(φ)2t

]
= IE

[∫ t

0

φ2
s ds

]
, t ≥ 0.

Plus généralement, si 0 < s < t,

IE [B(φ)t −B(φ)s|Fs] = 0

IE
[
(B(φ)t −B(φ)s)

2 |Fs

]
= IE

[∫ t

s

φ2
r dr|Fs

]
.
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Démonstration. Si φt(ω) =
∑n−1

i=0 Xi(ω)1]ti,ti+1](t) alors

IE(B(φ)t) =
n−1∑
i=0

IE
[
Xi(Bt∧ti+1

−Bt∧ti)
]

= 0 car Xi⊥⊥(Bt∧ti+1
−Bt∧ti)

Pour la deuxième égalité, on remarque tout d’abord pour i < j (donc ti+1 ≤ tj)

IE
[
XiXj(Bt∧ti+1

−Bt∧ti)(Bt∧tj+1
−Bt∧tj)

]
= IE

[
IE
[
XiXj(Bt∧ti+1

−Bt∧ti)(Bt∧tj+1
−Bt∧tj)|Ftj

]]
= IE

[
XiXj(Bt∧ti+1

−Bt∧ti)IE
[
(Bt∧tj+1

−Bt∧tj)|Ftj

]]
= 0(3.1)

et de là, on en déduit :

IE
[( n−1∑

i=0

Xi(Bt∧ti+1
−Bt∧ti)

)2]
=IE

[ n−1∑
i=0

(
Xi(Bt∧ti+1

−Bt∧ti)
)2 ]

+ 2IE

[∑
i<j

XiXj(Bt∧ti+1
−Bt∧ti)(Bt∧tj+1

−Bt∧tj)

]

=IE
[ n−1∑

i=0

(
Xi(Bt∧ti+1

−Bt∧ti)
)2 ] vu 3.1

=
n−1∑
i=0

IE[X2
i ]IE

[(
Bt∧ti+1

−Bt∧ti
)2] car Xi⊥⊥(Bt∧ti+1

−Bt∧ti)

=
n−1∑
i=0

IE[X2
i ](t ∧ ti+1 − t ∧ ti)

=IE

[∫ t

0

φ2
s ds

]
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Puis si 0 < s < t, soit n0 ∈ IN tel que tn0 ≥ s et tn0−1 < s, alors

IE [B(φ)t|Fs] = IE

[
n−1∑
i=0

Xi(Bt∧ti+1
−Bt∧ti)|Fs

]

=
n−1∑
i=0

IE
[
Xi(Bt∧ti+1

−Bt∧ti)|Fs

]
=

n0−1∑
i=0

IE
[
Xi(Bt∧ti+1

−Bt∧ti)|Fs

]
+

n−1∑
i=n0

IE
[
Xi(Bt∧ti+1

−Bt∧ti)|Fs

]
=

n0−1∑
i=0

IE
[
Xi(Bs∧ti+1

−Bs∧ti)|Fs

]
+

n−1∑
i=n0

IE
[
IE
[
Xi(Bt∧ti+1

−Bt∧ti)|Fti

]
|Fs

]
= IE [B(φ)s|Fs] +

n−1∑
i=n0

IE
[
XiIE

[
(Bt∧ti+1

−Bt∧ti)|Fti

]
|Fs

]
= IE [B(φ)s|Fs] car (Bt∧ti+1

−Bt∧ti) est centrée et ⊥⊥Fti

La dernière égalité se montre de façon analogue.

Il résulte du lemme précédent que {B(φ)t, t ≥ 0} et
{
B(φ)2t −

∫ t

0
φ2
s ds, t ≥ 0

}
sont des

Ft-martingales. De plus, en utilisant les inégalités maximales pour les martingales, ie

P

(
max
0≤t≤T

|Mt| ≥ λ

)
≤ λ−pIE(|MT |p),

et le théorème de Fubini, on obtient pour une martingale continue {Mt, t ≥ 0} et pour 1 < p, q <
∞ tels que 1

p
+ 1

q
= 1, ∥∥∥∥ sup

0≤t≤T
|Mt|

∥∥∥∥
Lp(Ω)

≤ q∥MT∥Lp(Ω).(3.2)

Si on choisit p = q = 2 et que l’on applique ceci à {B(φ)t+s −B(φ)s, t ≥ 0}, qui est une
martingale, on obtient

IE

[
sup

0≤t≤T
(B(φ)t+s −B(φ)s)

2

]
≤ 4IE

(∫ T+s

s

φ2
r dr

)
(3.3)

Cette formule nous sera utile par la suite pour étendre l’intégrale stochastique à Λ2, via le lemme
suivant
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Lemme 3.2.5. Pour tout φ ∈ Λ2, il existe une suite φn ∈ E IN telle que ∀T > 0

φn1[0,T ] → φ1[0,T ]

dans Λ2([0, T ]).

Démonstration. ∀n ≥ 1, on considère l’opérateur linéaire Pn de L2(IR+) dans lui-même défini
par

Pn(f)(t) = n
n2∑
i=1

(∫ i
n

i−1
n

f(s) ds

)
1] i

n
, i+1

n
](t).

D’après l’inégalité de Cauchy-Schwarz, on a

Pn(f)
2(t) ≤ n

∫ i
n

i−1
n

f 2(s) ds , t ∈
]
i

n
,
i+ 1

n

]
, 1 ≤ i ≤ n2

et
∥Pn(f)∥L2(IR+) ≤ ∥f∥L2(IR+).

De plus, si f ∈ L(IR+), on a

∥Pn(f)− f∥L2(IR+) → 0, lorsque n→ ∞

En effet, on le montre facilement pour des fonctions continues à support compact gr‚ce à des
arguments de continuité uniforme et la cas général s’en déduit par des arguments de densité et le
fait que Pn est une contraction.

Soit maintenant φ ∈ Λ2(IR+), alors ∀n ≥ 1, Pn(φ) ∈ E car

Pn(f)(t) = n

n2∑
i=1

(∫ i
n

i−1
n

φs ds

)
1] i

n
, i+1

n
](t) et

∫ i
n

i−1
n

φs ds est F i
n

-mesurable.

et
∥Pn(φ)− φ∥Λ2(IR+) = IE

(
∥Pn(φ)(ω)− φ(ω)∥L2(IR+)

)
.

Mais on a

∥Pn(φ)(ω)− φ(ω)∥L2(IR+) → 0 P p.s. et ∥Pn(φ)(ω)− φ(ω)∥2L2(IR+) ≤ 4∥φ(ω)∥2L2(IR+)

donc le théorème de convergence dominée de Lebesgue assure que ∥Pn(φ) − φ∥Λ2(IR+) → 0
lorsque n→ ∞.
De façon similaire, si φ ∈ Λ2, ∀T > 0, on a ∥Pn(φ)− φ∥Λ2([0,T ]) → 0 lorsque n→ ∞
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Remarque 3.2.6. Dans le cas d’un élément de Λ2(IR+) qui est P p.s. continu et satisfait supt IE(φ
2
t ) <

∞, on peut approximer φ par (au lieu de Pn(φ))

φt
n =

n2∑
i=0

φ i
n
1] i

n
, i+1

n
](t).

Nous pouvons maintenant énoncer la

Proposition 3.2.7. ∀φ ∈ Λ2, il existe une martingale continue

B(φ)t =

∫ t

0

φs dBs , t ≥ 0

qui vérifie

IE(B(φ)t) = 0 et IE
[
B(φ)2t

]
= IE

[∫ t

0

φ2
s ds

]
, t ≥ 0,

et plus généralement, si 0 < s < t,

IE
[
(B(φ)t −B(φ)s)

2 |Fs

]
= IE

[∫ t

s

φ2
r dr|Fs

]
Si de plus φ ∈ Λ2(IR+), alors

B(φ)t → B(φ)∞ =

∫
IR+

φs dBs

P p.s. et dans L2(Ω) lorsque t→ ∞.

Démonstration. Soit φ ∈ Λ2 et (φn)n∈IN ∈ E IN une suite qui converge vers φ dans chaque
Λ2([0, T ]) , T > 0. D’après le lemme 3.2.4, ∀n ∈ IN, {B(φn)t, t ≥ 0} est une martingale conti-
nue.
D’autre part, toujours d’après le lemme 3.2.4, si φ ∈ E alors

{
B(φ)2t −

∫ t

0
φ2
r dr, t ≥ 0

}
est une

martingale continue et d’après la formule 3.3, on a aussi

IE

[
sup

0≤t≤T
(B(φn)t −B(φm)t)

2

]
≤ 4IE

(∫ T

0

(φn,s − φm,s)
2 ds

)
= ∥φn − φn∥Λ2([0,T ])

→ 0 lorsque min(m,n) → ∞
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Il s’ensuit que la suiteB(φn) est une suite de Cauchy dans l’espace L2(Ω;C([0, T ])), ∀T > 0 qui
est un espace complet. Soit {B(φ)t, t ≥ 0} sa limite dans cet espace. On peut facilement vérifier
que la limite ne dépend pas de la suite d’approximation (φn)n choisie et que {B(φ)t, t ≥ 0}
est un processus à trajectoires continues Ft-adapté. De plus, comme ∀t, B(φn)t → B(φ)t dans
L2(Ω)et que l’espérance conditionnelle est un opérateur continu de L2(Ω) dans lui-même, on
obtient les deuxième,troisième et quatrième égalité en utlisant le lemme 3.2.4.
Pour finir, si φ ∈ Λ2(IR+), on a

IE[(B(φ)t −B(φ)s)
2] = IE

(∫ t

s

φ2
r dr

)
→ 0 lorsque min(s, t) → ∞

Donc B(φ)t converge dans L2(Ω) quand t → ∞. Comme B(φ)t est aussi une martingale conti-
nue bornée dans L2(Ω), elle converge P p.s. vers sa limite B(φ)∞

Remarque 3.2.8. Il découle de la linéarité de φ 7→ B(φ)t, du lemme 3.2.4 et des identités de
polarisation que pour φ, ψ ∈ Λ2, 0 ≤ s < t

IE [(B(φ)t −B(φ)s)(B(ψ)t −B(ψ)s)|Fs] = IE

(∫ t

s

φuψu du|Fs

)
.

3.3 Généralisation de l’intégrale d’Itô (*)
Nous aurons besoin de définir des intégrales stochastiques avec des intégrands plus généraux

que ceux considérés précédemment.

Notation 3.3.1. Pout T ≤ ∞, on notera Λ2
loc([0, T ]) l’espace des processus progressivement

mesurables qui vérifient : ∫ T

0

φ2
t dt <∞ P p.s.

et
Λ2

loc =
⋂
T>0

Λ2
loc([0, T ])

On va maintenant définir l’intégrale stochastique {B(φ)t, t ≥ 0} pour φ ∈ Λ2
loc. Pour cela,

on va introduire des temps d’arrêt

Lemme 3.3.2. Soit φ ∈ Λ2
loc. Pour n ∈ IN, on définit τn par

τn = inf

{
t ≥ 0;

∫ t

0

φ2
s ds ≥ n

}
.

Alors τn est un temps d’arrêt.
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Démonstration. En effet, on a :

{τn ≤ t} =
⋂
k≥1

⋃
s∈[0,t]∩IQ

{∫ s

0

φ2
r dr > n− 1

k

}
∈ Ft .

Lemme 3.3.3. Soit τ un temps d’arrêt. Le processus
{
1[0,τ ](t); t ≥ 0

}
est progressivement me-

surable.

Démonstration. Soit T > 0, il faut montrer que l’application

ψ : Ω× [0, T ] → IR
(ω, t) 7→ 1[0,τ(ω)](t)

est FT ⊗ B([0, T ])-mesurable. Considérons les deux applications

φ : Ω× [0, T ] → IR× IR
(ω, t) 7→ (t, τ(ω) ∧ T )

et χ : [0, T ]× [0, T ] → IR
(u, t) 7→ 1{u<t}

.

Elles sont respectivement FT ⊗B([0, T ]) mesurables et B([0, T ])⊗B([0, T ]) mesurables et ψ est
la composée de ces deux fonctions et est donc elle-même FT ⊗ B([0, T ]) mesurable.

Il découle du lemme précédent que ∀n ∈ IN,∀φ ∈ Λ2
loc,

1[0,τn]φ ∈ Λ2(IR+).

On peut alors définir pour tout n,

Bn
t =

∫ t

0

1[0,τn](s)φs dBs, t ≥ 0

Il faut donc montrer que pour tout T > 0, Bn
t converge P p.s. uniformément pour t ∈ [0, T ] en

n∞. Le processus limite sera alors noté

Bt(φ) =

∫ t

0

φs dBs, t ≥ 0.

Or cette convergence résulte du fait que lorque n→ ∞ on a τn ↑ ∞ P p.s. et du lemme suivant
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Lemme 3.3.4. Soit φ ∈ Λ2 et τ un temps d’arrêt. Alors 1[0,τ ]φ ∈ Λ2 et P p.s.∫ t

0

1[0,τ ](s)φs dBs =

∫ t∧τ

0

φs dBs, t ≥ 0.

Démonstration. D’après le lemme 3.3.3 1[0,τ ]φ ∈ Λ2. Puis l’égalité annoncée est équivalente
au même résultat avec le temps d’arrêt borné t ∧ τ . Mais tout temps d’arrêt borné est limite
décroissante d’une suite de temps d’arrêt ne prenant chacun qu’un nombre fini de valeurs. En
effet, pour chaque n ∈ IN et k ≤ N , oô N = sup

{
k ∈ IN; k

2n
< t
}

, soit tkn = k
2n

et tN+1
n = t.

Alors la suite τn définit par

τn(ω) =
N+1∑
k=1

1Ak
n
(ω)tkn

oô Ak
n =

{
tk−1
n < t ∧ τ ≤ tkn

}
, est une suite de temps d’arrêt qui convergent vers t ∧ τ .

Maintenant il suffit d’établir l’égalité suivante pour tout n :∫ t

0

1[τn,t](s)φs dBs =

∫ t

t∧τn
φs dBs

qui résulte de ∫ t

tkn

1Ak
n
φs dBs = 1Ak

n

∫ t

tkn

φs dBs,

soit pour 0 ≤ s < t, A ∈ Fs, φ ∈ Λ2,∫ t

s

1Aφr dBr = 1A

∫ t

s

φr dBr.

Or

IE

[(∫ t

s

1Aφr dBr − 1A

∫ t

s

φr dBr

)2

|Fs

]
= 1AIE

[(∫ t

s

(1A − 1)φr dBr

)2

|Fs

]

+1AcIE

[(∫ t

s

1Aφr dBr

)2

|Fs

]

= 1AIE

[∫ t

s

1Acφ2
r dr

]
+ 1AcIE

[∫ t

s

1Aφ
2
r dr|Fs

]
= 0
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Proposition 3.3.5. ∀φ ∈ Λ2
loc, ∀T > 0, Bn

t (φ) converge P p.s. uniformément sur [0, T ] lorsque
n→ ∞.

Démonstration. Soit n < m. Alors τn < τm et le lemme 3.3.4 appliqué à 1[0,τm]φ et τn assure
que :

Bn
t =

∫ t

0

1[0,τn](s)1[0,τm](s)φs dBs

=

∫ t∧τn

0

1[0,τm](s)φs dBs

et cette dernière quantité ne dépend pas de m ≥ n. Fixons T > 0. Sur Ωn = {τn ≥ T}, la suite
{Bn

t (φ); 0 ≤ t ≤ T} , m = n, n + 1, . . . est constante et égal à sa limite. Le résultat découle
alors du fait que Ωn ↑ Ω P p.s.

Nous pouvons maintenant résumer les propriétés de l’intégrale d’Itô obtenue.

Proposition 3.3.6. Pour tout φ ∈ Λ2
loc, il existe un processus continu

Bt(φ) =

∫ t

0

φs dBs, t ≥ 0,

qui est tel que pour tout n ∈ IN, si τn = inf
{
t;
∫ t

0
φ2
s ds ≥ n

}
, alors Bn

t =
∫ t∧τn
0

φs dBs, t ≥ 0

est une martingale convergeant P p.s. uniformément sur [0;T ],∀T > 0 vers Bt(φ) et vérifiant
pour 0 < s < t :

IE [Bn
t −Bn

s |Fs] = 0

IE
[
(Bn

t −Bn
s )

2|Fs

]
= IE

[∫ t

s

1[0,τn]φ
2
r dr|Fs

]
.

La variable aléatoire Bt(φ) n’est pas nécessairement intégrable mais vérifie :

IE
[
Bt(φ)

2
]
≤ IE

[∫ t

0

φ2
s ds

]
.(3.4)

Si de plus φ ∈ Λ2
loc(IR+), alors

Bt(φ) → B∞(φ) =

∫ ∞

0

φs dBs P p.s., lorsque t→ ∞.
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Démonstration. La première partie résulte de la construction. L’inégalité 3.4 est triviale si le
membre de droite est infini, sinon φ ∈ Λ2([0, T ]) et on a l’égalité.

Pour finir, si φ ∈ Λ2
loc(IR+), soit

Bn
∞ =

∫ τn

0

φs dBs.

Comme Ωn = {τn = ∞} ↑ Ω P p.s., on peut définir B∞ par B∞ = Bn
∞ sur Ωn, n ∈ IN. Alors le

reste des affirmations découle de la proposition 3.2.7.

Le résultat suivant sera très utile par la suite.

Proposition 3.3.7. Soit φ ∈ Λ2([0, T ]). Alors ∀M,a > 0

P

(
sup

0≤t≤T
|Bt(φ)| ≥ a

)
≤ P

(∫ T

0

φ2
t dt ≥M

)
+

1

a2
IE

[
inf(M,

∫ T

0

φ2
t dt)

]

Démonstration. Soit τM = inf
{
t;
∫ t

0
φ2
s ds ≥M

}
. Alors

{τM < T} ⊆
{∫ T

0

φ2
t dt ≥M

}
.

On a aussi{
sup

0≤t≤T
|Bt(φ)| ≥ a

}
⊂ {τM < T} ∪

{
sup

0≤t≤T
|Bt(φ)| ≥ a

}
∩ {τM ≥ T} ,

et

P

(
sup

0≤t≤T
|Bt(φ)| ≥ a, τM ≥ T

)
≤ P

(
sup

0≤t≤T
|Bt(φ

M)| ≥ a

)
≤ 1

a2
IE
[
BT (φ

M)2
]

(déjà vu pour les martingales)

=
1

a2
IE

[∫ T

0

φ2
t1[0,τM ](t) dt

]
≤ 1

a2
IE

[
inf(M,

∫ T

0

φ2
t dt)

]
oô φM = φ1[0,τm]), d’où le résultat.
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Nous pouvons maintenant énoncer un théorème de convergence qui résulte directement de la
proposition précédente.

Théorème 3.3.8. Soit (φn)n∈IN une suite de Λ2
loc([0, T ]) et φ ∈ Λ2

loc([0, T ]). Supposons que

∫ T

0

|φn
t − φt| dt→ 0 en probabilité lorsque n→ ∞.

Alors

sup
0≤t≤T

|Bt(φ)−Bt(φn)| → 0 en probabilité.

3.4 Les formules d’Itô :

Considérons tout d’abord x ∈ C1(IR+), et Φ ∈ C1(IR). Alors la formule de dérivation des
fonctions composées donne

Φ(x(t)) = Φ(x(0)) +

∫ t

0

Φ′(x(s)) dx(s).

Notre objectif dans cette section va être d’obtenir une formule analogue si l’on remplace x par
un mouvement brownien.

3.4.1 Première formule d’Itô

Proposition 3.4.2. Première formule d’Itô :
Soit Φ ∈ C2(IR). Alors

Φ(Bt) = Φ(0) +

∫ t

0

Φ′(s) dBs +
1

2

∫ t

0

Φ′′(Bs) ds.

Démonstration. Soit Φ ∈ C2
b (IR) et tni = i

n
t, n ∈ IN. D’après la formule de Taylor, il existe pour
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chaque i ≤ n un élément aléatoire θni ∈]tni−1, t
n
i [ tel que

Φ(Bt) = Φ(0) +
n∑

i=1

[
Φ(Btni

)− Φ(Btni−1
)
]

= Φ(0) +
n∑

i=1

Φ′(Btni−1
)(Btni

−Btni−1
) +

1

2

n∑
i=1

Φ′′(Bθni
)(Btni

−Btni−1
)2

→ Φ(0) +

∫ t

0

Φ′(Bs) dBs +
1

2

∫ t

0

Φ′′(Bs) ds,

en probabilité lorsque n → ∞, car les deux sommes convergent en probabilité, ce que nous
allons montrer .

D’après le théorème 3.3.8, on a

n∑
i=1

Φ′(Btni−1
)(Btni

−Btni−1
) →

∫ t

0

Φ′(Bs) dBs en probabilité.

Puis ∣∣∣∣∣
n∑

i=1

(Φ′′(Bθni
)− Φ′′(Btni−1

))(Btni
−Btni−1

)2

∣∣∣∣∣
≤ sup

1≤j≤n
|Φ′′(Bθnj

)− Φ′′(Btnj−1
)|

n∑
i=1

(Btni
−Btni−1

)2

≤ sup
1≤j≤n

sup
tnj−1≤s≤tnj

|Φ′′(Bs)− Φ′′(Btnj−1
)|

n∑
i=1

(Btni
−Btni−1

)2

→ 0 en probabilité lorsque n→ ∞

Finalement il ne reste juste qu’à montrer que

n∑
i=1

Φ′′(Btni−1
)(Btni

−Btni−1
)2 →

∫ t

0

Φ′′(Bs) ds

en probabilité. Or∫ t

0

Φ′′(Bs) ds = lim
n→∞

n∑
i=1

Φ′′(Btni−1
)(tni − tni−1) P p.s. donc aussi en probabilité
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et on calcule alors

an = IE

( n∑
i=1

Φ′′(Btni−1
)(Btni

−Btni−1
)2 −

n∑
i=1

Φ′′(Btni−1
)(tni − tni−1)

)2
 ,

ce qui donne

an = IE

( n∑
i=1

Φ′′(Btni−1
)[(Btni

−Btni−1
)2 − (tni − tni−1)]

)2


=
n∑

i=1

IE
[
(Φ′′(Btni−1

))2[(Btni
−Btni−1

)2 − (tni − tni−1)]
2
]

≤ 2 sup
x∈IR

|Φ′′(x)|2
n∑

i=1

(tni − tni−1)
2

→ 0 lorsque n→ ∞

Donc
n∑

i=1

Φ′′(Btni−1
)(Btni

−Btni−1
)2 −

n∑
i=1

Φ′′(Btni−1
)(tni − tni−1)

converge vers 0 en probabilité et on peut alors en déduire que
n∑

i=1

Φ′′(Btni−1
)(Btni

−Btni−1
)2 →

∫ t

0

Φ′′(Bs) ds en probabilité.

Si maintenant Φ ∈ C2(IR), il existe une suite (Φn)n ∈ (C2(IR))IN convergeant simplement
vers Φ et telle que Φn(x) = Φ(x), ∀x ∈ [−n, n]. Appliquant ce qui précède, on obtient :

∀n ∈ IN,Φn(Bt) = Φn(0) +

∫ t

0

Φ′
n(s) dBs +

1

2

∫ t

0

Φ′′
n(Bs) ds.

Mais on sait que Φn(Bt) → Φ(Bt) P p.s. .
Ensuite soit Tn = inf {t ≥ 0; |Bt| > n},τn = inf {t ≥ 0;Bt > n} et τ−n = inf {t ≥ 0;Bt > n}.
On a

Tn ≥ max(τn; τ−n).

Or d’après la proposition 2.5.2, on a

P (τn < M) =

∫ M

0

√
2πt3e

−n2

2t dt
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et
∞∑
n=1

P (τn < M) =
∞∑
n=1

∫ M

0

√
2πt3e

−n2

2t dt

=

∫ M

0

(
∞∑
n=1

√
2πt3e

−n2

2t

)
dt d’après le théorème de Tonnelli

≤
∫ M

0

(
∞∑
n=1

√
2πt3e

−n
2t

)
dt

=

∫ M

0

√
2πt3

1

1− e
−1
2t

dt

< ∞

et en utilisant alors le lemme de Borel-Cantelli, on en déduit que τn → ∞ P p.s., de même pour
τ−n et par suite de Tn.

Soit maintenant Ωn = {Tn > T}. Vu ce qui précède, on a Ωn ↑ Ω P p.s., et sur Ωn, on a
∀t ≤ T,Φ′

n(Bt) = Φ′(Bt) donc ∫ T

0

|Φ′
n(Bt)− Φ′(Bt)| dt = 0

ce qui implique que ∫ T

0

|Φ′
n(Bt)− Φ′(Bt)| dt→ 0 en probabilité

et d’après le théorème 3.3.8 on sait qu’alors∫ T

0

Φ′
n(Bs) dBs →

∫ T

0

Φ′(Bs) dBs en probabilité

On a aussi
1

2

∫ t

0

Φ′′
n(Bs) ds =

1

2

∫ t

0

Φ′′(Bs) ds sur Ωn

ce qui implique toujours la convergence en probabilité. On obtient donc le résultat en invoquant
l’unicité de la limite en probabilité

Notons que le calcul différentiel d’Itô diffère du calcul différentiel usuel par l’apparition du
terme de la dérivée seconde Φ′′ qui est due au fait que le mouvement brownien a une variation
quadratique non nulle.
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3.4.3 Processus d’Itô
Nous généralisons maintenant la formule d’Itô ci-dessus en remplaçant le mouvement brow-

nien par une classe plus générale de processus.

Définition 3.4.4. Un processus {Xt; t ≥ 0} est appelé processus d’Itô s’il est de la forme

Xt = X0 +

∫ t

0

ψs ds+

∫ t

0

φs dBs(3.5)

oô X0 est une variable aléatoire F0-mesurable, ψ et φ sont des processus progressivement me-
surables qui vérifient ∫ t

0

|ψs| ds <∞ P p.s. , t ≥ 0 et φ ∈ Λ2
loc

Il en découle qu’un processus d’Itô est presque sûrement continu et progressivement mesu-
rable.

Lemme 3.4.5. Soit X une variable aléatoire Fs-mesurable, φ ∈ Λ2
loc et 0 < s < t. Alors∫ t

s

Xφr dBr = X

∫ t

s

φr dBr

Démonstration. Reprenons un travail déjà fait : Si A ∈ Fs, φ ∈ Λ2, alors∫ t

s

1Aφr dBr = 1A

∫ t

s

φr dBr,

car

IE

[(∫ t

s

1Aφr dBr − 1A

∫ t

s

φr dBr

)2

|Fs

]
= 1AIE

[(∫ t

s

(1A − 1)φr dBr

)2

|Fs

]

+1AcIE

[(∫ t

s

1Aφr dBr

)2

|Fs

]

= 1AIE

[∫ t

s

1Acφ2
r dr

]
+ 1AcIE

[∫ t

s

1Aφ
2
r dr|Fs

]
= 0
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Ensuite si φ ∈ Λ2
loc, on applique ce qui précède à φ1[0,τn] ∈ Λ2, on a alors∫ t

s

1Aφu1[0,τn] dBu = 1A

∫ t

s

φu1[0,τn] dBu

et en faisant tendre n vers ∞ on obtient∫ t

s

1Aφu dBu = 1A

∫ t

s

φu dBu.

Par linéarité, on en déduit que le résultat reste vrai pour les fonctions étagées, puis si X est une
variable aléatoire Fs-mesurable alors elle est limite presque sûre d’une suite de fonctions étagées
Fs-mesurables(Xn)n. Comme∫ t

0

|φuX − φuXn| ds ≤ |X −Xn|
∫ t

0

|φu| du→ 0 P p.s.

le théorème 3.3.8 permet de conclure

Théorème 3.4.6. (Deuxième formule d’Itô) Soit {Xt; t ≥ 0} un processus d’Itô de la forme 3.5
et Φ ∈ C2(IR). Alors P p.s. :

Φ(Xt) = Φ(X0) +

∫ t

0

Φ′(Xs)ψs ds+

∫
Φ′(Xs)φs dBs +

1

2

∫ t

0

Φ′′(Xs)φ
2
s ds, t ≥ 0,

expression que l’on peut aussi écrire sous la forme plus concise suivante :

dΦ(Xt) = Φ′(Xt) dXt +
1

2
Φ′′(Xt)φ

2
s ds.

Démonstration. Fixons t > 0 et soit Φ ∈ C2
c (IR). En utilisant le théorème 3.3.8, il suffit de

prouver le résultat pour une suite φp d’éléments de Λ2
loc telle que∫ t

0

|φp
s − φs|2 ds→ 0 en probabilité quand p→ ∞.

Choisissons

φp
s = 2p

2p−1∑
i=1

(∫ it
2p

(i−1)t
2p

φs ds

)
1
]
(i−1)t

2p
, it
2p

]
(s),

ainsi on peut dorénavant supposer que φ est borné et constant sur chaque intervalle
]
(i−1)t
2p

, it
2p

]
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En utilisant la formule de Taylor comme dans la proposition précédente, on obtient

Φ(Xt) = Φ(X0) +
n∑

i=1

Φ′(Xtni−1
)

∫ tni

tni−1

ψs ds

+
n∑

i=1

Φ′(Xtni−1
)

∫ tni

tni−1

φs dBs +
1

2

n∑
i=1

Φ′′(Xθni
)(Xtni

−Xtni−1
)2.

On va montrer maintenant que chacune des sommes converge vers le terme désiré.

La première des sommes est une somme de Riemann pour la mesure signée µ = ψs ds sur le
compact [0, t] donc

n∑
i=1

Φ′(Xtni−1
)

∫ tni

tni−1

ψs ds→
∫ t

0

Φ′(Xs)ψs ds P p.s. quand n→ ∞.

Pour la seconde, on remarque que, Φ′(Xs) étant continue P p.s.,
∑n

i=1 Φ
′(Xtni−1

)1]tni−1,t
n
i ]
(s)

converge P p.s. uniformément sur [0, t] vers Φ′(Xs), d’oô∫ t

0

∣∣∣∣∣
n∑

i=1

Φ′(Xtni−1
)φs1]tni−1,t

n
i ]
(s)− Φ′(Xs)φs

∣∣∣∣∣ ds→ 0 en probabilité

et ceci entraîne d’après le théorème 3.3.8 que∫ t

0

n∑
i=1

Φ′(Xtni−1
)φs1]tni−1,t

n
i ]
(s) dBs →

∫ t

0

Φ′(Xs)φs dBs en probabilité.

Or d’après le lemme 3.4.5 on a∫ t

0

n∑
i=1

Φ′(Xtni−1
)φs1]tni−1,t

n
i ]
(s) dBs =

n∑
i=1

Φ′(Xtni−1
)

∫ tni

tni−1

φs dBs

Ceci traite donc le cas de la deuxième somme.

En ce qui concerne la dernière somme, remarquons tout d’abord que

(Xtni
−Xtni−1

)2 =

(∫ tni

tni−1

ψs ds

)2

+ 2

∫ tni

tni−1

ψs ds

∫ tni

tni−1

φs dBs +

(∫ tni

tni−1

φs dBs

)2
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et la somme sur i des deux premiers termes du membre de droite est majorée en valeur absolue
par

sup
i

∣∣∣∣∣
∫ tni

tni−1

ψs ds+

∫ tni

tni−1

φs dBs

∣∣∣∣∣×
∫ t

0

|ψs| ds,

expression qui tend vers 0 P p.s. lorsque n→ ∞. Donc il ne reste qu’à étudier la limite de

n∑
i=1

Φ′′(Xθni
)

(∫ tni

tni−1

φs dBs

)2

,

et l’on peut toujours se restreindre à étudier cette limite le long de la sous-suite n = 2l, l ∈ IN.
Ainsi pour l ≥ p, φ est constant sur

]
tni−1, t

n
i

]
car il l’est sur

]
t2

p

i−1, t
2p

i

]
. On a alors

n∑
i=1

Φ′′(Xθni
)

(∫ tni

tni−1

φs dBs

)2

=
n∑

i=1

(Φ′′(Xθni
)− Φ′′(Xtni−1

))φ2
tni−1

(Btni
−tni−1

)2

+
n∑

i=1

Φ′′(Xtni−1
)φ2

tni−1
(Btni

−tni−1
)2

Comme P p.s. la fonction t 7→ Φ′′(Xt) est uniformément continue, P p.s. le processus {φs; 0 ≤ s ≤ t}
est borné et en raison de la proposition 2.4.2, le premier terme du membre de droite converge en
probabilité vers 0.

De plus, une généralisation facile de la proposition 2.4.2 assure que

n∑
i=1

Φ′′(Xtni−1
)φ2

tni−1

[
(Btni

−Btni−1
)2 − (tni − tni−1)

]
tend vers 0 en moyenne quadratique quand n → ∞. Puis il est clair en utilisant les sommes de
Riemann que

n∑
i=1

Φ′′(Xtni−1
)φ2

tni−1
(tni − tni−1) →

∫ t

0

Φ′′(Xs)φ
2
s ds.

Le résultat est démontré pour Φ ∈ C2
c (IR). Si maintenant Φ ∈ C2(IR), soit f ∈ D(IR) telle que

f = 1 sur [−1; 1], f = 0 sur IR \ [−2, 2] et 0 ≤ f ≤ 1. Pour n ∈ IN∗, on pose

gn(x) = nf
(x
n

)
, x ∈ IR et Φn(x) = gn(Φ(x)).

On vérifie alors que ∀n ≥ 1,Φn ∈ C2
c (IR),Φn(x) = Φ(x) si x ∈ [−n, n] et ∥Φn∥∞ ≤ ∥Φ∥∞.
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Comme IE [|Φn(Xt)− Φ(Xt)|] → 0 quand n→ ∞ (d’après le théorème de Lebesgue), on a

Φn(Xt) → Φ(Xt) en probabilité

Toujours d’après le théorème de Lebesgue, on a∫ t

0

Φ′
n(Xt)ψs ds→

∫ t

0

Φ′(Xs)ψs ds P p.s.

et
1

2

∫ t

0

Φ′′
n(Xs)φ

2
s ds→

∫ t

0

Φ′′(Xs)φ
2
s ds P p.s..

Ensuite le dernier terme se traite à l’aide du théorème 3.3.8 en remarquant que P p.s.∫ t

0

|Φ′
n(Xs)− Φ′(Xt)φs| ds→ 0 quand n→ ∞,

ceci résultant encore du théorème de Lebesgue

3.4.7 Formule d’Itô avec dépendance en t
En adaptant la preuve précédente on peut montrer le théorème suivant, où l’on a rajouté une

possible dépendance par rapport à la variable temporelle t.

Théorème 3.4.8. Soit {Xt; t ≥ 0} un processus d’Itô et Φ ∈ C1,2(IR+ × IR). Alors P p.s.

Φ(t,Xt) = Φ(0, X0) +

∫ t

0

∂Φ

∂s
(s,Xs) ds+

∫ t

0

∂Φ

∂x
(s,Xs)ψs ds+

∫ t

0

∂Φ

∂x
(s,Xs)φs dBs

+
1

2

∫ t

0

∂2Φ

∂x2
(s,Xs)φ

2
s ds

3.4.9 Exercices
Exercice 3.4.10. Le processus d’Ornstein-Ulhenbeck

On considère le processus X à valeurs dans IR solution de l’EDS linéaire à coefficients
constants :

dXt = −αXt dt+ βdBt, X0 = ξ(3.6)

oô α et β sont des constantes, B est un Ft-mouvement brownien et ξ est une variable F0-
mesurable. On suppose que α > 0.
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1) Montrer que la solution de (3.6) est donnée par

Xt = e−tαξ +

∫ t

0

e−(t−s)αβ dBs, t ≥ 0

2) En déduire que si ξ est une variable gaussienne, alors X est un processus gaussien
d’espérance et de fonction de covariance données par

IE [Xt] = e−tαIE [ξ]

Cov(Xs, Xt) = e−α(t+s)Var(ξ) + β2
∫ t∧s
0

e−α(t+s−2u) du

3) Si IE [ξ] = 0 et Var = β2

2α
alors le processus X est centré et de covariance stationnaire,

ie

Cov(Xs, Xt) =
β2

2α
e−α|t−s|, ∀s, t ≥ 0

En particulier, ∀t ∈ IR+, Xt ∼ N (0, β2/2α).

4) Si ξ est une variable gaussienne, alors quand t → ∞, l’espérance et la fonction de
covariance du processus {Xt+δ; δ ≥ 0} tendent vers celle du cas stationnaire :

IE [Xt] → 0, Cov(Xs, Xt) →
β2

2α
e−δα.

Réponse :

1) Si X est solution de (3.6) alors on a

Xt = X0 +

∫ t

0

ψs ds+

∫ t

0

φs dBs

avec X0 = ξ, ψs = −αXt et φs = β. Donc X est un processus d’Itô et en appliquant le
théorème 3.4.8 à X et à Φ(t, x) = etαx, on a :

etαXt = ξ +

∫ t

0

αesαXs ds+

∫ t

0

esα(−αXs) ds+

∫ t

0

βesα dBs

et en multipliant les deux termes de cette égalité par e−tα, on obtient bien

Xt = e−tαξ +

∫ t

0

βe−(t−s)α dBs
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Réciproquement on applique le même raisonnement au processus d’Itô Yt = etαXt et à
la fonction Φ(t, x) = e−tαx et on trouve bien que

Xt = e−tαξ +

∫ t

0

βe−(t−s)α dBs

est solution de (3.6).

2) Si ξ est gaussienne, comme
∫ t

0
βe−(t−s)α dBs est un processus gaussien indépendant de

F0, X est un processus gaussien. De plus on a

IE [Xt] = e−tαIE [ξ]

et

Cov(Xs, Xt) = IE

[
(e−tαξ +

∫ t

0

βe−(t−u)α dBu)(e
−sαξ +

∫ s

0

βe−(s−u)α dBu)

]
− IE [Xt] IE [Xs]

= IE

[∫ t

0

βe−(t−u)α dBu

∫ s

0

βe−(s−u)α dBu

]
+ e−(t+s)αVar(ξ)

= e−(t+s)αIE
[
B(βeuα1[0,t](u))B(βeuα1[0,s](u))

]
+ e−(t+s)αVar(ξ)

= e−(t+s)α

∫ ∞

0

βeuα1[0,t](u)βe
uα1[0,s](u) du+ e−(t+s)αVar(ξ)

= e−(t+s)α

∫ t∧s

0

β2e2αu du+ e−(t+s)αVar(ξ)

3) Si IE(ξ) = 0 et Var(ξ) = β2

2α
alors X est centré et

Cov(Xs, Xt) = e−(t+s)α β
2

2α
+ β2e−(t+s)α

∫ t∧s

0

e2αu du

=
β2

2α
e−(t+s−2t∧s)α

=
β2

2α
e−|t−s|α

4) Si ξ est gaussienne on a

IE [Xt+δ] = e−(t+δ)α → 0 quand t→ ∞
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et

Cov(Xt+δ, Xt+γ) = e−(2t+δ+γ)αVar(ξ) +
β2

2α
e−(2t+δ+γ)α

(
e2αt+2α(delta∧γ) − 1

)
= e−(2t+δ+γ)αVar(ξ) +

β2

2α
e−|δ−γ|α − β2

2α
e−(2t+δ+γ)α

→ β2

2α
e−|δ−γ|α lorsque t→ ∞

et ceci termine l’exercice.

Exercice 3.4.11. Mouvement brownien avec dérive :
Soit B un Ft-mouvement brownien, et Xt = Bt + µt, oô µ ∈ IR. Pour a > 0, on définit

T = Inf {t ≥ 0;Xt ≥ a}.

1) Montrer que pour tout λ ∈ IR, le processus

Zt = e
λXt−

(
λ2

2
+µλ

)
t

est une martingale.

2) Montrer que IE [Zt∧T ] = 1 pour tout t ≥ 0. En déduire que si λ > (−2µ)+,

IE

[
1{T<∞}e

−
(

λ2

2
+µλ

)
T

]
= e−λa

3) Montrer que
P (T <∞) = 1 ∧ e2µa

Réponse :

1) On applique le théorème 3.4.8 au processus d’Itô Bt (avec B0 = 0,ψs = 0 et φs = 1) et
à la fonction Φ(t, x) = eλx−

λ2t
2 pour obtenir :

e
λXt−

(
λ2

2
+µλ

)
t

= eλBt−λ2t
2

= Φ(0, B0)−
λ2

2

∫ t

0

eλBs−λ2s
2 ds+

∫ t

0

λeλBs−λ2s
2 dBs+

λ2

2

∫ t

0

eλBs−λ2s
2 ds

= 1 + λ

∫ t

0

eλBs−λ2s
2 dBs

Comme eλBs−λ2s
2 ∈ Λ2, Zt est bien une Ft-martingale.
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2) On a d’après le lemme 3.3.4

Zt∧T = 1 + λ

∫ t∧T

0

eλBs−λ2s
2 dBs = 1 + λ

∫ t

0

1[0,T ](s)e
λBs−λ2s

2 dBs P p.s.

donc vu la proposition 3.2.7 on a

IE [Zt∧T ] = 1.

Si λ > (−2µ)+ alors ∀t ≥ 0,
(

λ2

2
+ µλ

)
t > 0 et donc on a

0 < Zt∧T ≤ eλa.

De plus, sur {T <∞}, on a

lim
t→∞

Zt∧T = e
λa−

(
λ2

2
+µλ

)
T

et sur {T = ∞} on a
lim
t→∞

Zt∧T = 0

donc le théorème de convergence dominé de Lebesgue assure que

IE

[
1{T<∞}e

λa−
(

λ2

2
+µλ

)
T

]
= 1

soit

IE

[
1{T<∞}e

−
(

λ2

2
+µλ

)
T

]
= e−λa.

3) Si µ > 0 alors d’après le théorème 2.3.1

lim
t→∞

Xt

t
= µ P p.s.

donc
Xt → ∞ P p.s.

et donc P (T <∞) = 1. Sinon µ ≤ 0 et en passant à la limite pour λ → −2µ dans
l’égalité obtenue à la question 2) dont les deux membres sont des fonctions continues de
λ ∈ [−2µ,∞[, on a

P (T <∞) = e2µa

ce qui termine l’exercice.
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3.5 Extension des résultats à IRd :

3.5.1 Mouvement brownien et intégrale stochastique vectoriels
Commençons par donner la définition d’un mouvement brownien à valeurs dans IRk.

Définition 3.5.2. (Mouvement brownien k-dimensionnel) Un processus stochastique {Bt; t ≥ 0}
à valeurs dans IRk est appelé mouvement brownien si ses composantes {B1

t ; t ≥ 0} , . . . ,
{
Bk

t ; t ≥ 0
}

sont de mouvements browniens scalaires mutuellement indépendants. De façon équivalente, {Bt; t ≥ 0}
est un mouvement brownien de dimension k si c’est un processus gaussien centré, à trajectoires
P p.s. continues et de matrice de covariance donnée par :

IE [BtB
∗
s ] = min(t, s)I

Soit maintenant {Bt, t ≥ 0} un mouvement brownien de dimension k et {φt, t ≥ 0} un pro-
cessus à valeurs dans les matrices d× k. Supposons que pour tous 1 ≤ i ≤ d, 1 ≤ j ≤ k, φij ∈
Λ2. On peut alors définir

B(φ)it =
k∑

j=1

∫ t

0

φij
s dB

j
s , 1 ≤ i ≤ d, t ≥ 0,

et B(φ)t est alors le vecteur d-dimensionnel dont les composantes sont égales à B(φ)it. Nous
avons alors

Proposition 3.5.3. Soit φ, ψ ∈ (Λ2)d×k. Alors ∀s, 0 ≤ s < t,

i) B(φ)t =
∫ t

0
φs dBs est un vecteur aléatoire d-dimensionnel Ft-mesurable.

ii) IE [B(φ)t] = 0

iii) IE [(B(φ)t −B(φ)s)(B(ψ)t −B(ψ)s)
∗|Fs] = IE

[∫ t

s
φrψ

∗
r dr|Fs

]
iv) IE [⟨B(φ)t −B(φ)t, B(ψ)t −B(ψ)s⟩] = IE

[∫ t

s
Tr(φrψ

∗
r) dr|Fs

]

Démonstration. Tout ceci résulte en fait de la proposition 3.2.7 et de l’identité suivante :

IE
[
(Bi

t(φ)−Bi
s(φ))(B

j
t (ψ)−Bj

s(ψ))|Fs

]
= 0,
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oô φ, ψ ∈ Λ2, i ̸= j, 0 ≤ s ≤ t. Il suffit pour montrer cela de le montrer pour φ, ψ ∈ E et ceci
résulte de

IE
[
XY (Bi

t −Bi
t)(B

j
t −Bj

s)|Fs

]
= XY IE

[
(Bi

t −Bi
s)(B

j
t −Bj

s)|Fs

]
= XY IE

[
(Bi

t −Bi
s)
]
IE
[
(Bj

t −Bj
s)
]

= 0

oô 0 ≤ s < t, X, Y ∈ L2(ΩFs,P) et nous avons utilisé le fait que Fs, B
i
t − Bi

s, B
j
t − Bj

s sont
indépendants

FIGURE 3.1 – Trajectoire d’un mouvement brownien dans le plan

3.5.4 Formule d’Itô vectorielle
On va maintenant généraliser la formule d’Itô au cas vectoriel, qui se démontre de la même

façon que pour la dimension 1.

Définition 3.5.5. Un processus stochastique {Xt; t ≥ 0} est un processus d’Itô d-dimensionnel
s’il est de la forme

Xt = X0 +

∫ t

0

ψs ds+

∫ t

0

φs dBs,(3.7)
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oô X0 est un vecteur aléatoire d-dimensionnel F0-mesurable, ψ est un processus d-dimensionnel
progressivement mesurable satisfaisant∫ t

0

|ψs| ds <∞ P p.s. , t ≥ 0,

{Bt; t ≥ 0} est un mouvement brownien k-dimensionnel, φ est un processus progressivement
mesurable à valeurs dans les matrices d× k et satisfaisant∫ t

0

Tr(φsφ
∗
s) ds <∞ P p.s. , t ≥ 0

On notera C1,2(IR+ × IRd) l’espace des fonctions continues qui sont une fois continûment
différentiable par rapport à la première variable et qui le sont deux fois par rapport à la variable
vectorielle.

Théorème 3.5.6. Formule d’Itô vectorielle :
Soit {Xt; t ≥ 0} un processus d’Itô d-dimensionnel de la forme (3.7), et Φ ∈ C1,2(IR+ × IRd).
Alors P p.s.

Φ(t,Xt) = Φ(0, X0) +

∫ t

0

∂Φ

∂s
(s,Xs) ds+

∫ t

0

⟨∇xΦ(s,Xs), ψs⟩ ds+
∫ t

0

∇xΦ(s,Xs), φs dBs

+
1

2

∫ t

0

Tr[∂2xxΦ(s,Xs)φsφ
∗
s] ds

3.6 Les inégalités de Burkholder-Davis-Gundy
Nous allons montrer dans cette section la double inégalité suivante qui sera un outil intéres-

sant pour la suite :

Théorème 3.6.1. Soit {Bt, t ≥ 0} un mouvement brownien d-dimensionnel. Pour chaque
p > 0, il existe une constante cp ≥ 1 telle que ∀φ ∈ (Λ2

loc)
d

1

cp
IE

[(∫ ∞

0

|φt|2 dt
)p/2

]
≤ IE

[
sup
t≥0

∣∣∣∣∫ t

0

⟨φs, dBs⟩
∣∣∣∣p] ≤ cpIE

[(∫ ∞

0

|φt|2 dt
)p/2

]
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L’inégalité la plus importante est celle de droite. Le cas p = 2 résulte des théorèmes sur la
construction des intégrales stochastiques et des inégalités de Doob pour les martingales. Nous
allons d’abord montrer le résultat pour p assez grand puis nous en déduirons alors le cas général.

Proposition 3.6.2. ∀p ≥ 2,∀φs ∈ (Λ2
loc)

d et si B est un mouvement brownien d-dimensionnel
alors

IE

[
sup
t≥0

∣∣∣∣∫ t

0

⟨φr, dBr⟩
∣∣∣∣p] ≤ CpIE

[(∫ ∞

0

|φr|2 dr
)p/2

]

avec Cp =
(

pp+1

2(p−1)p−1

)p/2
.

Démonstration. Appliquons la formule d’Itô au processus d’Itô

Zt =

∫ t

0

⟨φr, dBr⟩

et à la fonction Φ(x) = |x|p ∈ C2(IR+) car p ≥ 2. On a alors ∀s ≥ 0

|Zs|p = p

∫ s

0

|Zr|p−1 ⟨φr, dBr⟩+
p(p− 1)

2

∫ s

0

|Zr|p−2|φr|2 dr

Notons Xs = |Zs|p−1φs et Tn = inf
{
t ≥ 0;

∫ t

0
X2

s ds ≥ n
}

. On a ainsi

|Zt∧Tn|p = p

∫ t∧Tn

0

|Zr|p−1 ⟨φr, dBr⟩+
p(p− 1)

2

∫ t∧Tn

0

|Zr|p−2|φr|2 dr

et en prenant l’espérance de cette expression, on obtient :

IE [|Zt∧Tn|p] = IE

[
p

∫ t∧Tn

0

|Zr|p−1 ⟨φr, dBr⟩
]
+
p(p− 1)

2
IE

[∫ t∧Tn

0

|Zr|p−2|φr|2 dr
]

= IE

[
p

∫ t

0

1[0;Tn](r)|Zr|p−1 ⟨φr, dBr⟩
]
+
p(p− 1)

2
IE

[∫ t∧Tn

0

|Zr|p−2|φr|2 dr
]

=
p(p− 1)

2
IE

[∫ t∧Tn

0

|Zr|p−2|φr|2 dr
]
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En utilisant le lemme de Fatou en n∞, on obtient :

IE [|Zt|p] ≤
p(p− 1)

2
IE

[∫ t

0

|Zr|p−2|φr|2 dr
]
.

Puis on écrit :

IE

[∫ t

0

|Zr|p−2|φr|2 dr
]

≤ IE

[
sup
0≤s≤t

|Zr|p−2

∫ t

0

|φr|2 dr
]

≤
(
IE

[
sup
0≤s≤t

|Zr|p
]) p−2

p

(
IE

[(∫ t

0

|φr|2 dr
)p/2

])2/p

(3.8)

Ensuite si

IE

[(∫ t

0

|φs|2 ds
) p

2

]
= ∞

alors l’inégalité voulue est triviale sinon on a

IE

[∫ t

0

|φs|2 ds
]
<∞

et φ ∈ (Λ2([0, t]))
d. Dans ce cas, Zs =

∫ s

0
φr dBr (0 ≤ s ≤ t), est une martingale et en

appliquant la formule (3.2) page 44 , on a :

IE

[
sup
0≤s≤t

∣∣∣∣∫ s

0

φr dBr

∣∣∣∣p]1/p ≤ qIE

[∣∣∣∣∫ t

0

φr dBr

∣∣∣∣p]1/p .(3.9)

On obtient alors en combinant les expressions (3.8) et (3.9) :

IE

[
sup
0≤s≤t

∣∣∣∣∫ s

0

⟨φr, dBr⟩
∣∣∣∣p] ≤ CpIE

[(∫ t

0

|φr|2 dr
)p/2

]

et le théorème de Fatou permet alors de passer à la limite en t → ∞ et d’obtenir le résultat
demandé

Proposition 3.6.3. Pour tout p ≥ 4, il existe une constante cp telle que pour tout φ ∈ (Λ2
loc)

d

IE

[(∫ ∞

0

|φr|2 dr
)p/2

]
≤ cpIE

[
sup
t≥0

∣∣∣∣∫ s

0

⟨φr, dBr⟩
∣∣∣∣p]
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Démonstration. Comme dans la proposition précédente et avec les mêmes notations, on déduit
de la formule d’Itô que :

Z2
t = 2

∫ t

0

Zs ⟨φs, dBs⟩+
∫ t

0

|φs|2 ds

On obtient alors :(∫ t

0

|φs|2 ds
)p/2

=

(
Z2

t − 2

∫ t

0

Zs ⟨φs, dBs⟩
)p/2

≤ 2p/2−1

(
|Zt|p + 2p/2

∣∣∣∣∫ t

0

Zs ⟨φs, dBs⟩
∣∣∣∣p/2
)

≤ 2p−1

(
sup
t≥0

|Zt|p + sup
t≥0

∣∣∣∣∫ t

0

Zs ⟨φs, dBs⟩
∣∣∣∣p/2
)

et en prenant l’espérance et en passant à la limite en t→ ∞

IE

[(∫ ∞

0

|φs|2 ds
)p/2

]
≤ 2p−1

(
IE

(
sup
t≥0

|Zt|p
)
+ IE

(
sup
t≥0

∣∣∣∣∫ t

0

Zs ⟨φs, dBs⟩
∣∣∣∣p/2
))

D’autre part, en utilisant la proposition précédente, on a :

IE

(
sup
t≥0

∣∣∣∣∫ t

0

Zs ⟨φs, dBs⟩
∣∣∣∣p/2
)

≤ CpIE

[∣∣∣∣∫ ∞

0

|Zs|2|φs|2 ds
∣∣∣∣p/4
]

≤ CpIE

[
sup
t≥0

|Zs|p/2
∣∣∣∣∫ ∞

0

|φs|2 ds
∣∣∣∣p/4
]

C−S

≤ Cp

(
IE

[
sup
t≥0

|Zs|p
])1/2

(
IE

[(∫ ∞

0

|φt|2 dt
)p/2

])1/2

ab≤a2+b2

2

≤ Cp

2

(
εIE

[
sup
t≥0

|Zs|p
]
+

1

ε
IE

[(∫ ∞

0

|φt|2 dt
)p/2

])

et ceci pour tout ε > 0. En choisissant ε = 2p−1Cp et en combinant les deux inégalités précédente,
on obtient alors le résultat

Il reste alors à déduire le résultat pour p petit des résultats obtenus pour p grand.
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Définition 3.6.4. Un processus continu, positif et progressivement mesurable {Xt, t ≥ 0} est dit
dominé par le processus croissant et continu {At, t ≥ 0} si pour tout temps d’arrêt borné τ ,

IE [Xτ ] ≤ IE [Aτ ] .

Lemme 3.6.5. Soit {Xt, t ≥ 0} un processus positif, continu et progressivement mesurable do-
miné par le processus croissant et continu {At, t ≥ 0}. Alors

1. Pour tous x, y > 0,

P

(
sup
t≥0

Xt > x,A∞ ≤ y

)
≤ 1

x
IE [min(A∞, y)]

2. Pour tout k ∈]0; 1[,

IE

[(
sup
t≥0

Xt

)k
]
≤ 2− k

1− k
IE
[
Ak

∞
]

Démonstration. Il est suffisant de prouver (avec Fatou) que pour tout n ∈ IN,

P

(
sup

0≤t≤n
Xt > x,An ≤ y

)
≤ 1

x
IE [An ∧ y] .

Définissons les temps d’arrêt :
τ = inf {t;At ≥ y} ∧ n
η = inf {t;Xt ≥ x} ∧ n

On peut déjà remarquer que {An ≤ y} = {τ = n}. Alors

P

(
sup

0≤t≤n
Xt > x,An ≤ y

)
= P

(
sup

0≤t≤n
Xt > x, τ = n

)
= P (η < n, τ = n)

≤ P (Xτ∧η = x)

=
1

x
[xP (Xτ∧η = x)]

≤ 1

x
IE [Xτ∧η]

≤ 1

x
IE [Aτ∧η]

≤ 1

x
IE [min(An, y)]
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car on a à la fois Aτ∧η ≤ An et Aτ∧η ≤ y.
Pour le 2), soit F une fonction croissante et croissante de IR+ dans lui-même satisfaisant de

plus F (0) = 0. En utilisant le théorème de Fubini et le 1), on obtient :

IE

[
F (sup

t≥0
Xt)

]
= IE

[∫ supt≥0 Xt

0

dF (x)

]
=

∫ ∞

0

P

(
sup
t≥0

Xt > x

)
dF (x)

≤
∫ ∞

0

[
P

(
sup
t≥0

Xt > x,A∞ ≤ x

)
+ P (A∞ > x)

]
dF (x)

≤
∫ ∞

0

(
1

x
IE [A∞ ∧ x] + P (A∞ > x)

)
dF (x)

≤
∫ ∞

0

(
2P (A∞ > x) +

1

x
IE
[
A∞1{A∞≤x}

])
dF (x)

= 2IE [F (A∞)] + IE

[
A∞

∫ ∞

A∞

1

x
dF (x)

]
= IE

[
F̃ (A∞)

]
oô F̃ (x) = 2F (x) +

∫∞
x

1
u
dF (u). En choisissant F (x) = xk on obtient bien 2)

Nous allons maintenant finir la preuve du théorème 3.6.1. Pour prouver l’inégalité de droite,

on utilise le lemme 3.6.5 avec Xt =
∣∣∣∫ t

0
⟨φs, dBs⟩

∣∣∣2 et At = c2
∫ t

0
|φs|2 ds. L’hypothèse de

domination résulte de la proposition 3.6.2 appliquée à φ1[0;τ ] au lieu de φ. Ainsi pour k ∈]0; 1[,

IE

[(
sup
t≥0

Xt

)k
]
≤ 2− k

1− k
IE
[
Ak

∞
]

et en posant p = 2k oô p ∈]0; 2[, on obtient

IE

[
sup
t≥0

∣∣∣∣∫ t

0

⟨φs, dBs⟩
∣∣∣∣p] ≤ 4− p

2− p
c
p/2
2 IE

[(∫ t

0

|φs|2 ds
)p/2

]
.

Pour prouver l’inégalité de gauche pour p < 4, on utilise le lemme 3.6.5 avec

Xt =
(∫ t

0
|φs|2 ds

)2
et At = c4 sup0≤s≤t

∣∣∫ s

0
⟨φr, dBr⟩

∣∣4. La domination résulte de la proposi-
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tion 3.6.3. On a alors pour k ∈]0; 1[ :

IE

[(
sup
t≥0

Xt

)k
]
≤ 2− k

1− k
IE
[
Ak

∞
]

et en posant p = 4k, 0 < p < 4 cela nous donne :

E

[(∫ t

0

|φs|2 ds
)p/2

]
≤ 8− p

4− p
c
p/4
4 IE

[
sup
t≥0

∣∣∣∣∫ t

0

⟨φs, dBs⟩
∣∣∣∣p] .

Nous énonçons maintenant un corollaire qui sera très utile :

Corollaire 3.6.6. Soit φ ∈ (Λ2
loc)

d tel que IE
[(∫∞

0
|φt|2 dt

)1/2]
<∞. Alors le processus{∫ t

0
⟨φs, dBs⟩ , t ≥ 0

}
est une martingale uniformément intégrable. En particulier pour tout t >

0, la variable aléatoire
∫ t

0
⟨φs, dBs⟩ est intégrable et

IE

[∫ t

0

⟨φs, dBs⟩
]
= 0.

Démonstration. En posant Mt =
∫ t

0
⟨φs, dBs⟩, on a d’après le théorème 3.6.1 :

∀t ≥ 0, |Mt| ≤ sup
t≥0

|Mt| ∈ L1(Ω)

donc la martingale est bien uniformément intégrable et le reste en découle facilement

3.7 Théorèmes de représentation des martingales

Nous avons vu que le mouvement brownien ainsi que les intégrales stochastiques d’éléments
de Λ2 sont des martingales. Dans cette section, nous allons étudier les conditions sous lesquelles
une martingale est un mouvement brownien ou une intégrale stochastique par rapport à un mou-
vement brownien.

Nous aurons par la suite besoin de la remarque suivante :
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Remarque 3.7.1. Soit {Mt, t ≥ 0} une martingale continue d-dimensionnelle telle que
M0 = 0 P ps et {MtM

∗
t − tI; t ≥ 0} est une martingale à valeurs dans les matrices d × d. Soit

F ∈ Cb(IR
d, IRd), on peut alors construire de la même manière que pour le mouvement brownien

l’intégrale stochastique ∫ t

0

⟨F (Ms), dMs⟩

qui est aussi une martingale continue. On peut également montrer de la même manière que nous
l’avons fait la formule d’Itô suivante pour Φ ∈ C2

b (IR
d) :

∀t ≥ 0,Φ(Mt) = Φ(0) +

∫ t

0

∇Φ(Ms) dMs +
1

2

∫ t

0

Tr(Φ′′(Ms)) ds

Nous pouvons alors prouver le fameux théorème suivant :

Théorème 3.7.2. Paul Lévy Soit {Mt, t ≥ 0} une martingale continue d-dimensionnelle telle
que M0 = 0 P ps et {MtM

∗
t − tI; t ≥ 0} est une martingale à valeurs dans les matrices d × d.

Alors {Mt, t ≥ 0} est un Ft-mouvement brownien.

Démonstration. Appliquons la remarque précédente à la fonction Φ ∈ C2
b (IR

d, IC) donnée par
Φ(x) = ei<λ,x> oô λ ∈ IRd. Nous avons :

ei<λ,Mt> = ei<λ,Ms> + i

〈
λ,

∫ t

s

ei<λ,Mr>dMr

〉
− |λ|2

2

∫ t

s

ei<λ,Mr> dr

ei<λ,Mt−Ms> = 1 + i

〈
λ,

∫ t

s

ei<λ,Mr−Ms>dMr

〉
− |λ|2

2

∫ t

s

ei<λ,Mr−Ms> dr

et en prenant l’espérance conditionnelle :

IE
[
ei<λ,Mt−Ms>|Fs

]
= 1− |λ|2

2

∫ t

s

IE
[
ei<λ,Mt−Ms>|Fs

]
dr

Ainsi le processus à valeurs complexes φ(t) = IE
[
ei<λ,Mt−Ms>|Fs

]
, t ≥ s satisfait l’équation

différentielle suivante : {
dφ(t)
dt

= − |λ|2
2
φ(t), t ≥ s

φ(s) = 1

En conséquence, on a

IE
[
ei<λ,Mt−Ms>|Fs

]
= e−

|λ|2
2

(t−s), 0 ≤ s < t, λ ∈ IRd.

et ceci prouve que Mt est à accroissements Mt −Ms sont indépendants de Fs et suivent la loi
N(0, (t− s)I)
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Nous supposerons maintenant que {Bt, t ≥ 0} est un mouvement brownien d-dimensionnel
et que la filtration {Ft, t ≥ 0} est la filtration naturelle de {Bt, t ≥ 0} ie Ft = σ(Bs, 0 ≤ s ≤ t)
(aux ensembles de P mesure nulle près).

Théorème 3.7.3. Soit {Mt, t ≥ 0} une martingale telle que M0 = 0 P ps et

IE
[
|Mt|2

]
<∞, t > 0.

Alors il existe un unique φ ∈ (Λ2)d tel que

Mt =

∫ t

0

⟨φs, dBs⟩ , t ≥ 0, P ps

Démonstration. L’unicité de φ résulte du fait que si φ, φ′ satisfont le théorème alors

IE

[∫ T

0

|φt − φ′
t|2 dt

]
= 0, T > 0.

Pour prouver l’existence de φ il suffit de montrer (en utilisant l’unicité) que pour tout T > 0,
il existe φ ∈ (Λ2([0, T ]))d tel que

MT =

∫ T

0

⟨φt, dBt⟩ .

Ceci résulte du fait que l’ensemble

H =

{
c+

∫ T

0

⟨φt, dBt⟩ ; c ∈ IR, φ ∈ (Λ2([0, T ]))d
}

coïncide avec L2(Ω,FT , P ). Il est facile de voir que

H ⊂ L2(Ω,FT , P ).

Il suffit alors de montrer que H est à la fois dense et fermé dans L2(Ω,FT , P ).
a) H est fermé. Soit {cn, n ∈ IN} ⊂ IR et {φn, n ∈ IN} ⊂ (Λ2([0, T ]))d et soit

ξn = cn +

∫ T

0

⟨φn
t , dBt⟩ , n ∈ IN.
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On suppose que ξn → ξ dans L2(Ω,FT , P ). Alors IE [ξn] → IE [ξ] et ainsi cn → c. D’autre part
on a :

V ar(ξn − ξm) = IE

[∫ T

0

|φn
t − φm

t |2 dt
]
→ 0,

lorsque m,n → ∞. Ainsi la suite {φn, n ∈ IN} est une suite de Cauchy dans (Λ2([0, T ]))d et il
existe φ ∈ (Λ2([0, T ]))d tel que

IE

[∫ T

0

|φn
t − φt|2 dt

]
→ 0,

et

ξ = c+

∫ T

0

⟨φt, dBt⟩ .

b) H est dense dans L2(Ω,FT , P ). Soit ρ ∈ L2([0, T ], IRd), on pose

Xρ
t =

∫ t

0

⟨φs, dBs⟩ −
1

2

∫ t

0

|ρs|2 ds,

ερt = exp(Xρ
t ), ε

ρ △
= ερT .

En appliquant la formule d’Itô au processus Xρ
t et à la fonction Φ(x) = exp(x) on obtient

ερ = exp(Xρ
T )

= 1 +

∫ T

0

exp(Xρ
t )

(
−1

2
|ρt|2

)
ds+

∫ T

0

exp(Xρ
t ) ⟨φt, dBt⟩+

1

2

∫ T

0

Tr(ρtρ
∗
t ) exp(X

ρ
t ) ds

= 1 +

∫ T

0

exp(Xρ
t ) ⟨φt, dBt⟩

De plus on a

IE

[∫ T

0

|ξρt ρt|2 dt
]

=

∫ T

0

|ρt|2IE
[
|ξρt |2

]
dt

=

∫ T

0

|ρt|2 exp
(∫ t

0

|ρs|2 ds
)
dt

< ∞ car ρ ∈ L2([0, T ], IRd)

et donc ερ ∈ H.
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Nous allons maintenant montrer que pour Z ∈ L2(Ω,FT , P ),

IE [Zερ] = 0 , ∀ρ ∈ L2([0, T ], IRd) ⇒ Z = 0.

et ceci prouvera la densité. Or

IE [Zερ] = cρIE

[
Z exp

(∫ T

0

⟨ρt, dBt⟩
)]

.

En choisissant ρ =
n∑

i=1

λi1[ti−1;ti[(t) oô ∀i, λi ∈ ICd, 0 = t0 < t1 < · · · < tn ≤ T , nous avons :

IE
[
Z exp

(
⟨λ1, Bt1⟩+ ⟨λ2, Bt2 −Bt1⟩+ · · ·+

〈
λn, Btn −Btn−1

〉)]
= 0,

et quitte à changer les notations, on a ∀µ1, . . . , µn ∈ IRd, ∀0 < t1 < t2 < · · · < tn ≤ T ,

IE [Z exp (i ⟨µ1, Bt1⟩+ i ⟨µ2, Bt2⟩+ · · ·+ i ⟨µn, Btn⟩)] = 0.

Posons pour alléger l’écriture µ =

 µ1
...
µn

 et Y =

 Bt1
...
Btn

.

Nous avons IE
[
Zei<µ,Y >

]
= 0,∀µ ∈ IRdn. Nous allons montrer que IE [Z|Y ] = 0. Il suffit pour

cela de montrer que pour toute fonction f ∈ C0(IR
dn) IE [f(Y )Z] = 0 et par densité il suffit de

le montrer pour les fonctions f étant des transformées de Fourier de fonctions de L1(IRdn). Soit
donc

f(x) =

∫
IRdn

ei<x,t>g(t) dt

on a alors

IE [f(Y )Z] = IE

[∫
IRdn

Zei<Y,t>g(t) dt

]
=

∫
IRdn

g(t)IE
[
Zei<Y,t>

]
dt

= 0

Ainsi on a montré : ∀n ∈ IN,∀0 ≤ t1 < t2 < · · · < tn ≤ T

IE [Z|Bt1 , . . . , Btn ] = 0.
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Soit A =
⋃

{n,0≤t1<···<tn}

σ(Bt1 , . . . , Btn). Pour tout A ∈ A on a

∫
A

Z dP = 0

et par le théorème de la classe monotone ceci est encore vrai pour tout A ∈ σ(A) = FT donc
Z = 0 P ps.

Corollaire 3.7.4. Soit T > 0 et ξ ∈ L2(Ω,FT , P ). Alors il existe un unique φ ∈ (Λ2([0, T ]))d

tel que

ξ = IE [ξ] +

∫ T

0

⟨φt, dBt⟩ .

Démonstration. Pour t ≥ 0 on définit

Mt = IE [ξ|Ft]− IE [ξ] .

Alors Mt est une martingale qui vérifie les hypothèses du théorème précédent et le résultat en
découle.

Corollaire 3.7.5. Soit T > 0 et ξ ∈ Lp(Ω,FT , P ) pour un p > 1. Alors il existe un unique
φ ∈ (Λ2

loc([0, T ]))
d tel que

IE

[(∫ T

0

|φt|2 dt
)p/2

]
<∞

et

ξ = IE [ξ] +

∫ T

0

⟨φt, dBt⟩ .

Démonstration. Supposons que l’on dispose d’un tel φ. Alors en combinant les inégalités de
Burkholder-Davis-Gundy et Doob et en posant Mt =

∫ t

0
⟨φs, dBs⟩ on a :

IE

[(∫ T

0

|φt|2 dt
)p/2

]
≤ cpIE

[
sup
t≤T

|Mt|p
]

≤ p

p− 1
cpIE [|ξ − IE [ξ] |p]

L’unicité de φ résulte alors de cette inégalité, il suffit de l’appliquer à la différence de deux
éventuels candidats. Le cas p ≥ 2 résulte du corollaire précédent et de la même inégalité. Si
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1 < p < 2 alors L2(Ω,FT , P ) est dense dans Lp(Ω,FT , P ) et alors il existe une suite
{ξn, n ∈ IN} ⊂ L2(Ω,FT , P ) telle que ξn → ξ dans Lp(Ω,FT , P ).

A chaque ξn on associe d’après le corollaire précédent φn ∈ (Λ2([0, T ]))d tel que

ξn = IE [ξn] +

∫ T

0

⟨φn
t , dBt⟩ .

Toujours d’après l’inégalité précédente, on a

IE

[(∫ T

0

|φn
t − φm

t |2 dt
)p/2

]
≤ p

p− 1
cpIE [|ξn − ξm − IE [ξn − ξm] |p]

Ainsi la suite (φn)n est de Cauchy dans l’espace des processus progressivement mesurables de
Lp/2(Ω, L2([0;T ], IRd)) et a donc une limite dans cet espace. Il ne reste alors plus qu’à passer à
la limite dans l’égalité ci-dessus.



Chapitre 4

Equations différentielles stochastiques

4.1 Introduction

Le but de ce chapitre est d’étudier les équations différentielles stochastiques de la forme :

(4.1)
{
dXt = f(t,Xt) dt+ g(t,Xt) dBt

X0 = x

qui est une facilité d’écriture pour

Xt = x+

∫ t

0

f(s,Xs) ds+

∫ t

0

g(s,Xs) dBs,

où {Bt; t ≥ 0} est un mouvement brownien k-dimensionnel. Le coefficient f(t,Xt) de ‘dt‘ est
appelé la dérive et le coefficient g(t,Xt) de ‘dBt‘ est appelé coefficient de diffusion.

Nous rechercherons des solutions {Xt; t ≥ 0} qui sont des processus d-dimensionnels pro-
gressivement mesurables et doivent nécessairement vérifier :

Pp.s., ∀t > 0,

∫ t

0

|f(s,Xs)| ds <∞ et
∫ t

0

∥g(s,Xs)∥2 ds <∞

On conviendra par la suite que

f : IR+ × IRd → IRd, g : IR+ × IRd → IRd×k

sont des fonctions mesurables.

76
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4.2 Estimations préliminaires
Pour établir des conditions d’existence et d’unicité, nous serons amenés à utiliser certaines

estimations. Plus précisément, considérons les conditions suivantes sur le couple (f, g) :

(4.2) ∀T > 0,∃CT tel que ∀x ∈ IRd, 0 ≤ t ≤ T,

{
< x, f(t, x) >≤ Ct(1 + |x|2)
et ∥g(t, x)∥ ≤ CT (1 + |x|)

et

(4.3)
{

∀r > 0,∃Kr > 0,∀x, y ∈ B(0; r),∀t ≥ 0,
|f(t, x)− f(t, y)|+ ∥g(t, x)− g(t, y)∥ ≤ Cr|x− y|

On rappelle aussi le lemme important suivant :

Lemme 4.2.1. Lemme de Gronwall
Soit f une application localement intégrable de IR+ dans IR, a et b deux applications croissantes
et non négatives telles que

f(t) ≤ a(t) + b(t)

∫ t

0

f(s) ds, 0 ≤ t ≤ T

Alors on a
∀t ∈ [0;T ], f(t) ≤ a(t)eb(t)t

Proposition 4.2.2. Supposons que le couple de fonctions (f, g) vérifie la condition (4.2), que X
soit un processus vérifiant

Xt = X0 +

∫ t

0

f(s,Xs) ds+

∫ t

0

g(s,Xs) dBs

et que IE [|X0|p] < ∞ pour un p ≥ 2. Alors ∀T > 0, il existe une constante C(p, T ) telle que
pour 0 ≤ t ≤ T on ait

IE [|Xt|p] ≤ (IE [|X0|p] + C(p, T )t)eC(p,T )t
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Démonstration. Soit T > 0 et CT donnée par la condition 4.2. Appliquons la formule d’Itô au
processus X et à la fonction Φ(x) = |x|p, on a :

|Xs|p = |X0|p + p

∫ s

0

|Xu|p−2 ⟨Xu, f(u,Xu)⟩ du+
∫ s

0

p|Xs|p−2 ⟨Xu, g(u,Xu) dBu⟩

+
1

2

∫ s

0

Tr
(
p|Xu|p−2g(u,Xu)g

∗(u,Xu)
)
+ p(p− 2)|Xu|p−4(g(u,Xu), Xu)

2 du

≤ |X0|p + c(p, CT )

∫ s

0

(1 + |Xu|p) du+
∫ s

0

p|Xu|p−2 ⟨Xu, g(u,Xu) dBu⟩

Soit Tn le temps d’arrêt défini par

Tn = inf

{
t ≥ 0;

∫ t

0

|Xu|2p−4| ⟨Xu, g(u,Xu)⟩ |2 du ≥ n

}
.

En écrivant l’expression précédente au point t ∧ Tn puis en prenant l’espérance du résultat et
en utilisant les arguments habituels pour supprimer le terme relatif à l’intégrale stochastique, on
obtient

IE [|Xt∧Tn|p] ≤ IE [|X0|p] + c(p, CT )(t ∧ Tn) + c(p, CT )IE

[∫ t∧Tn

0

|Xu|p du
]

Puis en utilisant le lemme de Fatou et le théorème de Fubini pour inverser les intégrales du
membre de droite, on a :

IE [|Xt|p] ≤ IE [|X0|p] + c(p, CT )t+ c(p, CT )IE

[∫ t

0

|Xu|p du
]
, 0 ≤ t ≤ T

puis on obtient le résultat final en utilisant le lemme de Gronwall

4.3 Existence et unicité de la solution

On établit tout d’abord un résultat d’existence et d’unicité sous une condition de Lipschitz
uniforme, i.e. nous supposerons que le couple (f, g) vérifie :

(4.4) ∃K, ∀t ≥ 0, ∀x, y ∈ IRd, |f(t, x)− f(t, y)|+ |g(t, x)− g(t, y)| ≤ K|x− y|
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et de plus

(4.5) ∀T > 0,

∫ T

0

(|f(t, 0)|2 + ∥g(t, 0)∥2) dt <∞

Nous avons alors

Théorème 4.3.1. Sous les hypothèses 4.4 et 4.5, pour tout point initial x ∈ IRd, il existe une
unique solution {Xt; t ≥ 0} ∈ (Λ2)d de l’EDS (4.1).

Démonstration. Considérons l’application Φ de (Λ2)d dans lui-même définie par

∀U ∈ (Λ2)d,Φ(U)t = x+

∫ t

0

f(s, Us) ds+

∫ t

0

g(s, Us) dBs.

En utilisant la proposition 3.6.2 page 68 et les conditions 4.4 et 4.5, il est facile de montrer que
Φ(U) ∈ (Λ2)d. Une solution de l’équation 4.1 est un point fixe de Φ. L’existence et l’unicité d’un
point fixe va résulter du fait que pour tout T > 0, Φ est strictement contractante sur (Λ2)d([0;T ])
muni de la norme

∥X∥β =

(
IE

[∫ T

0

e−βt|Xt| dt
])1/2

pour β choisi convenablement.
Soit U,U ′ ∈ (Λ2)d. Pour soulager l’écriture, on pose U = U −U ′, f t = f(t, Ut)− f(t, U ′

t), gt =
g(t, Ut) − g(t, U ′

t),Φt = Φ(U)t − Φ(U ′)t. Il résulte de la formule d’Itô vectorielle appliquée au
processus d’Itô Φ et à la fonction Γ(t, x) = e−βt|x|2 que pour chaque β ∈ IR∗

+ :

e−βt|Φt|2 = −
∫ t

0

βe−βs|Φs|2 ds+ 2

∫ t

0

e−βs
〈
Φs, f s

〉
ds+ 2

∫ t

0

e−βs
〈
Φs, gs dBs

〉
+

∫ t

0

e−βsTr(gsg
∗
s) ds

Introduisons le temps d’arrêt Tn défini par

Tn = inf

{
t ≥ 0;

∫ t

0

e−2βs|(Φs, gs)|2 ds ≥ n

}
.

En écrivant l’expression précédente au point T ∧ Tn et en prenant l’espérance, puis en minorant
par 0 le terme IE

[
e−β(T∧Tn)|ΦT∧Tn|2

]
, on obtient
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βIE

[∫ T∧Tn

0

e−βs|Φs|2 ds
]

≤ 2IE

[∫ T∧Tn

0

e−βs
〈
Φs, f s

〉
ds

]
+ IE

[∫ T∧Tn

0

e−βsTr(gsg
∗
s) ds

]
≤ IE

[∫ T∧Tn

0

e−βs|Φs|2 ds
]
+K2IE

[∫ T∧Tn

0

e−βs|U |2 ds
]

+K2IE

[∫ T∧Tn

0

e−βs|U |2 ds
]

car 2 ⟨x, y⟩ ≤ |x|2 + |y|2 et avec 4.4,

En choisissant β = 1 + 4K2, on obtient :

IE

[∫ T∧Tn

0

e−βs|Φs|2 ds
]
≤ 1

2
IE

[∫ T∧Tn

0

e−βs|U |2 ds
]
,

puis le lemme de Fatou assure que l’application Φ est bien contractante et ceci achève la démons-
tration

Si l’on considère maintenant l’EDS

(4.6) Xt = X0 +

∫ t

0

f(s,Xs) ds+

∫ t

0

g(s,Xs) dBs

oô la condition initiale n’est plus déterministe mais est un vecteur aléatoire F0-mesurable (et est
donc indépendant du mouvement brownien {Bt}).

Si IE [|X0|2] < ∞ alors les conclusions et la preuve du théorème 4.3.1 peuvent être adaptées
sans aucune modification.

Nous allons maintenant étendre les résultats précédents dans le cas de conditions de Lipschitz
locales qui correspondent à la condition (4.3) dont on rappelle l’énoncé{

∀r > 0,∃Kr > 0,∀x, y ∈ B(0; r),∀t ≥ 0,
|f(t, x)− f(t, y)|+ ∥g(t, x)− g(t, y)∥ ≤ Cr|x− y|

Proposition 4.3.2. Supposons que le couple de fonctions (f, g) vérifie la condition (4.3), que
X,X ′ soit deux processus vérifiant

Xt = X0 +

∫ t

0

f(s,Xs) ds+

∫ t

0

g(s,Xs) dBs



4.3. EXISTENCE ET UNICITÉ DE LA SOLUTION 81

et que IE [|X0 −X ′
0|p] <∞ pour un p ≥ 2. Si T ′

n désigne le temps d’arrêt défini par

T ′
n = inf {t ≥ 0; |Xt| ∨ |X ′

t| ≥ n}

et si Kn est donnée par la condition 4.3, alors on a

IE
[
|Xt∧T ′

n
−X ′

t∧T ′
n
|p
]
≤ IE [|X0 −X ′

0|p] exp
(
pKnt+

p(p− 1)K2
n

2
t

)
, t ≥ 0

En particulier si la condition de Lipschitz est uniforme, on a :

IE [|Xt −X ′
t|p] ≤ IE [|X0 −X ′

0|p] exp
(
pKt+

p(p− 1)K2

2
t

)
, t ≥ 0

Démonstration. Soit T > 0 etKn donnée par la condition 4.3 pour la bouleB(0;n). Appliquons
la formule d’Itô au processus X −X ′ et à la fonction Φ(x) = |x|p, on a :

|Xs −X ′
s|p = |X0 −X ′

0|p + p

∫ s

0

|Xu −X ′
u|p−2 ⟨Xu −X ′

u, f(u,Xu)− f(u,X ′u)⟩ du

+

∫ s

0

p|Xu −X ′
u|p−2 ⟨Xu −X ′

u, (g(u,Xu)− g(u,X ′
u)) dBu⟩

+
1

2

∫ s

0

Tr
(
p|Xu −X ′

u|p−2(g(u,Xu)− g(u,X ′
u))(g

∗(u,Xu)− g∗(u,X ′
u))
)
du

+
1

2

∫ s

0

p(p− 2)|Xu −X ′
u|p−4(g(u,Xu)− g(u,X ′

u), Xu −X ′
u)

2 du

On introduit le temps d’arrêt Tk défini par

Tk = inf

{
t ≥ 0;

∫ t

0

|Xu −X ′
u|2p−4| ⟨Xu −X ′

u, (g(u,Xu)− g(u,X ′
u))⟩ |2

}
puis on prend la formule précédente au point t∧ Tk ∧ T ′

n et on prend l’espérance de l’expression
obtenue et on obtient :

IE
[
|Xt∧Tk∧T ′

n
−X ′

t∧Tk∧T ′
n
|p
]
≤ IE [|X0 −X ′

0|p]+
(
pKn +

p(p− 1)K2
n

2

)∫ t∧Tk∧T ′
n

0

IE [|Xu −X ′
u|p] du
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pour t ≥ 0 puis on utilise le lemme de Fatou (en k) pour obtenir

IE
[
|Xt∧T ′

n
−X ′

t∧T ′
n
|p
]
≤ IE [|X0 −X ′

0|p]+
(
pKn +

p(p− 1)K2
n

2

)∫ t

0

IE
[
|Xu∧T ′

n
−X ′

u∧T ′
n
|p
]
du

et le lemme de Gronwall donne alors

IE
[
|Xt∧T ′

n
−X ′

t∧T ′
n
|p
]
≤ IE [|X0 −X ′

0|p] exp
(
pKnt+

p(p− 1)K2
n

2
t

)
d’oô le résultat

Cette proposition permet de démontrer l’unicité de l’éventuelle solution de l’EDS 4.6 sous
l’hypothèse 4.3.

Théorème 4.3.3. Sous les hypothèses 4.3,4.2 et 4.5 et si X0 ∈ L2(Ω), l’EDS 4.6 admet une
unique solution dans (Λ2)d.

Démonstration. L’unicité résulte de la proposition précédente. Soit fn et gn deux suites de fonc-
tions coïncidant avec f et g sur [0;n] × B(0, n) et qui vérifient 4.2 avec la même constante Ct

que f et g. Pour chaque n, soit {Xn
t , t ≥ 0} la solution de l’équation avec les coefficients fn et

gn. Posons pour chaque n,
Tn = inf {t ≥ 0, |Xn

t | ≥ n} .

On a clairement pour m > n,Xm = Xn sur [0;Tn] car la suite Tn est croissante. De plus il
résulte de la proposition 4.2.2 que ∀T > 0, ∃C(T ) indépendant de n tel que

IE

[
sup

0≤t≤T
|Xn

t |2
]
≤ C(T ).

On en déduit que

P (Tn ≤ T ) ≤ C(T )

n2

et donc que Tn converge P p.s. vers +∞.
Le processus alors défini par Xt = Xn

t sur [0;Tn], n ∈ IN est une solution de notre équation
qui est bien défini pour presque tout ω ∈ Ω, ∀t ≥ 0.
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4.4 Exemples

4.4.1 Processus d’Ornstein-Uhlenbeck
Considérons l’EDS suivante en dimension un.

(4.7)
{
dXt = σdBt − cXtdt
X0 = H indépendant de (Bt)t

Posons Xt = e−ctYt et appliquons la formule d’Itô à Yt.

dYt = cectXt dt+ ectdXt

d’oô
dYt = ectσdBt

et par suite

Yt = H + σ

∫ t

0

ecs dBs

Xt = He−ct + σe−ct

∫ t

0

ecs dBs.

L’équation (4.7) porte le nom d’équation de Langevin etX est le processus d’Ornstein-Uhlenbeck.

4.4.2 Processus de Black et Scholes
Considérons l’EDS suivante :

(4.8)
{
dXt = Xt(σdBt + cdt)
X0 = H indépendant de (Bt)t

Posons Xt = exp(ct+ σBt).Yt et appliquons la formule d’Itô à Yt. On obtient :

Xt exp(−ct− σBt) = H+
1

2

∫ t

0

Tr

((
σ2Xs −σ
−σ 0

)(
1

σXs

)(
1 σXs

))
exp(−cs− σBs) ds

= H − σ2

2

∫ t

0

exp(−cs− σBs)Xs ds

d’oô
dYt = −1

2
σ2Yt dt
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Soit Yt = He−
σt
2 et Xt = HeσBt− 1

2
σ2t+ct . Les trajectoires de X ont un signe constant et pour

t ↑ ∞, on a :
Xt → 0 si c < σ2

2

|Xt| → ∞ si c > σ2

2

lim = +∞ et lim|Xt| = 0 si c = σ2

2

4.5 Dépendance par rapport aux conditions initiales
Définissons maintenant pour (t, x) ∈ IR+ × IRd, {Xx,t

s , s ≥ 0} comme étant la solution de
l’EDS suivante qui part du point x au temps t :

Xx,t
s = x+

∫ t∨s

t

f(r,Xx,t
r ) dr +

∫ t∨s

t

g(r,Xx,t
r ) dBr

Nous avons tout d’abord le résultat de continuité suivant par rapport aux conditions initiales :

Proposition 4.5.1. Supposons que f et g vérifient les conditions (4.4) et (4.2). Pour chaque
T > 0, p ≥ 2 il existe une constante c(p, T ) telle que

IE

[
sup

t≤s≤T
|Xx,t

s −Xx′,t′

s |p
]
≤ c(p, T )(1 + |x|p + |x′|p)(|t− t′|p/2 + |x− x′|p)

Théorème 4.5.2. Soit
{
Zv; v ∈ [0; a]k

}
un processus à valeurs dans un espace de Banach pour

lequel il existe trois constantes strictement positives γ, c, ε telle que

IE [∥Zv − Zu∥γ] ≤ c|v − u|k+ε, u, v ∈ [0; a]k.

Alors il existe un processus
{
Z̃v; v ∈ [0; a]k

}
tel que

i) Z̃ est une modification de Z

ii) IE
[(

supv ̸=u
∥Z̃u−Z̃v∥
|u−v|α

)γ]
<∞,

pour tout α ∈
[
0; ε

γ

[
, ce qui implique en particulier que les trajectoires de Z̃ sont α-hölderiennes.

Ce dernier théorème est une sorte de généralisation du critère de Kolmogorov-Centsov que
l’on a déjà vu. Il résulte aussi de ce théorème et de la proposition précédente que toute solution
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de l’EDS (4.1) admet une modification qui soit continue par rapport au conditions initiales, c’est-
à-dire telle que l’application

(t, x, s) 7→ X̃x,t
s

soit presque sûrement continue. On choisira toujours par la suite une telle modification pour la
solution d’une EDS.

4.6 Propriétés de la solution
On peut montrer en utilisant le lemme de Gronwall comme on l’a fait auparavant que

∀t ≥ 0, IE

[
sup
0≤s≤t

|Xs −X ′
s|p
]
≤ IE [|X0 −X ′

0|p]C(p, t).

Il en résulte que si deux processus X et X ′ définis sur le même espace de probabilité sont solu-
tions de la même EDS 4.1 par rapport au même processus Bt et a la même condition initiale H
ont presque sûrement les mêmes trajectoires ie

P (∀t ≥ 0, Xt = X ′
t) = 1.

Cette propriété est appelée l’unicité trajectorielle.
Un autre type d’unicité est également intéressant, c’est l’unicité en loi.

Proposition 4.6.1. Soient (Ω,F ,P) et (Ω′,F ′,P′) deux espaces de probabilité sur lesquels deux
mouvements browniens Bt et B′

t sont définis et deux variables aléatoires de même loi H et H ′

sont données de telle sorte que les hypothèses du théorème 4.3.3 soient vérifiées. Alors la solution
X sur (Ω,F ,P) et la solution X ′ sur (Ω′,F ′,P′) ont même loi (ie lois marginales).

Démonstration. Comme on utilise le théorème de Picard pour démontrer l’existence des solu-
tions, on sait que si l’on pose pour X ∈ (Λ2)d

Φ(X)t = X0 +

∫ t

0

f(t,Xs) ds+

∫ t

0

g(s,Xs) dBs

et

Φ′(X)t = X ′
0 +

∫ t

0

f(t,Xs) ds+

∫ t

0

g(s,Xs) dB
′
s

alors les suites Φn(0) et Φ′nn(0) convergent vers les solutions X et X ′ pour la norme définie
dans le théorème 4.3.1 et ceci entraîne la convergence en loi des processus. Or il est facile de
vérifier que Φn(0) et Φ′n(0) ont pour tout n les mêmes lois marginales, d’oô le résultat
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Sous les hypothèses du théorème 4.3.3, notons Xx,t la solution de l’équation{
dXt = f(Xt) dt+ g(Xt) dBt

X0 = x ∈ IRn

Remarquons aussi que si u ∈ IR+ le processus B′
t = Bt+u − Bu est un mouvement brownien

indépendant de la tribu Fu et est Ft+u-adapté.
Notons alors Xu

H,t la solution de l’EDS avec H comme condition initiale et avec le brownien
B′

t, autrement dit

Xu
H,t = H +

∫ t

0

f(Xu
H,s) ds+

∫ t

0

g(Xu
H,s) dB

′
s.

Proposition 4.6.2. On a P presque sûrement

Xu
Xx,u,t = Xx,t+u

Démonstration. Remarquons que

Xx,t+u = Xx,u +

∫ t+u

u

f(Xx,s) ds+

∫ t+u

u

g(Xx,s) dBs

d’oô on tire par un changement de variable dans les intégrales

Xx,t+u = Xx,u +

∫ t

0

f(Xx,s+u) ds+

∫ t

0

g(Xx,s+u) dB
′
s

ce qui signifie exactement que Xx,t+u est la solution de l’équation avec H = Xx,u

Notons Pt l’opérateur défini par

Ptf(x) = IE [f(Xx,t)] f borélienne bornée

Enonçons tout d’abord le lemme suivant qui facilitera les calculs ultérieurs.

Lemme 4.6.3. Si pour une fonction g mesurable en (x, ω) ∈ IRk × Ω, on a

IE [g(x, ω)|B] = h(x, ω)

alors pour toute variable aléatoire H B-mesurable on a

IE [g(H,ω)|B] = h(H,ω)
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Démonstration. Vu le théorème de la classe monotone, il suffit de montrer le résultat pour les
fonctions étagées :

IE [g(Hn, ω)|B] = IE

[
g

(
rn∑
k=1

λkn1Ak
n
, ω

)
|B

]

= IE

[
rn∑
k=1

1Ak
n
g
(
λkn, ω

)
|B

]

=
rn∑
k=1

1Ak
n
IE
[
g
(
λkn, ω

)
|B
]

=
rn∑
k=1

1Ak
n
h(λkn, ω)

= h

(
rn∑
k=1

1Ak
n
λkn, ω

)
= h(Hn, ω)

On peut alors montrer la proposition suivante

Proposition 4.6.4. Pour toute f ∈ Cb(IR
k), on a

IE [f(Xx,t+u)|Fu] = Ptf(Xx,u)

Démonstration. Utilisons le lemme précédent avec

g(x, ω) = f(Xu
x,t(ω))

qui est bien presque sûrement une fonction continue de x d’après les propriétés des solutions
d’une EDS, et avec

h(x, ω) = IE
[
f(Xu

x,t)|Fu

]
.

On obtient alors d’après le lemme et la proposition 4.6.2

h(Xx,u, ω) = IE [f(Xx,t+u)|Fu] .
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Mais Xu
x,t est σ(B′

s, s ≤ t)-mesurable donc est indépendant de Fu et par suite

h(x, ω) = IE
[
f(Xu

x,t)|Fu

]
= IE

[
f(Xu

x,t)
]
.

Remarquons alors d’après la proposition 4.6.1 que (Xu
x,t)t et (Xx,t)t ont même loi et donc que

h(x, ω) = IE [f(Xx,t)] .

Finalement on obtient
IE [f(Xx,t+u)|Fu] = Ptf(Xx,u)

ce qui donne le résultat



Chapitre 5

Propriétés de Markov des solutions des
EDS

5.1 Processus de Markov

5.1.1 Définitions et exemples
Tous les processus sont définis sur l’espace de probabilité (Ω,F ,P) muni de la filtration (Ft).

Définition 5.1.2. Un processus stochastique d-dimensionnel {Xt, t ≥ 0} adapté à la filtration
(Ft) est appelé processus de Markov si pour tout 0 ≤ s < t,B ∈ Bd,

P (Xt ∈ B|Fs) = P (Xt ∈ B|Xs)

Le processus de Markov {Xt, t ≥ 0} est dit homogène si pour tout x ∈ IRd, B ∈ Bd, la quantité

P (Xt ∈ B|Xs = x)

ne dépend de (s, t) que par la différence t− s.

Soit {Xt, t ≥ 0} un processus de Markov homogène. On lui associe le semi-groupe {Pt, t ≥ 0}
d’opérateurs linéaires bornés sur Bb(IR

d) défini par

(Ptf)(x) = IE [f(Xt)|X0 = x] , t ≥ 0, x ∈ IR.

La propriété de semi-groupe Pt+s = Pt ◦Ps résulte de la propriété de Markov de {Xt, t ≥ 0}. Le
semi-groupe est dit de Feller si Pt ∈ L(Cb(IR

d)).

89
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Le générateur infinitésimal du semi-groupe est l’opérateur linéaire (généralement non borné)
(L,D(L)) défini par :

∀f ∈ D(L) ⊂ Cb(IR
d), t ≥ 0,

d

dt
Pt(f) = PtLf = LPtf.

Proposition 5.1.3. Un processus (Xt)t∈IR+ à valeurs dans (E, ε) est un processus de Markov de
fonction de transition Ps,t et de mesure initiale π si et seulement si
∀0 < t1 < · · · < tn, ∀f0, f1, . . . , fn mesurables et bornées sur (E, ε),

IE [f0(X0) . . . fn(Xn)]=

∫
E

f0(x)

(∫
E

f1(x1)

(
· · ·
∫
E

fn(xn)Ptn−1,tn(xn−1, dxn)

)
P0,t1(x, dx1)

)
dπ(x)

Cette proposition permet de montrer par le théorème de Kolmogorov l’existence d’un pro-
cessus de Markov de fonction de transition donnée et de mesure initiale donnée.

Le lemme suivant sera utile pour prouver le caractère markovien de certains processus.

Lemme 5.1.4. Soient X et Y deux vecteurs aléaoires de dimensions respectives d et k,
Φ : IRd+k → IR une application borélienne. Soit G une sous tribu de F telle que

i) X est G mesurable.

ii) Y et G sont indépendants.

Alors on a
IE [Φ(X, Y )|G] = IE [Φ(X, Y )|X]

Démonstration. Les deux membres de l’égalité sont égaux à∫
IRk

Φ(X, y)PY (dy) .

Proposition 5.1.5. Un Ft-mouvement brownien d-dimensionnel {Bt, t ≥ 0} est un processus de
Markov homogène de semi-groupe de transition Pt donné par :

Ptf(x) =

∫
IRd

1

(2πt)d/2
e

−|x−y|2
2t f(y) dy ∀x ∈ IRd, ∀f ∈ Bb(IR

d).

De plus, le générateur infinitésimal est donné par

(L,D(L)) =

(
1

2
∆, C2

b (IR
d)

)
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Démonstration. Pour A ∈ Bd, t > 0, h > 0,

P (Bt+h ∈ A|Ft) = IE [1A(Bt+h −Bt +Bt)|Ft]

= IE [1A(Bt+h −Bt +Bt)|Bt] par le lemme précédent
= IE [1A(Bt+h)|Bt]

Cherchons à déterminer le semi-groupe dans le cas de la dimension un pour simplifier les
calculs. Soit u ∈ IR

IE
[
eiu(Bt−Bs)|F∫

]
= IE

[
eiu(Bt−Bs)

]
=

∫
IR

1√
2π(t− s)

e−
y2

2(t−s) eiuy dy

d’oô l’on tire
IE
[
eiuBt |F∫

]
=

∫
IR

1√
2π(t− s)

e−
y2

2(t−s) eiu(Bs−y) dy

Donc si f est de la forme
f(x) = λ1e

iu1x + · · ·+ λne
iunx

on a
IE [f(Bt)|Fs] =

∫
IR

1√
2π(t− s)

e−
y2

2(t−s)f(Bs − y) dy.

Cette relation s’étend ensuite à L2(IR) par densité et à Bb(IR) par le théorème de la classe mono-
tone.

Pour le générateur infinitésimal, on utilise la formule d’Itô : pour f ∈ C2
b (IR

d) on a

f(Bt) = f(B0) +
d∑

i=1

∫ t

0

∂f

∂xi
(Bs) dB

i
s +

1

2

∫ t

0

∆(f)(Bs) ds

Les intégrales stochastiques du second membre sont des martingales de carré intégrable et nulles
en 0 de sorte qu’en prenant l’espérance des deux membres, on obtient :

IE [f(Bt)] = IE [f(B0)] +

∫ t

0

1

2
IE [∆f(Bs)] ds

d’oô

lim
t↓0

IE [f(Bt)]− IE [f(B0)]

t
=

1

2
IE [∆f(B0)]

car les trajectoires sont continues et ∆f est borné. Donc si δx est la mesure initiale,

lim
t↓0

Ptf(x)− f(x)

t
=

1

2
∆f(x)

et on a le résultat



92 CHAPITRE 5. PROPRIÉTÉS DE MARKOV DES SOLUTIONS DES EDS

5.1.6 Propriétés de Markov

Considérons maintenant la réalisation canonique d’un processus de Markov homogène (Xt)t
à valeurs dans (E, E) admettant Pt pour semi-groupe de transition. Ceci signifie que pour chaque
mesure initiale ν (probabilité sur (E, E)) on a construit par le théorème de Kolmogorov (donc
E doit être métrique complet à base dénombrable d’ouverts muni de sa tribu borélienne) une
probabilité Pν sur

(Ω,F) =
(
EIR+ , E⊗IR+

)
telle que les applications coordonnéesXt soient sous Pν un processus de Markov de semi-groupe
de transition Pt.

Introduisons alors les fonctions θs : Ω → Ω appelées opérateurs de translation définies par la
relation

Xt(θs(ω)) = Xt+s(ω), ∀ω ∈ Ω.

Il est facile de vérifier que ∀s ∈ IR+, θs : (Ω,F) → (Ω,F) est mesurable : il suffit de remarquer
que les pré-images par θs des sous-ensembles de Ω de la forme

E × · · · × At1 × E × · · · × At2 × E × · · · × Atn × E × E × . . . , n ∈ IN, At1 , . . . , Atn ∈ E

sont dans F . Donc si F est une variable aléatoire réelle sur (Ω,F) alors F ◦ θs est encore une
variable aléatoire mesurable sur (Ω,F). On a alors :

Proposition 5.1.7. Propriété de Markov simple :
Soit (Xt) un processus de Markov homogène admettant Pt comme semi-groupe de transition.

Soient Fs = σ(Xu;u ≤ s) et F une fonction mesurable bornée sur (Ω,F), on a

IE [F ◦ θs|Fs] = IEXs [F ] Pν ps pour toute mesure initiale ν

Démonstration. Si F est de la forme f(Xt) f mesurable bornée on a :

IE [F ◦ θs|Fs] = IE [f(Xt+s|Fs] = Ptf(Xs) = IEXs [f(Xt)] .

Si F est de la forme F = f1(Xt1)f2(Xt2) . . . fn(Xtn) on raisonne par récurrence sur n.
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En effet, on a :

IE [F ◦ θs|Fs] = IE [f1(Xt1+s)f2(Xt2+s) . . . fn(Xtn+s)|Fs]

= IE
[
f1(Xt1+s) . . . fn−1(Xtn−1+s)IE

[
fn(Xtn+s)|Ftn−1+s

]
|Fs

]
= IE

[
f1(Xt1+s) . . . fn−1(Xtn−1+s)Ptn−tn−1fn(Xtn−1+s)|Fs

]
HR
= IEXs

[
f1(Xt1) . . . fn−1(Xtn−1)Ptn−tn−1fn(Xtn−1)

]
= IEXs

[
f1(Xt1) . . . fn−1(Xtn−1)IE

[
fn(Xtn)|Xtn−1

]]
= IEXs

[
f1(Xt1) . . . fn−1(Xtn−1)IE

[
fn(Xtn)|Ftn−1

]]
= IEXs

[
IE
[
f1(Xt1) . . . fn−1(Xtn−1)fn(Xtn)|Ftn−1

]]
= IEXs

[
f1(Xt1) . . . fn−1(Xtn−1)fn(Xtn)

]
et le résultat général s’obtient ensuite par le théorème de la classe monotone

La plupart des processus de Markov usuels possède une propriété plus forte que la propriété
de Markov simple. Il s’agit du fait que dans la proposition précédente on peut remplacer l’instant
s par une variable aléatoire T à condition que ce soit un temps d’arrêt.

Théorème 5.1.8. Propriété de Markov forte :
Nous faisons les hypothèses suivantes :

1. L’espace d’état (E, E) est un espace métrique complet à base dénombrable d’ouverts
muni de sa tribu borélienne.

2. Les opérateurs Pt sont tels que ∀f ∈ Cb(E), Ptf ∈ Cb(E).

3. (Ω,F , (Ft)t, (Xt)t, (Pµ)µ) est la réalisation canonique d’un processus de Markov à va-
leurs dans E et admettant Pt comme semi-groupe de transition et Ft = σ(Xs; s ≤ t).

4. (Xt)t est à trajectoires continues à droite (c’est-à-dire que l’ensemble des trajectoires
non continues à droite est de µ mesure nulle pour toute loi initiale µ).

Sous ces hypothèses, soit T un temps d’arrêt de la famille Gt oô ∀t ≥ 0,Gt =
⋂
s>t

Fs, alors pour

toute F F-mesurable bornée on a :

IE
[
F ◦ θT1{T<∞}|GT

]
= 1{T<∞}IEXT

[F ] Pµ ps, ∀µ

en particulier quelle que soit f mesurable bornée de E dans IR

IE
[
f(XT+t)1{T<∞}|GT

]
= 1{T<∞}IEXT

[f(Xt)] Pµ ps, ∀µ
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Démonstration. Par le théorème de la classe monotone, il suffit de démontrer la propriété lorsque
F est de la forme F = f1(Xt1) . . . fn(Xtn) avec ∀i, fi ∈ Cb(E) et par une récurrence similaire
à la proposition précédente il suffit de le prouver pour une seule fonction. On suppose donc
maintenant que F est de la forme f(Xt) avec f ∈ Cb(E).

On montre le résultat lorsque T est un Ft temps d’arrêt étagé ne prenant qu’un ensemble
dénombrable de valeurs (cn)n, suite strictement croissante de réels. En effet, on a alors

T =
∞∑
n=0

cn1{T=cn} +∞1{T=∞},

et pour tout A ∈ GT , A ∈ FT car :

A ∩ {T = cn} = (A ∩ {T > cn−1}) ∩ {T = cn} ∈ Gcn−1 ∩ Fcn ⊂ Fcn

Ainsi on obtient :

IE
[
1Af(Xt+T )1{T<∞}

]
= IE

[
1A

∞∑
n=0

f(Xt+cn)1{T=cn}

]

=
∞∑
n=0

IE
[
1A∩{T=cn}f(Xt+cn)

]
=

∞∑
n=0

IE
[
1A∩{T=cn}IE [f(Xt+cn)|Fcn ]

]
prop 5.1.7

=
∞∑
n=0

IE
[
1A∩{T=cn}IEXcn

[f(Xt)]
]

= IE

[
1A

∞∑
n=0

1{T=cn}IEXcn
[f(Xt)]

]
= IE [1AIEXT

[f(Xt)]]

On en déduit que
IE
[
1{T<∞}f(Xt+T )|GT

]
= 1{T<∞}IEXT

[f(Xt)]

pour T temps d’arrêt à valeurs dans un ensemble dénombrable.
Ensuite, on considère un Gt temps d’arrêt T quelconque. On pose alors ∀n ∈ IN :

Tn =

{
k+1
n

si T ∈
[
k
n
; k+1

n

[
+∞ si T = ∞ .
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Comme
{
Tn = k

n

}
=
{
T ∈

[
k−1
n
; k
n

[}
∈ Fk/n, (Tn)n est une suite décroissante de Ft temps

d’arrêt qui converge presque sûrement vers T lorsque n → ∞. Soit A ∈ GT alors A ∈ GTn car
T ≤ Tn et en appliquant ce qui précède, on obtient :

(5.1) IE
[
1A1{Tn<∞}f(Xt+Tn)

]
= IE

[
1A1{Tn<∞}IEXTn

[f(Xt)]
]

On remarque que Xt+Tn → Xt+T lorsque n → ∞ car Tn converge presque sûrement vers
T en lui restant supérieur et (Xt) est presque sûrement à trajectoires continues à droite, puis
f(Xt+Tn) → f(Xt+T ) en restant majoré en module par une constante car f ∈ Cb(E).
Ensuite IEXTn

(f(Xt)) = Ptf(XTn) → Ptf(XT ) car Ptf ∈ Cb(E) et aussi en restant majoré
en module par une constante. Le théorème de convergence dominée permet alors de passer à la
limite dans 5.1 pour obtenir :

IE
[
1A1{T<∞}f(Xt+T )

]
= IE

[
1A1{T<∞}IEXT

[f(Xt)]
]

qui est exactement le résultat demandé

Remarque 5.1.9. Dire que T est un temps d’arrêt de Gt signifie que

∀t ≥ 0, {T ≤ t} ∈ Gt

et ceci est équivalent à dire que
∀t ≥ 0, {T < t} ∈ Ft.

Les temps d’arrêt de Ft sont des temps d’arrêt de Gt.

Remarque 5.1.10. Notons que les hypothèses précédentes sont vérifiées pour les processus de
Markov associés à une équation différentielle stochastique à coefficients lipschitziens qui sont
donc fortement markoviens.

5.2 Générateur infinitésimal des solutions des EDS
Nous avons montré à la proposition 4.6.4 que toute solution d’une EDS de la forme{

dXt = f(Xt)dt+ g(Xt)dBt

X0 = H ∈ F0

est un processus de Markov homogène à trajectoires continues, de semi-groupe de transition
donnée par

Ptφ(x) = IE [φ(Xx,t)] .
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Proposition 5.2.1. Soit φ ∈ C2
b (IR

n). Avec les notations précédentes, on a

∀x ∈ IRn, lim
t→0

Ptφ(x)− φ(x)

t
= Aφ(x)

oô l’opérateur A est elliptique donné par

Aφ(x) =
1

2

n∑
i,j=1

aij(x)
∂2φ

∂xi∂xj
(x) +

n∑
i=1

fi(x)
∂φ

∂xi
(x)

oô la matrice n× n a(x) est donnée par

a(x) = g(x)g∗(x)

(
aij(x) =

d∑
k=1

gik(x)gjk(x)

)

et est donc semi-définie positive.

Démonstration. Comme φ est de classe C2 on peut lui appliquer la formule d’Itô :

φ(Xt) = φ(X0) +
n∑

i=1

∫ t

0

fi(Xs)
∂φ

∂xi
(Xs) ds+

∫ t

0

∇φ(Xs)g(Xs) dBs

+
1

2

∫ t

0

Tr (∆φ(Xs)g(Xs)g
∗(Xs)) ds

Les intégrales stochastiques du second membre sont des martingales de carré intégrable du fait
des hypothèses sur φ et g, et sont nulles en 0. De plus les intégrands des intégrales traditionnelles
sont bornés. Si nous prenons l’espérance sous X0 = x, on obtient par continuité des trajectoires
que

lim
t→0

IEx [φ(Xt)]− φ(x)

t
= Aφ(x),

ce qui est bien le résultat annoncé

5.3 La formule de Feynman-Kac
On va maintenant donner une introduction à une formule due originalement à Feynman et

Kac, qui donne une expression probabiliste des solutions de certaines équations différentielles
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paraboliques linéaires. Nous considérerons des équations différentielles paraboliques définies sur
l’espace tout entier. Fixons un certain temps T > 0. Soit c, h : [0;T ]× IRd → IR et Φ : IRd → IR
des applications continues qui sont telles qu’il existe des constantes K, k > 0 telles que

|c(t, x)| ≤ K, |h(t, x)|+ |Φ(x)| ≤ K(1 + |x|k), (t, x) ∈ [0;T ]× IRd

Considérons alors l’équation différentielle parabolique suivante pour 0 ≤ t ≤ T, x ∈ IRd

(5.2)
{

∂u
∂t
(t, x) + (Lu)(t, x) + c(t, x)u(t, x) + h(t, x) = 0

u(T, x) = Φ(x)

On pose pour 0 ≤ s, t ≤ T , X t,x
s est la solution de l’EDS partant de x à l’instant t :

X t,x
s = x+

∫ t∨s

t

f(r,X t,x
r ) dr +

∫ t∨s

t

g(r,X t,x
r ) dBr.

Pour (t, x) ∈ [0;T ]× IRd on définit alors

(5.3) u(t, x) = IE

[
Φ(X t,x

T )e
∫ T
t c(s,Xt,x

s ) ds +

∫ T

t

h(s,X t,x
s )e

∫ t
s c(r,Xt,x

r ) dr ds

]

Proposition 5.3.1. Soit u ∈ C1,2([0;T ]×IRd) une solution de (5.2) qui satisfait aussi la condition

|(∇xug(t, x)| ≤ K ′(1 + |x|k′), (t, x) ∈ [0;T ]× IRd

pour des certaines constantes k′, K ′ > 0. Alors u(t, x) satisfait la formule de Feynman-Kac,
c’est-à-dire que u(t, x) est donné par (5.3).

Démonstration. Appliquons une première fois la formule d’Itô à la fonction u(s, x) et au pro-
cessus d’Itô Xx,t

s , on obtient

du(s,Xx,t
s ) =

∂u

∂s
(s,Xx,t

s )ds+
〈
∇xu(s,X

x,t
s ), f(s,Xx,t

s )
〉
ds+

〈
∇xu(s,X

x,t
s ), g(s,Xx,t

s )dBs

〉
+Lu(s,Xx,t

s )ds

=

(
∂u

∂s
+ Lu

)
(s,Xx,t

s )ds+
〈
∇xu(s,X

x,t
s ), g(s,Xx,t

s )dBs

〉
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Puis utilisons encore une fois la formule d’Itô d’intégration par partie, on a :

d
(
u(s,Xx,t

s )e
∫ s
t c(r,Xx,t

r ) dr
)

= u(s,Xx,t
s )d

(
e
∫ s
t c(r,Xx,t

r ) dr
)
+ e

∫ s
t c(r,Xx,t

r ) drdu(s,Xx,t
s )

+
〈
u(s,Xx,t

s ), e
∫ s
t c(r,Xx,t

r ) dr
〉
s

(et ce dernier terme est nul)

= u(s,Xx,t
s )d

(
e
∫ s
t c(r,Xx,t

r ) dr
)
+ e

∫ s
t c(r,Xx,t

r ) drdu(s,Xx,t
s )

= u(s,Xx,t
s )c(s,Xx,t

s )e
∫ s
t c(r,Xx,t

r ) drds+ e
∫ s
t c(r,Xx,t

r ) dr

(
∂u

∂s
+ Lu

)
(s,Xx,t

s )ds

+e
∫ s
t c(r,Xx,t

r ) dr
〈
∇xu(s,X

x,t
s ), g(s,Xx,t

s )dBs

〉
En utilisant alors (5.2) on a :

d
(
u(s,Xx,t

s )e
∫ s
t c(r,Xx,t

r ) dr
)

= −h(s,Xx,t
s )e

∫ s
t c(r,Xx,t

r ) dr + e
∫ s
t c(r,Xx,t

r ) dr
〈
∇xu(s,X

x,t
s ), g(s,Xx,t

s )dBs

〉
,

soit en appliquant ceci entre t et T ,

u(t, x) = Φ(Xx,t
T )e

∫ T
t c(r,Xx,t

r ) dr +

∫ T

t

h(s,Xx,t
s )e

∫ s
t c(r,Xx,t

r ) dr ds

−
∫ T

t

e
∫ s
t c(r,Xx,t

r ) dr
〈
∇xu(s,X

x,t
s ), g(s,Xx,t

s )dBs

〉
Or, vu les hypothèses faites sur ∇xu(t, x)g et c(t, x), l’intégrale stochastique du membre de
droite est une martingale de carré intégrable entre 0 et T , et est presque sûrement nulle en T
donc on peut prendre l’espérance de cette intégrale et celle-ci est nulle. En utilisant de même les
hypothèses de domination faites sur les fonctions en jeu et le fait que

∀k′ > 0, IE

[
sup

t≤s≤T
|Xx,t

s |k′
]
<∞

(car la condition initiale est une constante x et donc appartient à Lk′(Ω) !), les espérances des
termes restants sont bien définies et finalement on obtient

u(t, x) = IE

[
Φ(Xx,t

T )e
∫ T
t c(r,Xx,t

r ) dr +

∫ T

t

h(s,Xx,t
s )e

∫ s
t c(r,Xx,t

r ) dr ds

]
ce qui est bien le résultat demandé.

Enonçons maintenant le résuktat principal de cette section :
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Théorème 5.3.2. Formule de Feynman-Kac
La quantité u(t, x) définie par la formule (5.3) est une fonction continue de

(t, x) ∈ [0, T ]×IRd possédant une croissance au plus polynômiale en l’infini et c’est l’unique so-
lution de viscosité de l’EDP (5.2), parmi les fonctions u qui satisfont sup

0≤t≤T,x∈IRd

u(t, x)e−A|x| <∞

pour un A > 0.

Avant de prouver ce théorème il faut définir la notion de solution de viscosité de (5.2).

Définition 5.3.3. Solution de viscosité
•u ∈ C([0;T ]× IRd) est appelée une sous-solution de viscosité (5.2) si

i) u(T, x) ≤ Φ(x), x ∈ IRd

ii) Pour tout φ ∈ C1,2([0;T ] × IRd, pour tout maximum local (t, x) ∈ [0;T ] × IRd de la
fonction u− φ,

−∂φ
∂t

(t, x)− Lφ(t, x)− (cu)(t, x)− h(t, x) ≤ 0.

•u ∈ C([0;T ]× IRd) est appelée une sur-solution de viscosité (5.2) si

i) u(T, x) ≥ Φ(x), x ∈ IRd

ii) Pour tout φ ∈ C1,2([0;T ] × IRd, pour tout minimum local (t, x) ∈ [0;T ] × IRd de la
fonction u− φ,

−∂φ
∂t

(t, x)− Lφ(t, x)− (cu)(t, x)− h(t, x) ≥ 0.

•u ∈ C([0;T ] × IRd) est appelée solution de viscosité de (5.2) si c’est à la fois une sur et sous
solution de viscosité.

Remarque 5.3.4. Une solution classique de (5.2) est bien une solution de viscosité.
Toute solution de viscosité de classe C1,2 est une solution classique.

Preuve du théorème 5.3.2 :
L’unicité de la solution de viscosité peut être prouvée par les méthodes de viscosité et sera ici
admise. La proposition (5.3.1) montre toutefois l’unicité pour les solutions classiques.

Ensuite, considérons u donnée par la formule (5.3). La continuité de u résulte de la continuité
du processus (Xx,t

s )s par rapport aux conditions initiales (voir proposition (4.5.1) page 88).
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Comme Xx,T
T = x, on a bien u(T, x) = Φ(x). Nous alons maintenant prouver le ii) de la

propriété de sous-solution (la propriété de sur solution étant analogue).
Soit φ ∈ C1,2([0;T ] × IRd) et (t, x) un maximum local de la fonction u − φ. On va sup-

poser que u(t, x) = φ(t, x) quitte à translater d’une constante (notre problème est invariant par
translation de φ).

Raisonnons par l’absurde, on suppose que :

∂φ

∂t
(t, x) + Lφ(t, x) + (cu)(t, x) + h(t, x) < 0.

Alors il existe 0 < δ ≤ T − t tel que pour tous s ∈ [t, t+ δ], |y − x| ≤ δ,

u(s, y) ≤ φ(s, y)

∂φ

∂t
(s, x) + Lφ(s, x) + (cu)(s, x) + h(s, x) < 0.

Soit τ △
= inf {s; t < s ≤ t+ δ; |Xx,t

s − x| > δ}. Reprenant la preuve de la proposition 5.3.1, on
obtient que ∀z ∈ [t, T ]

u(t, x) = u(z,Xx,t
z )e

∫ z
t c(r,Xx,t

r ) dr +

∫ z

t

h(r,Xx,t
r )e

∫ r
t c(u,Xx,t

u ) du ds

−
∫ z

t

e
∫ r
t c(u,Xx,t

u ) du
〈
∇xu(r,X

x,t
r ), g(r,Xx,t

r )dBr

〉
En remplaçant z par le temps d’arrêt borné τ ,t par s ∧ τ oô s ∈ [t, T ], puis x par Xx,t

s∧τ dans
l’expression précédente puis en utilisant le fait que

X t,Xx,t
s∧τ

r = Xx,t
r , ∀r ≥ s ∧ τ

d’après la propriété de Markov forte du processus de diffusion Xx,t et en prenant l’espérance du
tout (l’intégrale stochastique est une martingale continu vu les hypothèses sur les fonctions mises
en jeu donc celle-ci disparaît par le théorème d’arrêt), on obtient :

IE
[
u(s ∧ τ,Xx,t

s∧τ )
]

= IE

[
u(τ,Xx,t

τ )e
∫ τ
s∧τ c(r,Xx,t

r ) dr +

∫ τ

s∧τ
h(r,Xx,t

r )e
∫ r
s∧τ c(u,Xx,t

u ) du dr

]
Par un raisonnement analogue on montre que

IE
[
φ(s ∧ τ,Xx,t

s∧τ )
]

= IE
[
φ(τ,Xx,t

τ )e
∫ τ
s∧τ c(r,Xx,t

r ) dr

−
∫ τ

s∧τ

(
∂φ

∂s
+ Lφ+ cφ

)
(r,Xx,t

r )e
∫ r
s∧τ c(u,Xx,t

u ) du dr|Fs

]
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Définissons

βs
△
= −

(
∂φ

∂s
+ Lφ+ cu+ h

)
(s,Xx,t

s ), t ≤ s ≤ τ

Il résulte des inégalités précédentes que βs > 0 et si l’on pose Ys
△
= (φ− u)(s∧ τ,Xx,t

s∧τ ),Γa,b
△
=

e
∫ b
a c(u,Xx,t

u ) du, t ≤ a ≤ b ≤ t+ δ. Nous avons

IE [Ys] = IE

[
YτΓs∧τ,τ +

∫ τ

s∧τ
(βs − c(r,Xx,t

r )Yr)Γs∧τ,r dr

]
.

En différenciant, on obtient
d

ds
IE [Ys] = −IE

[
βs1{s<τ}

]
,

et de là on déduit

Yt = IE

[
Yτ +

∫ τ

t

βs ds

]
.

Comme Yτ ≥ 0, βs > 0, τ > t P ps, on en déduit que Yt > 0 et ceci contredit le fait que
φ(t, x) = u(t, x) d’oô

∂φ

∂t
(t, x) + Lφ(t, x) + (cu)(t, x) + h(t, x) ≥ 0.

et u est une sous solution de viscosité.



Annexe A

Résultats préliminaires

A.1 Vecteurs gaussiens
Lemme A.1.1. Si le couple de vecteurs aléatoires (X,Y ) est gaussien, si X est non dégénéré et
si on pose

ΣY X = IE
[
(Y − IE(Y ))(X − IE(X))T

]
et KX = IE

[
(X − IE(X))(X − IE(X))T

]
alors on

a :
Y + ΣY XK

−1
X (X)⊥⊥X et IE[X|Y ] = IE(Y ) + ΣY XK

−1
X (X − IE(X))

Démonstration. On peut supposerX et Y centrés pour simplifier. On poseU = Y−ΣXYK
−1
X (X)

alors le couple (U,X) est gaussien car image de (X, Y ) par une application linéaire et

ΣUX = IE(UXT ) = IE(Y XT )− ΣXYK
−1
X (XXT ) = ΣY X − ΣY XK

−1
X KX = 0

Il en résulte que X et U sont indépendants et donc que IE(U |X) = 0 et remplaçant U par sa
valeur on trouve le résultat voulu.

A.2 Le théorème de Kolmogorov d’existence des probabilités
sur les espaces produits

Soit (E,F) un espace mesurable et pour k < n on note πn
k la projection canonique de En sur

Ek ie
πn
k (x1, . . . , xn) = (x1, . . . , xk).

Celle-ciest également mesurable par rapport aux tribus F⊗n et F⊗k.

102
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Définition A.2.1. Une famille de probabilités Pt1,...,tn définies sur les produits (En,F⊗n) et
indexée par les n-uplets, n ∈ IN, d’un ensemble T est une famille projective si elle satisfait

πn
k (Pt1,...,tn) = Pt1,...,tk

pour tout entier n, tout n-uplet (t1, . . . , tn) ∈ T n et tout k < n.

Théorème A.2.2. Théorème des espaces produits de Kolmogorov
Soit E un espace localement compact à base dénombrable d’ouverts et F sa tribu borélienne. Si
T est un ensemble d’indices, si P = (Pt1,...,tn) est une famille projective de probabilités sur les
produits finis Et1 × · · · × Etn , si (Ω,A) est un espace mesurable et X : (Ω,A) → (ET ,F⊗T )
est mesurable alors il existe une unique probabilité P sur (Ω,A) telle que la loi temporelle de X
sous P soit égale à P .

On admettra la preuve de ce théorème.

A.3 Un théorème de compacité de Prokhorov :

Théorème A.3.1. Si E est un métrique complet et séparable, de toute suite tendue (Pn)n de
probabilités sur E, on peut extraire une sous-suite qui converge étroitement. Si la suite (Pn)n ne
converge pas étroitement, on peut en extraire deux sous-suite qui convergent étroitement vers des
probabilités distinctes.

Démonstration. Résulte des théorèmes de Riesz et Banach-Alaoglu.


	Background and warm-up
	Background on Gaussian vectors
	Real Gaussian Variables 
	 Gaussian Vectors

	Background on Gaussian processes
	Stochastic processes
	Regularity of trajectories
	Examples of properties in law of processes.

	Gaussian Process
	Examples of Gaussian Processes
	Brownian Motion
	Brownian Bridge
	Ornstein-Uhlenbeck Process
	Geometric Brownian Motion
	Gaussian White Noise
	Fractional Brownian Motion


	Le mouvement brownien
	Définition et premières propriétés :
	Construction du mouvement brownien
	Première méthode
	Deuxième méthode: le critère de Kolmogorov-Centsov

	Comportement asymptotique :
	Régularité du mouvement brownien
	Variation quadratique du mouvement brownien
	Non-différentiabilité
	Propriétés de Hölder

	Temps d'atteinte

	Calcul stochastique d'Itô
	Préambule: l'intégrale de Wiener
	L'intégrale stochastique d'Itô
	Généralisation de l'intégrale d'Itô (*)
	Les formules d'Itô :
	Première formule d'Itô
	Processus d'Itô
	Formule d'Itô avec dépendance en t
	Exercices

	Extension des résultats à  IR d :
	Mouvement brownien et intégrale stochastique vectoriels
	Formule d'Itô vectorielle

	Les inégalités de Burkholder-Davis-Gundy
	Théorèmes de représentation des martingales

	Equations différentielles stochastiques
	Introduction
	Estimations préliminaires
	Existence et unicité de la solution
	Exemples
	Processus d'Ornstein-Uhlenbeck
	Processus de Black et Scholes

	Dépendance par rapport aux conditions initiales
	Propriétés de la solution

	Propriétés de Markov des solutions des EDS
	Processus de Markov
	Définitions et exemples
	Propriétés de Markov

	Générateur infinitésimal des solutions des EDS
	La formule de Feynman-Kac

	Résultats préliminaires
	Vecteurs gaussiens
	Le théorème de Kolmogorov d'existence des probabilités sur les espaces produits
	Un théorème de compacité de Prokhorov:


