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Chapitre 1

Background and warm-up

1.1 Background on Gaussian vectors

1.1.1 Real Gaussian Variables

A real random variable X follows the Gaussian distribution with mean m and variance o2,
denoted N (m, o?), if it has the density

fx iz ! exp (—M) .
V2mo? 202

We adopt the convention that o = 0 corresponds to ¢,,, the Dirac mass at m (i.e., the law of
a random variable equal to m almost surely).

Proposition 1.1.2. (i) IfY ~ N(0,1) then m + oY ~ N (m,c?),

Ve e N E(Y*™) =0 and E(Y?*)=27%(2k)!/k!

(ii) If X, ~ N (my,03) and Xy ~ N(my,03) are independent, then X, + Xo ~ N(my +
2 | 2
ma, 07 + 03).

Démonstration. Use Fourier ]
Recall also that, for any constant ¢ € R, cX ~ N(cm, c?0?), so that we obtain :

Corollaire 1.1.3. Any linear (and even affine) combination of independent Gaussian variables
is Gaussian.
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1.1.4 Gaussian Vectors

As we will see, Gaussian vectors constitute the natural generalization to n dimensions of
univariate Gaussian variables. The convention adopted for o = 0 turns out to be very convenient,
allowing us to avoid special cases. We begin with a rather formal definition, but we will later see
more natural ways to view them.

First, let us recall some definitions and notations :

— If Aiisann x p matrix, its transpose A" is the p x n matrix such that (A"); ; = A;, for
alli € {1,...,p} and j € {1,...,n}. In this chapter, vectors in R" will be written as
column vectors.

— Forn > 1, we denote by (-, -) the usual inner product on R" defined by

Vo= (z1,...,2,) €ER" Yy=(y1,...,yn) € R" (x,y) :inyi
i=1

The Euclidean norm of v € R" is defined by ||z| = \/{(x, ).

— A square matrix M of size n is said to be symmetric if M = M. It is said to be positive
semidefinite if (Mx,z) > 0 for all x € R™. It is said to be positive definite if (Mx,x) > 0
for all z € R™\{0}.

Définition 1.1.5. A random variable X = (X1, ..., X,,) in R" is a Gaussian vector if for every
a = (ay,...,a,) € R" the real random variable {(a, X) = a1 X1 + ... a, X, is Gaussian.

The previous corollary shows that if we consider independent random variables X; ~ N (m;, 0?),
then X = (X3,...,X,,) is a Gaussian vector.

Définition 1.1.6. Ler X = (X1, ..., X,,) be a Gaussian vector. Its mean is the vector

m =E(X) = (E(X,),...,E(X,)) € R

and its covariance matrix is I' = (Cov(X;, X;))1<i j<n defined by

V(i,j) € {L,...,n}*  Cov(X;, X;) = E([X,~E(X,)][X;~E(X})]) = E(XiX;)-E(X,)E(X;)

Proposition 1.1.7. For all u € R", (T'u,u) = Var({u, X)). Consequently the matrix I" is sym-
metric positive semidefinite.

Démonstration. Exercise O]
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The fact that ' is symmetric positive semidefinite allows us to associate to it a unique square
root, i.e., a symmetric positive semidefinite matrix A such that A? = I'. This is a classical result
that follows from the diagonalization of symmetric matrices.

Recall that the Fourier transform of a random vector X in R" characterizes the law of X. It
is the function

Ox U +—> E(ei<“’X>) =FE (ei(“1X1+“'+“"X"))

Proposition 1.1.8. If X is a Gaussian vector with mean m and covariance matrix I, its Fourier
transform is

1
Gx 1 U exp (z’(u,m} - §<Fu,u>)
Démonstration. Exercise OJ

Corollaire 1.1.9. A Gaussian vector X is characterized by its mean m and its symmetric positive
semidefinite covariance matrix I.

Définition 1.1.10. We denote by N,,(m,T") the law of a Gaussian vector X = (X1, ..., X,,) with
mean m and covariance matrix I'. If m = 0 and I" = I,,, we say that X is a standard Gaussian
vector.

Characterization of Independence

If X1,..., X, are independent real Gaussian random variables, then X is Gaussian and

Thus I' is a diagonal matrix. The converse is true :

Proposition 1.1.11. Let X1, ..., X, be real Gaussian random variables. Then the X, are inde-
pendent if and only if the vector X = (X1,...,X,) is Gaussian with a diagonal covariance
matrix.

Démonstration. Uses the Fourier transform. O]
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Existence of Gaussian Vectors

Let M, ,,(R) denote the set of p x n matrices with real entries.

Proposition 1.1.12. Let X ~ N,,(m,T") andY = AX + b, with A € M, ,(R) and b € RP. Then
Y ~ Ny(Am + b, ATAT).

Démonstration. Exercise O]

Théoreme 1.1.13. If m € R" and I is a symmetric positive semidefinite matrix then there exists
a Gaussian vector X with mean m and covariance matrix I'.

Démonstration. Exercise. Uses the previous proposition. [

Density of a Gaussian Vector

Proposition 1.1.14. The distribution ,,(m, ") admits a density if and only if T is invertible (i.e.,
symmetric positive definite). In that case, its density (with respect to dx . . . dx,,) is

1 1
T, ..., Tp) — ————exp | —— (Y z —m ,x—m)
(51 o enp (<5 =)
Démonstration. Admitted (uses change of variables in higher dimensions). [
Vector Central Limit Theorem
Théoreme 1.1.15. Let X4, ..., X, be independent and identically distributed random vectors

in R? such that E(X?(j)) < +oo forall j € {1,...,n}. Let m be the mean of X, and T its
covariance matrix. Then

a

% Nd<07 F)

n—-+o0o

X+ + X, )
—m
n

Démonstration. Cf M1 lectures. O]

1.2 Background on Gaussian processes

1.2.1 Stochastic processes

Définition 1.2.2. A stochastic process X = (X;)ier is a family of random variables X, indexed
by a set T.
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Usually T = R, or R, or any subset of R¢.

If 7" is a finite set, the process is a random vector. If 7" = N then the process is a sequence of
random variables. More generally when T' C Z, the process is said to be discrete.

For T C R?, we speak of a random field (sheet when d = 2). A process depends on two
parameters : X;(w) depends on t (generally time) and on the randomness w € ).

For fixedt € T, w € ) — X;(w) is a random variable on the probability space (X2, F,P).

For fixed w € Q,t € T — X,;(w) is a real-valued function, called a trajectory of the process.
It is an issue to know whether a process admits measurable, continuous, differentiable or even
more regular trajectories.

Définition 1.2.3. Given a stochastic process (X,)ier, the finite-dimensional laws of X are the
laws of all vectors (Xy,, ..., Xy,) forty,...,t, € T andn € N.

The set of finite-dimensional laws characterizes the law Px of the process X . In what follows,
when we write X = Y equality in law of two processes, we will mean the equality of all finite-
dimensional laws of X and Y :

(Xpyy oo Xo) =2 (Yey, .., Y2

forall¢{,...,t, and n € N.
There are several ways for stochastic processes X and Y to be equal :

Définition 1.2.4. — Two processes X and Y are said to be equivalent if they have the same
law (equality of all finite-dimensional laws). We will write X =Y.
— We say that Y is a version of the process X if for everyt € T, P(X; = Y;) = 1. We also

speak of strong equivalence.
— Two processes X and Y are said to be indistinguishable if P(X, =Y, ,Vt € T') = 1.

It is easy to see that for two stochastic processes X and Y :
Proposition 1.2.5. Indistinguishable = strong equivalence = equivalence.
Strong equivalence defines an equivalence relation for stochastic processes : two strongly

equivalent processes are equivalent for this relation.

1.2.6 Regularity of trajectories

Often when considering a stochastic process X, we look for a version Y whose trajectories
have good regularity properties. This is not always possible as shown by the example below :
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Exemple 1.2.7. Let the probability space be ([0, 1], B([0,1]), X\) and T = [0, 1]. Consider D the
diagonal of [0, 1] x [0, 1] and define

X(t,w)=0 VY(t,w), Y(t,w)=1p(t,w).

For fixed t, we have X (t,w) = 0 and Y (t,w) = 0 for w # t, 1 for w = t. Hence X (t,w) =
Y (t,w) for every w # 1, i.e., almost surely. Therefore X,Y are strongly equivalent (versions of
the same process). Yet, the trajectories of X are continuous while those of Y are not.

Théoréme 1.2.8 (Kolmogorov). Let T be an open subset of R%. Let (X,)er be a process such
that there exist a, b, c > 0 satisfying for every s,t :

(2.1) E[|X; — X,|*] < c|t — s|*.
Then there exists a continuous version X of X.
In fact, the trajectories of X are even ~-Holder for every v < b/a.

Remarque 1.2.9. - The condition of the theorem concerns the dimension 2 laws :

E[|X, — X.|] = / & — y|*dP .y (da, dy),
R2

which in practice is not too difficult to compute. - A priori, in the theorem, a and b are unrelated.
In reality, we can always take a > 1 + b. Indeed, if a < 1 + b, then (2.1) rewrites

EHXt_Xs
t—s

a

with 1 +b — a > 0. Taking s — t, the derivative in the L® sense of (X); is zero and (X3);
is thus constant. It is therefore not very interesting to use the theorem in such a case. Since the
initial process is in fact constant, it is obvious that it is also continuous. - The condition b > 0 is
crucial : For b = 0, we have a counterexample with the Poisson process : Let X; = II; — t where

(I1;); is a Poisson process 11, ~ P(t), E[I;] = t and E[(II, — t)| = t = Var(Il;). We have
E[|X; — X,|*] = Var(Il; — I1,) = Var(Il,_,) =t — s.

We thus have (2.1) with a = 2, b = 0 and ¢ = 1. Yet the trajectories of the Poisson process are
step functions with jumps.

Démonstration. Admitted O]
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1.2.10 Examples of properties in law of processes.

There exist many classes of particular processes : Markov processes (and notably Markov
chains when 7' is discrete), martingales, Gaussian processes, Poisson processes, stable processes
or Lévy processes.

Examples of process properties. The finite-dimensional laws of processes sometimes satisfy
properties that can be useful for modeling real phenomena.

Définition 1.2.11. Let T be a subset of R. A process X is said to have independent increments if
Jorevery ) <t; <ty <--- <ty therv's Xy, Xy, — Xy,,..., Xy, — Xy, , are independent.

A process is said to be stationary if for every h, (Xiipn): £ (X}): does not depend on h > 0,
ie., for every h and every t, . .., t,, we have (X, +h, ..., Xt,+n) £ (Xtyy o X4,)-

A process is said to have stationary increments if the law of the increments (X, — Xp)ier
does not depend on h > 0.

Exemple 1.2.12. 7' = N. Let (X;); be a sequence of i.i.d. variables. Consider S,, = Y\ X;
the process of partial sums. We speak of a random walk. Then (S,,)nen is a process with inde-
pendent increments. If in addition the r.v.s X; are identically distributed (i.i.d.), the process has
independent and stationary increments.

1.3 Gaussian Process

Définition 1.3.1. A process is said to be Gaussian if all its finite-dimensional laws L( X4, , ..., X3,)
are Gaussian (VYn € N, Vty, ..., t, € T).

It is known that the law of a Gaussian vector (X;,, ..., X;, ) is known (via its characteristic
function) by the mean vector (E[X, |, ..., E[X,,]) and the covariance matrix (Cov(Xy,, X;,)1<ij<n)-
We understand then that the entire law of a Gaussian process is known once we are given the
mean function a(t) = E[X}] and the covariance operator K (s,t) = Cov(Xs, X;). Indeed, for
say T' C R, the finite-dimensional law of (X, ,..., X;,) is then the n-dimensional normal law
N(an, K,,) with a,, = (a(t1),...,a(t,)) and K,, = (K(t;,t;))1<ij<n- The functions a and K

thus define all finite-dimensional laws of X and hence also its law.
Good conditions for having a sufficiently regular version of a Gaussian process are given in
the following result due to Theorem 2.1.1.

Théoreme 1.3.2 (Regularity). Let X be a centered Gaussian process E[X;| = 0, with covariance
function r(s,t). Suppose there exists o« > 0 such that for every s,t :

r(t,t) +r(s,s) —2r(s,t) < c|t — s|*.
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Then there exists a continuous version X of X. Moreover, for every v < a/2, the trajectories of
X are almost surely Holder of coefficient 7.

Démonstration. We have
E[|X; — X,[!] = E[X}] + E[X?] — 2E[X,X,] < c|t — s|*.

We cannot directly apply Theorem 2.1.1 because o > 1 is not guaranteed. We rather consider
E[|X; — X,|*™]. Recall now that, if X ~ N(0, 1), we have E[X?™] = % Var(X)™.
We deduce from the lemma that

E[|X; - X, < et

| _ |ma

We choose m such that ma > 1. According to Kolmogorov’s Theorem 2.1.1 with

b ma-—-1 «Q
- = — =, m— +00
a

b=ma—1, a=2m, —
2m 2

we have a y-Holder version of X for every v < /2. [
Let 7" = R. In the Gaussian case, we easily characterize stationarity of a process.

Proposition 1.3.3. A Gaussian process X is stationary iff E| X;] is constant and K (s,t) = K(s—
t) (we speak of weak stationarity).

Démonstration. It is clear that these conditions are necessary, whether the process is Gaussian
or not (exercise). They are sufficient only in the Gaussian case. Indeed, in this case, the law is
characterized by ¢ — E[X}| and by K (s, t). It is then easy to see in this case that a translation of
the indices does not modify the law. [

A consequence of Kolmogorov’s extension theorem is that when 7' is a given set and K is a
real-valued symmetric bilinear form (defined on 7" x T') such that for all n, for all a4, ...,a, in T
and all Ay,..., A, in R, D7, AN K (ai, a5) > 0 (we say that K is non-negative definite) then it
is possible to construct a probability space and a process (X;):cr on this probability space, such
that X is a centred Gaussian process with covariance function K.



Chapitre 2

LL.e mouvement brownien

2.1 Définition et premieres propriétés :

Définition 2.1.1. Un processus stochastique réel { B, : t > 0} est appelé mouvement brownien
(standard) si les trois conditions suivantes sont satisfaites :

1) Le processus B est a accroissements indépendants ie pour tout n-uple 0 < t; < --- <t,
d’instants, les variables aléatoires By, , B, — By, ..., B, — By, _, qu’on appelle les
accroissements de B sont indépendants.

ii) Pour chaque t la v.a.r By suit la loi N'(0,1).

iii) Pour presque tout w, les trajectoires t — B,(w) sont continues.
Commencons par montrer que les propriétés 1) et ii) peuvent s’énoncer différemment.

Proposition 2.1.2. Un processus B;,t € R., dont les trajectoires sont p.s. continues est un
mouvement brownien ssi ¢’est un processus gaussien centré de covariance inf(s,t). De plus les
accroissements B, — By, s < t, d’un mouvement brownien suivent la loi N'(0,t — s).

Démonstration. Supposons d’abord que B satisfasse aux conditions de la définition 2.1.1] A
cause de ii) et de I’'indépendance, la relation

Bt — Bs+ (Bt —BS)

se traduit au niveau des fonctions caractéristiques par

u’t u’s
exp (—7) = exp <—T) P (B-B,) (1),

12
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2(¢t— .
d’00 il suit que la fonction caractéristique de B; — By est exp (—%) ce qui montre la

deuxieme phrase de 1’énoncé.

Pour montrer que B est gaussien il faut montrer que pour des instants 0 = ;5 < t; <
-+ < t, et des scalaires a; quelconques la v.a. > a; By, est gaussienne ; mais en remplagant B,
pary ,_, (Btk — Btk—l) on voit que cette variable est une combinaison linéaire de gaussiennes
indépendantes et est donc gaussienne.

Finalement pour s < ¢,

Cov (B, Bs) =E[Bs (Bs+ By — By)| = [E [BZ] =5

s

ce qui démontre I’implication directe.

Réciproquement, on peut d’abord constater que si B est un processus centré gaussien de
covariance inf(s, t), By suit une loi A/(0, t) et il reste alors juste & montrer que les accroissements
sont indépendants. Comme le processus est gaussien centré, il suffit donc de montrer que les
accroissements sont orthogonaux, soit que pour 0 < t; <ty < t3 < 1y,

Cov (Btg - Btl,BM - Bt3) = 0,
or ceci résulte facilement de 1’hypothese. [
Il est alors aisé d’obtenir les lois temporelles du mouvement brownien.

Proposition 2.1.3. (Loi temporelle du mouvement brownien). Soit 0 < t; < --- < ¢, < 4o00.
La loi temporelle du vecteur (By,, . .., By,) est une loi normale a n dimensions, dont la densité
conjointe f(xq,...,x,) est donnée par :
2 2 2
1 71(171+(I2111) +_,.Jr(3”71—7”—"7171) )
f(Il, . ,.7}”) = x e 2\% to—t] tn—tn_1

@03t — 1) ()

Démonstration. Nous avons si f € Cy(IR") :

E[f(Bi,,...,B:,)] = E[f(Bi,(By, — By)+ By ..., By, + (By,_, — By, _,) + -+ By,)]
= / fly,vyo+y1, s Yn + -+ 1)
o 43 .
e u e ta—t1 P e
x X X oo X
V2rte o \/2n(ty — 1) 2 (ty — tp_1)
f(ﬂfl,...,fljn)

(2m)5 Vit — 1) (o — fa)

1 (22 (1y—m)? (Tp — Tp_1)?
>< S J— —_— e _—_—m—
P ( 2 (t1 L
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la derniere égalité s’obtenant par le changement de variables : x, = y; + yo + -+ - + Yy, Vk €
{1,...,n} et ceci nous donne le résultat voulu. [

Une autre fagon d’énoncer ce résultat est de donner directement la matrice de covariance du
vecteur (By,, ..., By,).

Proposition 2.1.4. Le vecteur (By,, ..., By,) est centré et sa matrice des covariances est donnée
par:
lh ti t -
i ta ta -+ to
F=| t to t3 -+ 13
lhh ty g -+ 1y

Démonstration. On peut obtenir ce résultat a 1’aide de la proposition précédente mais il vaut
mieux utiliser la proposition [2.1.2]qui donne directement le résultat. O

Exercice 2.1.5. Soit (B;)i>0 un mouvement brownien et a > 0. Montrer que le processus
(aByq2)1>0 est un mouvement brownien.

Exercice 2.1.6. Soit (B;);>o un mouvement brownien et a > 0. Montrer que le processus (B, —
B,)>0 est un mouvement brownien.

2.2 Construction du mouvement brownien

2.2.1 Premiere méthode

On se donne pour commencer :
i) Une base orthonormale {¢,,n € IN} de L*(IR™).

ii) Une suite {&,,n € IN} de variables aléatoires indépendantes de loi normale centrée ré-
duite.

On définit :
Vt>0,B, =Y Ga(t)n

n€lN
00 I’on a posé @, (1) = [ a(s) ds, et comme la série converge dans L?(Q2), on a:

1. E(Bf) = ZnelN @n(ty =< 1[0;t]7 1[0;t]> =t
2. IE(Bt) =0



2.2. CONSTRUCTION DU MOUVEMENT BROWNIEN 15

3. E(BtBs) = ZnelN gbn(t)gén(s) =< 1[0;25], 1[0;5} > = min(t, S)

Donc {B;,t > 0} est un processus gaussien centrée de covariance min(t, s). La seule chose
restant a montrer d’apres la proposition [2.1.2]est la continuité des trajectoires presque sirement.
On va prouver ceci en utilisant une base particuliere de L?(IR ™), la base de Haar. Soitp : R — IR
définie par :

1 sit€|0;1/2]
p(t) =1 =1 site€]l/2;1]
0 sinon

Pour chaque n, £ € IN, on définit :
Oni(t) = 2"2p(2" — k), t > 0

On remarque que ¢, () = 0 pour ¢ €|k27"; (k + 1)27"].
Puis on définit les fonctions :

VYr = Lggera), kK € IN.

La famille de fonctions {y,, k € N}U{®, 1, n,k € IN} estune base orthonormale de L?(IR™)
appelée base de Haar.
On remarque que la primitive ¢ de ¢ est donnée par :

t  sit€|0;1/2]
o(t) = 1—t site]l/2;1]
0 sinon

et que la primitive ¢, ,, de ¢, ;, est donnée par :
Pui(t) = 2"2p(2"t — k)

et s’annule en dehors de I'intervalle |k27™; (k + 1)27"].
Soit {1y, k € IN; &, , n, k € IN} une suite de variables aléatoires indépendantes de loi nor-
male centrée réduite. On définit : .
B = Z U ()1

kelN

B? = Z Sbn,lc(t)gn,k , L E IN

k€N

Bi=B+» By .t>0

nelN
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On sait déja que {B;,t > 0} est un processus gaussien centrée de fonction de covariance
min(t, s) et qu’il nous reste juste a montrer que P p.s. les trajectoires sont continues pour savoir
que ce processus est un mouvement brownien.

Remarquons tout d’abord que sur chaque intervalle compact [0; 7], {5;} et chaque B}' est une
combinaison linéaire finie de fonctions continues, donc continue. Il reste 2 montrer que ) . B}’
converge uniformément sur [0; 7']. Mais

B = @n,k(t)én,k, pour k27" <t < (k + 1)2—n

n| _ o—2—1
org%XT|Bt =27 0§%§§T|§n,k|a

et par conséquent :
p (max |B}| > a2_3> = P ( max &,k > 2a)
0<t<T 0<k<T2"
< T2"P (|¢] > 2a)
< T2"e’2“2, sia>1

car

IE [|€]1{j¢j>20))

P(g>2) < —l

On choisit a = y/n :

> p (max |B}| > \/52"/2) <TY (267%)" < o0

0<t<T
n>1 n>1

Il résulte alors du lemme de Borel-Cantelli que P pour presque tout w € €2, In(w),Vn >
n(w),
max |BP'| < /n2""/?
fax |BY| < vn
et la convergence uniforme découle alors du fait que ) V/n2™"? < 0o. On a ainsi redémontré
I’existence du mouvement brownien.
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2.2.2 Deuxieme méthode : le critere de Kolmogorov-Centsov

Reprenons le début du raisonnement précédent jusqu’a obtenir 1’existence d’un processus
gaussien centré By, t > 0 de covariance min(s, t). Il ne nous restait alors qu’a démontrer I’exis-
tence d’un tel processus a trajectoires continues. Au lieu d’utiliser les bases de Haar, nous allons
maintenant utiliser un critere de continuité dii a Kolmogorov-Centsov :

Théoreme 2.2.3. Soit (2, F, P, (X, t € [0, 1])) un processus aléatoire tel qu’il existe des constan-
tes a, 3, C' > 0 telles que pour tous s,t € [0, 1],

E[|X, — X,|*] <Ot — s|*.

Alors il existe un processus X a trajectoires Holderiennes d’ordre v (v €]0, [) qui est une
modification de X.

Démonstration. La premiere partie de la preuve va consister a construire le processus X sur
I’ensemble D des nombres dyadiques. Pour cela, si v €]0, /5[, on a:

2”
1 1
P(knia);ank — X- 1’>2n7> = P(U{’Xk — X- 1|>2"’Y}>

k=1

2”
1
S <{|X2'% ~ Al 2W})
k=1

2'”
Y 2 (\X% ~Xia ya> (daprés I'inégalité de Markov)
k=1

IN

on 1\ 8

Z 2me (2—n) (vu les hypotheses)
k=1

— 2n2na'yc27nfn5

C2var=A)

IA

Comme v €]0, /B[, ona Y 22 C2M*7=%) < o0 donc d’aprés le lemme de Borel-Cantelli, on a

1
p (limsup{kmax ]Xk - X k1| > QM}) =0

ce qui signiﬁe que : 3A € F,P(A) = 1tel que Vw € A, 3N, € IN,Vn > Nw,\X%( w) —
X ()] < .
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Notons D,,, = {5&,0 < k < 2™} I’ensemble des dyadiques d’ordre m. Soit m,n € IN tels que
m >n > N, ets,t € Dy, telsque s < t,[t —s| < 3.

Alors si s = o=, il existe ay, . .., am—p € {0,1} tels que t = & + 587 + -+ + “Z=2 etona

) = = P <>—X%<w>|
<
= 2|X2m+2n+1+ +2n+7( w) = Xg’ﬁn+2n+1+ +W(w)|
< S vuquew € A.

1

.
Il

Con51derons maintenant s,¢ € D tels que |s — | < 53 Soitalors n € IN tel que |s — ¢| < 5 et
|s —t] > & sr et m > n tel que s,t € D,,. D’aprés I’inégalité obtenue précédemment, on a

Xw) - Xl £ > o

IA
3
+
=
.
ingL
(]
d
=2

2

<
- 2r—-1

Comme la fonction ¢ — X;(w) est y-hdlderienne sur D N [0, 1], on peut la prolonger sur [0, 1] en
une fonction toujours y-holderienne ¢ X, (w). Puis siw & A, on pose X;(w) = 0,V € [0,1].
Le processus X ainsi défini est & trajectoires holderiennes d’ordre . Il ne reste plus qu’a montrer
que X est une modification de X. Orsit € D, comme X,(w) = X,(w) pourw € AetP (A) =1
onaX,=X,Pps.pourt € D.Sit¢& D,ona

Vwe A, Xy(w) = lim X, (w)

seD,s—t
Soit donc (s,,),, une suite de D qui converge vers t. Comme
B[X, — X, ["] < CJt — 5[,

X, converge en probabilité vers X, et quitte a extraire une sous-suite on peut supposer que X
converge 13: p.s. vers X;. Par unicité de la limite, on a donc, sur un ensemble de probabilité 1,
Xi(w) = Xi(w), et ceci achéve la preuve O
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11 suffit alors d’appliquer ce critere a n’importe quel processus gaussien ayant les marginales
du mouvement brownien.

2.3 Comportement asymptotique :

Théoreme 2.3.1. Soit (B;):>o un mouvement brownien alors on a :

t—o00

. By
hmTZOPps

By [t] , Bi—Byy

=qre -0 D’apres la loi des grands nombres on a :

Démonstration. On a :Vt > 0, %

1
B By — B
lim — 2 = lim Y 2 L B(By) =0

e ] i i

On pose pour n € IN*, &, = sup,c(, 111 | Bs — Big|-

. . Bi—B e
On obtient ainsi : V¢ > 0, | 2221 < 49 Comme les var &,,n € IN sont iid et intégrables
) g

t =T
(appliquer les inégalités maximales pour les martingales a B;), d’apres la loi des grands nombres,
on a

§

lim > = 0P ps

n—oo N

d’ou le résultat. L]

Exercice 2.3.2. Soit (B;);>o un mouvement brownien. Montrer que le processus (B;)>o avec
By =tBi1 pourt > 0 et By = 0 est un mouvement brownien.
t

Proposition 2.3.3. Soit (B;);>o un mouvement brownien alors on a :

B B
limsup—t = +00 ef liminf — = —c0 P ps

t—o0 \/g t—o0 \/Z

Démonstration. On a

P ({limtsup% = +oo}> > P ({limnsup% = —|—oo}) =P (NQN {limnsup % > M})
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Or

n

B
VM € IN,P ({limsup\/—ﬁ > M}) > limsup P (Bn > M\/ﬁ)
n n

etP(B, > M\/n)=P(B; > M) > 0.
D’autre part {lim sup 5—% > M } est un événement de la tribu asymptotique des va (B,, —

By,—1)n qui sont indépendantes donc a pour probabilité 0 ou 1, et vu ce qui précede cela ne peut
étre que 1. ]

Corollaire 2.3.4. Ona : P ps,Nx € IR, 3t > 0 tel que B, = x.

Démonstration. Ceci résulte facilement de la proposition précédente et du théoreme des valeurs
intermédiaires. L

La proposition [2.3.3] est un premier résultat concernant les comportements asymptotiques du
mouvement brownien ne nécessitant que peu de travail. On peut en fait démontrer, sous peine
d’efforts supplémentaires, un résultat beaucoup plus fort : la loi du logarithme itéré, qui non
seulement donne une réponse sur le comportement de B; quand ¢ — 0 (out — oo ) mais illustre
aussi l'irrégularité des trajectoires du mouvement brownien, ce qui sera 1’objet de la section
suivante.

Théoreme 2.3.5. (Loi du logarithme itéré) Soir B un (F;)-mouvement brownien. Alors on a :

i B, = = e imin B =—1|=
P<hr?fouP 2tln(1n(1/t))_1>_1 ! P<1 (D) 1) .

Démonstration. Soit § €]0,1[,6 > 0et 8 > 0. On note

h(s) =+/2sIn(In(1/s))

et on pose pour n € IN*,

(1+9) ln(n).

B, = Bh(O") et ay = ”
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En appliquant I’inégalité maximale a la martingale exponentielle {exp (oant — %) > 0}
on a

P ( sup exp (oans — %) > eXp(ﬁnOén)> < exp(—fhan)E [exp(anBl - 04721/2)}
0<s<1
= exp(—fnan)

d’00 on tire

P ( sup (BS — %) > 5n> < exp(—Baan).

0<s<1

(1+6)In(n)

1
ni+o

et comme » .~ ﬁ < oo on peut appliquer le lemme de Borel-Cantelli qui assure donc que

P (timsup { sup (8.~ as/2) = 5, }) =o.

n 0<s<1

On en déduit qu’il existe A € F telque P (A) = 1letVw € A,IN, € N,¥n > N,

sup (Bs(w) - Cl/nS/Q) < 571

0<s<1

Soit 6 tel que s — h(s) soit croissante sur I’intervalle |0, fy[,w € A, n > max (Nw, 1+ lﬁl(feo))>,
ona

sup By(w) sup (Bs(w)—% N ans>
selom,0n—1] h(s) se[om,om—1] h(s) 2h(s)
1 s a, "1
su B,(w) — — -
h(6™) S€[9n7£1]< (@) == ) 2h(6")
anen—l
<
S P o
’n (14 6)In(n)

460 In(In(6—"))
1+ In(n)

= P 150 n(n) + In(— (@)
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On pose £(n) = m — 1, donc e(n) — 0 lorsque n — co. Puis on choisit 3 = /L0,

ce qui donne :
Bg(w) 144
< 1 .
sup ) = 0 (14+¢e(n))

36[9",0”*1}

On en déduit pour w € A

. Bs(w) .. 149 149
1 <1 —(1 =4/ — 1.
1r£1_§31p hs) = 1£n_>solip 0 (14+¢e(n)) =14/ 20 V6 > 0,V0 €]0,1]

Choisissant § — 1 et 6 — 0 on obtient :

B
(2.1) P p.s. limsup ()

<1.
s—0 h(S) o

On va montrer I’inégalité inverse. Soit maintenant 6 €0, 1[ et 5 €]0, /1 — 6], alors

P (Bgn — Bgn+1 > Bn) = P| B> ﬁ)
_p(p - B3/20" 1n(1n(9—n))>
97(1—0)
o (B es 21n(11n_(00”))>

1 & 22
— e 2 dx
2In(In(6—"
\ 21 8 (159 )

2
1 ]_ - 0 71n(1n(97n))ﬁ /OO ;152 673
B 1-0 dt

ﬁ\/47r 111(111(9—”))6 et - ¢’ x

1 1-6 1

B2

Qﬂ(—lne)% T ni-e,/In(n)

Q

Q

1
82

n1-0 4 /In(n)

Or d’apres le critére de Bertrand, la série ) diverge. On a donc

> P (Bpn — By > B,) = 0

n=1
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et comme les accroissements sont indépendants, on peut utiliser la réciproque du lemme de Borel-
Cantelli qui assure que P p.s. on a pour une infinité de n, Byn — Bgn+1 > [3,.

D’autre part, en appliquant la formule 2.1|a {—B;, ¢ > 0} qui est aussi un mouvement brownien,
on obtient

B
Pps. liminf 22 > 1.
s—0 (s)

En combinant ces deux résultats, on obtient que P p.s., on a, pour une infinité de n,
B@” Z 6n - h(0n+1>
ce qui donne pour ces n 1a :

AP Ll

B /In(In(f—"-1))
B Vo In(In(6—"))

= B Vo1 +¢(n))

v

On en déduit
B,

Pp.s. . limsup —= > 5 -0 V3 €]0,v1— 6]

t—0 h(s)

d’ 006 B
Pp.s. . limsup —= > V1 —0 —0 V0 €]0, 1]

t—0 h(S)

et choisissant § — 0, on obtient la minoration :

. B,
Pp.s., limsup — >1
t—0 (3)

et ceci termine la preuve. [

Corollaire 2.3.6. Soit B un mouvement brownien. Alors on a :

B B
P limsup—tzl =1 e P|liminf——o —=_1]|=
t—00 2t In(In(t)) t=oo /2t In(In(t))

Démonstration. 11 suffit d’appliquer le théoréme [2.3.5| au mouvement brownien {tB 1 > 0}.
O
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Corollaire 2.3.7. Soit B un mouvement brownien. Alors on a pour toutt > 0 :

Biin — B Biin — B
P(limsup AR :1):1 et P(liminf A :—1):1.

h—0 +/2hIn(In(1/h)) h=0  \/2hIn(In(1/h))

Démonstration. 11 suffit d’appliquer le théoréme au mouvement brownien { B, ; — By, s > 0}
[

2.4 Régularité du mouvement brownien

2.4.1 Variation quadratique du mouvement brownien

Proposition 2.4.2. Si (Ay)y est une suite de subdivisions de [s, t] telle que le pas de ces subdivi-
sions tende vers 0 alors les expressions

T = Z(Btz - Btifl)z

7

convergent en moyenne quadratique vers (t — s).

Démonstration. En se servant du fait que pour une variable N (0, c?) le moment d’ordre 4 est
égal 2 30 et que les accroissements (B;, — B;,_,) sont indépendants, on obtient que :

E [(TAk (- s))Q} =23 (i~ tir)” < 2AA(E - 9)

et cette derniere expression tend vers 0 lorsque & tend vers 1’ infini. ]

Traitons un cas particulier de ce dernier résultat : lorsque les subdivisions sont choisies de
telle sorte que Vk, Ax,1 soit plus fine que Ay. Dans ce cas-la on obtient la convergence presque
siire de T2+, Pour simplifier on choisit Vn € IN, A, = {0, &, ..., & .. ¢}

Proposition 2.4.3. (Optionel) Supposons que Vn € N, A, = {0, L, ... & .t} et soit

2"1

An it — Diti— 2.
T - Z(BQZT B (in))

=1

Alors T converge verst P ps.
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Démonstration. Nous avons déja calculé IE (72) qui vaut ¢. Ensuite nous avons :
2n 2
Ap _ _
Var (T%) = 3 Var ((B;i By ) )
k=1
— o

k=1
3t?
on
Puis d’apres I’inégalité de Tchebycheff,on a :

1 3t?
P <|TA" —t]| > E) < K*Var (T%) = k-

Comme la série > | 2% converge on peut utiliser le lemme de Borel-Cantelli qui assure que

P <limsup{’TA" —t‘ > %}) =0

P (lCL:Jllimnsup {‘TA" — t| > %}) =0

et ceci assure que 7> converge P ps vers t. 0

On obtient ainsi :

Remarque : 11 découle de la proposition qu’un mouvement brownien n’est p.s. pas a
variation bornée sinon on aurait

T2 < ||By|| x sup|By — By | — 0lorsque k — oo.
z- 7 11—
00 || By|| représente la variation totale de B;.

2.4.4 Non-différentiabilité

Proposition 2.4.5. Presque toute les trajectoires du mouvement brownien ne sont nulle part
différentiables sur IR™".
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Démonstration. Sil’application f : IRT — IR est différentiable en un point s de [0; T'], alors il
existe n € IN'\ {0} tel que
[f() = f(s)| < nl(t—s)
pour (t — s) suffisamment petit et ceci entraine que pour k suffisamment grand, i = [ks] + 1 et j
entier tel que t < 5 <17+ 3,
. : : , ™m

[£G/R) = F(G = D/R < 1FG/R) = f(s)l + 1f(s) = f(G = D)/R)] < ==

car pour de tels j les différences de j et j — 1 avec s sont au plus de % et % En conséquence, si

on pose
D ={w e Q;3s < T,t — B;(w) est différentiable en s}

alors on a .
n
pcUUN U N {B-ma<}
n>1m>1k>m 0<i<Th+1i<j<i+3
Notons
™

0<i<Th+1i<j<i+3
on a alors

P(F, ) < Tk (P (|§| < 7"))3

nk) = = \/E

d’ o6

On en déduit alors que
P (hm inf an> <liminf P (£}, ,,) = 0 (par le lemme de Fatou)

et donc que P (D) = 0, ce qui prouve la proposition O

2.4.6 Propriétés de Holder

Proposition 2.4.7. Va < %, presque toutes les trajectoires du mouvement brownien sont -
holderiennes sur tout sous-ensemble compact de IR, ie VT > 0,

‘Bt B BS‘
sup _—

— — 0 Pp.s. lorsque h — 0
$,t€[0;T];0< |t—s|<h ‘t - Sl
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Démonstration. Utiliser le critere de Kolmogorov-Centsov. [

Proposition 2.4.8. Pour o > %, VT > 0, P presque toutes les trajectoires du mouvement brow-
nien ne sont pas a-holderiennes sur lintervalle [0; T.

Démonstration. Reprenons les notations de la proposition de la page[2§]. Soitw € Q2 tel que
t + By(w) soit a-hdlderienne sur I'intervalle [0; 7], 00 oo > 1/2. Soit § > 0 tel que o = 5 + 4.
Ona

n

) = 3 (B - B’

=1

< CZ‘Q’ —tiq*
i=1
i=1

< T sup [ti—tiq4]®

i=1...n

— 0 lorsque n — oo
Donc
{w € Ut — By(w) soit o — hdlderienne sur [0; 7]} C {w € Q; T*"(w) — 0 ennoo}

et ce dernier ensemble est de probabilité nulle d’apres la proposition [2.4.2 0

1

Le seul cas restant a traiter est le cas o« = 3

Proposition 2.4.9. Pour o = % P presque toutes les trajectoires du mouvement brownien ne
sont pas a-holderiennes.
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Démonstration. On commence par une remarque. Si {B;,t > 0} est un mouvement brownien
alors il résulte du théoreme [2.3.1|a la page [23|que { B; = tB% > O} est aussi un mouvement
brownien. Ensuite, d’apres la proposition [2.3.3|page 23l on a P p.s. :

| Bu|

lim su lim sup V¢|B
u\0 P \/a t~>oop ‘ l/t‘
s tB 1
= limsu
t—o0 P \/g
= +o00.
Ceci suffit a prouver notre assertion. ]

2.5 Temps d’atteinte

Soit (B;),cr+ un mouvement brownien, V¢ > 0 F; la tribu engendrée par { B,;0 < s < t} et
poura,b € R (a <0etb > 0), Sy, T, les temps d’arrét définis par :
S,p = inf {t cR";B, ¢ [a;b]}
T, :inf{t cR";B, < a},
T :inf{t cR"; B, > b}.

Lemme 2.5.1. Les temps d’arrét S, T, et T}, sont finis P p.s.

Démonstration. On peut soit utiliser le corollaire de la proposition page [23| soit raisonner
comme suit.
Ona:

P (Swp =+00) = P{Vt>0;B; € [a;1]})
< P{VneN;B, € [a;b]})

(B )

— 0 lorsque n — oo d’apres le théoréeme de la limite centrale.

et ceci nous donne P (S, = +00) = 0.
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2
Comme e*3 2" est une Fi-martingale on peut appliquer le théoreme d’arrét au temps d’arrét

borné T;, A t et on alors :
2
IE (e)‘BMTb_A a;Tb)) =1

Or Biy;, < bdoncona:
_A%(tATy)

VAEO,]E(@ 2 )ZB_M’

On peut alors utiliser le théoreme de Lebesgue pour avoir :
2T, Ab
VA>0,IE (e 2 > e”

et comme
_3%ny
Lycioy 2 €2

on a en prenant 1’espérance :
P (T, < +00) > e YA > 0.

En faisant tendre A vers 0, on obtient :P (7}, < +00) = 1 et pour des raisons de symétrie du
mouvement brownien on a aussi P (7, < +o0) =1 O

Proposition 2.5.2. On a les propriétés suivantes pour les temps d’arrét Sy, T, et Ty, :

— IE(Su) = |ab|
— P(T,<T) =3 eaP (T, <T,) =~
— La transformée de Laplace de T}, est donnée par :N\ > 0, IE (e_ATb) = V2N

2
— La densité de Ty, est donnée par : f(t) = 2rtde 5t

Démonstration. En appliquant le théoreme d’arrét a B; on a :
IE <Bsab/\t) = O
et comme |Bg | < max(—a, b) on peut appliquer le théoreme de Lebesgue qui donne :

IE(Bg,,) = 0.
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Notons P, =P (7, < T;) et P, =P (1, < T,).Ona:

aP, +bP, = 0 P, = ;-
=
P,+P, = 1 —

Puis en appliquant le théoréme d’arrét 2 la martingale B? — ¢ et en utilisant les mémes argu-
ments que précédemment on obtient :

E(Sw) = E(BZ, = a’P, + b*P, = —ab = |abl.

Ensuite en reprenant la fin de la démonstration du lemme précédent, on a :
A2 (tATY)
E(erPorn—2 " ) =1

et d’apres le théoréme de Lebesgue (I'intégrand est majorée par *?) on obtient :

]E <6>\BTb_>\22Tb) — ]_

soit
A2(1y) _
E <e_ 2 ) —e

d’00 le résultat



Chapitre 3

Calcul stochastique d’Ito

3.1 Préambule : ’intégrale de Wiener

Comme nous avons pu le voir, un mouvement brownien n’est p.s. pas a variation bornée (voir
proposition|2.4.2)) et I’on ne peut pas définir une intégrale par rapport a B; comme on peut le faire
traditionnellement avec des fonctions a variations bornées. On va donc construire une intégrale

stochastique, du type
t
/ f(s)dBs
0

en utilisant des méthodes hilbertiennes (et probabilistes). On commence par le cas simple de
I’intégrale de Wiener 00 I'intégrand est déterministe.

Dans ce qui suit, L?(IR™) désigne 1’espace des classes de fonctions presque partout égales
de IR* dans IR satisfaisant [, f*(t) dt < oo et L*(Q) = L*(Q; F;P). On note (.,.) le produit
scalaire usuel sur L?*(IR+).

Théoreme 3.1.1. Etant donné un mouvement brownien (By;,t > 0), on peut associer a chaque
fonction f € L*(IR+) une (classe de) variable aléatoire :

B(f)= | fi)as

telle que :
— Si f = 1140 < u < w,alors B(f) = B, — By.
— Lapplication f € L*(R+) — B(f) € L*(Q) est linéaire et isométrique. On a ainsi :

Vf,g € L*(R+), B(B(f)B(9)) = (f.9)

31
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Plus précisément le sous-espace vectoriel {B(f); f € L*(IR+)} de L*(Q2) coincide avec [’es-
pace gaussien H(B) et la variable aléatoire B(f) est caractérisée par les deux propriétés :

i) B(f) € H(B)
i) E(B,B(f)) = [y f(s)ds

Démonstration. Soit A le sous-espace vectoriel de L?(IR+) formé des fonctions en escalier et
intégrables, ie de la forme :

k
f = Zail]ti—l;tib
i=1

aveck e NetO <t <---<tg,a; €1R.
Pour f € A de la forme précédente, on associe la variable aléatoire :

B(f) = Za’l(Btz - Bti—l)'

On peut remarquer que cela ne dépend pas de I’écriture choisie pour f car 1), = 1w +
1 u < w < v.On a ainsi construit une application A = L9 qui est clairement
Jw;v] . f s B(f)

linéaire. De plus, on a :

(2

E(B(f>2) = IE ( ai(Bti_Bti—1>>

k

=1
k

= Z a?(t; — t;_,) par I'indépendance des accroissements de B

%
=1

= F2(t) dt.

R+

Notre application est donc une isométrie et comme A est dense dans L?(IR+) on peut la prolon-
ger en une isométrie linéaire de L*(IR+) dans L*(Q).

Il est facile de voir que H(B) est I'adhérence de {B(f); f € A} et celle-ci coincide avec
{B(f); f € L*(IR+)}. Puis comme {B;;t > 0} est total dans H(B), on en déduit la derniere
assertion. []
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Notation : Pour " > 0 et f mesurable de IR" dans IR telle que f1j.7y € L*(IR+), on notera :

T
/0 f(t)dB; = B (f1j1)) -

On obtient alors la formule d’intégration par parties suivante :

Proposition 3.1.2. Soir f € C'(IRT),T > 0. Alors :

T T
/ f(t)dB, +/ f'(t)Bydt = f(T)Br
0 0
Si, de plus, f(t)B, — 0 P p.s. quand t — oo et [;* | f'(t)|V/t dt < oo alors :

R+t R+

Démonstration. On a trivialement :

F(t) + / £'(u) du

ce qui donne en intégrant pour s < 7':

s s pT
/ F(#) dt + / / F/(u) dudt = sf(T)

0 0 Jt

soit d’apres les propriétés de I’intégrale de Wiener :
T
BIBB(f o) + [ f(w)min(u,s)du = f(T)s
0
ou encore T
IE[B,B(f110.;17)] + / ' (wW)E(BsB,) du = f(T)IE(BrB;).
0

On obtient ainsi :

Vs < T, [(B(fl[o;;p]) + /OT F'(w) By du — f(T)BT> BS] —0.

Comme B(f1yq) + fOT f'(uw)B,du — f(T)Br € H(B;,t < T)etque (B;,t <T)enestun
sous-ensemble total, on a :

T
B(ftgm) + [ F(@)Budu=1(T)Br =0
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d’00 la premiere assertion.
Pour la deuxieme égalité, la seule chose a montrer vu la premiere partie est que les deux
intégrales du membre de gauche convergent P p.s., or :

B ([ 1w m)

u)| dPdu

< <|Bl| / (u)/(u)| du

- @ | v

<

Donc P p.s. fo u) B, du converge.
Pour la premlere 1ntegrale, il suffit de montrer que f € L*(IR™) :

/Ooon(t)dt _ /Oo(/oof/(u)du>2dt
_ / (//f dudv)dt
< / / / Lscmintuan £/ () f'(0)] dudvdt

< / / min(u, 0)| /() (v)] dudv
/ / Vil f'(w) f(v)| dudv

- ([ ﬂ|f’<u>|du)

< +0o0

IN

Donc f € L*(IR™) est la proposition est démontrée. O
Exercice 3.1.3. Soit f € L}, (IRy), et X; = [, f(s) dB,. On pose

= /0 f2(s)ds et c(t) = inf {u > 0;a(u) > t}.

1) Montrer que le processus Wy = X est pour 0 < ¢ < fooo f?(s)ds, un mouvement
brownien.
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2) Montrer que pour tout t > 0, Xy = W) P p.s.

3) On considere le processus Z; = fg % dBs, défini pour O < t < 1. Montrer que Z; tend

presque siirement vers 0 quand t tend vers 1.

Réponse :

1) Il est clair que a est continue et croissante, donc que c est croissante et continue a droite.
P p.s., le processus X, est donc continu en tout point de continuité de c et si t5 n’est
pas un point de continuité de ¢, en posant x = lim, ;- c(t), f = 0 p.p. sur [z,c(ty)]
(raisonner par I’absurde) et alors si ¢t < ¢y on a

/ ™ p(s)am,

®)

[ s,

= Ocar f =0 p.p. sur [z, c(to)]

lim ’Xc(to) — Xc(t)’ = lim

=ty =ty

Donc X est un processus a trajectoires continues P p.s.

De plus on a X (o) = 0 car comme précédemment f est nulle sur [0, ¢(0)]. Ensuite comme
W, C H(B), ce processus est gaussien. Il est facile de voir qu’il est centré car X 1est,
puis

COV(Wt7Ws) = [E [Xc(t)XC(s)}
e(t) c(s)
- E f(u)dBu/ f(u)dB,
0 0

c(t)Ne(s)
= /0 2(u) du
= a(e(t) Ac(s))

= alc(tNs))=tAs

Finalement W est bien un mouvement brownien.

2) On a évidemment
Vt >0, Wy = Xe(a@ry)-
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Comme c(a(t)) = inf {u > 0;a(u) > a(t)} et que a est croissante, on a c¢(a(t)) > t. Puis

c(a(t))
a(c(a(t))) = a(t) = / f2(s)ds = 0

donc f = 0 p.p. sur [t, c(a(t))] et ceci implique aussi que

c(a(t))
Xeawy) = / f(s)dB

0
' e(alt)
— [ #s)dB, + / £(s) dB,
t

0

- [ #as.
Xy

d’00 le résultat.
3) Le fait que s — ﬁ ¢ L? (IR.) ne permet pas d’appliquer directement les résultats
précédents. Soit d €]0, 1[ . Alors la fonction s — =14 (s) € L .(IR4) .

Si on pose X; = fot 1%31[075} (s) dBs et que I’on applique ce qui précede, on a

L si tel0,d] t )
_ 1—t ) _
a(t)—{ 11; Gt etc(t)—l_i_tpourte[o,—l_é{

Ainsi, on a montré que
_t

1+t 1
V(S < ].,Wt :/
0

1—s

ds

est un mouvement brownien sur [O, % [ et Xy = Wﬁ P p.s. (en appliquant la question
2avect <o < 1).

En résumé,
t
=+ ]

1—s

W, = dBs),t >0

S—

est un mouvement brownien et pour ¢ < 1 on a

b1
/ dBs =W _+ .
0 1_5 1-%
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Utilisant le théoreme 2.3.1] on a

1—t
lim TWﬁ =0Pp.s.

t—1—

soit

Z,
lim 7t =0Pp.s.

t—1—

ce qui donne le résultat voulu.

3.2 Lintégrale stochastique d’It6

On suppose a partir de maintenant que 1’on dispose d’un espace probabilisé (2; F; P) muni
d’une filtration (F;,¢ > 0) et sur lequel est défini un F;-mouvement brownien {B;,¢ > 0}. On
suppose de plus que F contient tous les ensembles de P-mesure nulle. Définissons alors une
premiere classe d’intégrands.

Définition 3.2.1. Un processus stochastique @,(w) défini sur R, x Q (resp sur [0,T] x Q ) est
dit progressivement mesurable si ¥t € R (resp t € [0,T]) 'application :

(s,w) = @s(w)
de [0,t] x Q dans IR est B([0, t]) ® F; mesurable.

Proposition 3.2.2. Si X est un processus mesurable adapté, avec des trajectoires cad ou cag,
alors il est progressivement mesurable.

Démonstration. On définit

kt (k+ 1)t
AL

XM w) = X1z, S €] , X§=Xo(w), k=0,...,2"—1.

Il est clair que I"application (s,w) — X est B([0,t]) ® F; mesurable. Par continuité a droite, la
suite (X™),, converge vers X simplement pour tout (s,w) et donc la limite est aussi B([0, t]) ® F;
mesurable. ]

Remarque 3.2.3. Si X est un processus mesurable adapté, il admet une modification progressi-
vement mesurable (voir Meyer 1966, page 68).
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On notera par la suite A%(IR.) (resp. A%([0, 7)) le sous-espace de L*(2 x R, P (dw) ® dt)
(resp. L2(2x [0, T], P (dw)®dt)) constitué des classes de processus progressivement mesurables.
Muni du produit scalaire

T
<g0, w> =1 |:/ (,Ot?/}t dt:| (resp =1IE |:/ (;Otwt dt:| )7
R 0
A(IR,) (resp A%([0,T))) est un espace de Hilbert. Pour finir, on définit

A” = () A*([0, 7).

T>0

Soit £ I’ensemble des classes de processus de la forme :

n—1
cpt<w) = ZXi(w)l]ti,tiJrl](t) ’t Z 0
i=0
avecn € IN, 0 < t; < ..., <1, et X; F;,-mesurable et de carré intégrable pour 0 < i <n — 1.

(On remarque facilement que ¢ est progressivement mesurable).
Pour ¢ € &€ de la forme précédente, on définit le processus stochastique intégral

t
B(Qp)t = / Ps st
0
n—1
- ZXi(Bt/\tH_l - Bt/\ti) )t Z O

1=0

Lemme 3.2.4. Si p € &, alors V't > 0,

E(B(¢)) =0 et E[B(p);] =E Uot @2 ds} > 0.

Plus généralement, si 0 < s < t,

IE [B(p): — B(p)s|F] =0

E[(B(o) - B(e).) 17] - E | [ 7 iiF).
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Démonstration. Si ¢y(w) = >0 Xi(w) 1y, 1,,,1(t) alors

BB = 3B [X(Bu,, B

= Ocar XiJ—l—(Bt/\ti+1 — Bt/\ti)
Pour la deuxieme égalité, on remarque tout d’abord pour ¢ < j (donc t;41 < t;)

E P(’LX] (Bt/\tH_l _Bt/\ti)<Bt/\t]’+1 _Bt/\tj>:| = IE |:]E P<in<BtAti+l - Bt/\ti)<Bt/\t]’+1 _BtAtj)|Ej:|:|
- ]E |;X1X] (Bt/\tiJrl _Bt/\ti)]E [(Bt/\tj+1 _Bt/\tj)|ftj:|:|
3.1) = 0

et de 1a, on en déduit :

:\
—
I

—

n

]E[( Xi(Bt/\ti+l — Bt/\ti)>2} :E[ (Xz'(Bt/\tiH — Bt/\ti))2:|

i=0 i=0
+2IE Z XiX;(Bintiry — Bint:)(Bintyor — Bing;)
1<J
n—1 )
:E[ (X:(Binirr — Buns,)) } vulEl
i=0

2
= ]E[XQ]]E |:(Bt/\ti+1 - Bt/\ti) i| car X’iJ—L(Bt/\tHJ - Bt/\ti)

=Y E[X7|(t Atipg —tAL)

t
[
0
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Puis si 0 < s < t, soit ny € IN tel que ¢,,, > sett,,—1 < s, alors

n—1

E[B(p)F] = E ZXi<Bt/\ti+1 — Bint,)

1=0

— ZIE Bt/\t i1 Bt/\ti)’fs]

no—1 n—1
= Z ]E Bt/\tl+1 Bipt, |-7: + Z ]E Bt/\tH_l — Bt/\ti>|fs}
- i=ng
= Z IE i Bt — Bt ’]: + Z IE Bt/\tlﬂ — Bint,) J s}
n_l 1= =nNo
= E[B(p)s|Fs] + Z IE [XGIE [(Bintiyy — Bint,)|Fr.] | Fs]
i=ng

= IE[B(yp)s|Fs] car (Bia,,, — Biat,) est centrée et Ll Fy,

i+1
La derniere égalité se montre de facon analogue. L

Il résulte du lemme précédent que {B(p),t > 0} et { fo 0ds,t > O} sont des
JF;-martingales. De plus, en utilisant les inégalités maximales pour les martingales, ie

P (max M| > A) < APIE(| My ]P),
0<t<T

et le théoréme de Fubini, on obtient pour une martingale continue {M;,¢ > 0} et pour 1 < p, ¢ <
ootelsque%—k% =1,

(3.2) sup | M,

0<t<T

< q[|Mr| o)
Lr(Q)

Si on choisit p = ¢ = 2 et que I’on applique ceci a {B(¢);1s — B(p)s,t > 0}, qui est une
martingale, on obtient

T+s
(33) E | sup (B~ 87| < m ([ sar)
0<t<T s

Cette formule nous sera utile par la suite pour étendre I’ intégrale stochastique 2 A2, via le lemme
suivant



3.2. INTEGRALE STOCHASTIQUE D’ITO 41

Lemme 3.2.5. Pour tout o € A2, il existe une suite p,, € EN telle que YT > 0

©nlior — ¢l
dans A*([0,T]).

Démonstration. ¥n > 1, on considere I’opérateur linéaire P, de L?(IR™) dans lui-méme défini
par

i—
n

GRS ( [ 16 ds) 1y 00

D’apres I’inégalité de Cauchy-Schwarz, on a

1<i<n?

Y —

i+1]

1
™
n n

P(f)2) < n/ £2(s) dsnfe]

et
1202wy < 1 lle2my)-
De plus, si f € L{IR,),ona

| Po(f) = fllr2ar,) — O, lorsque n — oo

En effet, on le montre facilement pour des fonctions continues a support compact gr,ce a des
arguments de continuité uniforme et la cas général s’en déduit par des arguments de densité et le
fait que P, est une contraction.

Soit maintenant ¢ € A%(IR, ), alors Vn > 1, P,(p) € € car

i

n? i
P,(f)(t) = nz ([_nl ©s ds) 1]%7%]@) et ﬁ: s ds est F i -mesurable.
i=1

n n

et
1Pa(@) = @llazm,) = E ([|Pale) () — o(w) |l 22(r.)) -
Mais on a

1P (0)(w) = @(@)llz2ry) = 0P ps. et [ Pa(0) (@) = 0@ L2, ) < 4lle(@)lzzam,)

donc le théoréme de convergence dominée de Lebesgue assure que || P,(¢) — ¢|[a2mr,) — 0
lorsque n — oo.
De fagon similaire, si ¢ € A%, VT > 0, on a || P,(¢) — ¢||a2(o,r7) — 0 lorsque n — oo O]
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Remarque 3.2.6. Dans le cas d’un élément de N*(IR., ) qui est P p.s. continu et satisfait sup, IE(¢?) <
00, on peut approximer @ par (au lieu de P, (¢))

7’L2
Ph =Y pilyi in(t).
=0

Nous pouvons maintenant énoncer la

Proposition 3.2.7. Vo € A2, il existe une martingale continue

t
B(so)tz/ psdB, ;t >0
0
qui vérifie
t
E(B(e)) =0 a BB ~E| [ 2] e
0

et plus généralement, si 0 < s < 1,

t
B [(B() - Bloh)? 1] =B | [ Gariz]
Si de plus p € A*(R,), alors

B(g) — B(p)e = / 0. dBs

Ry
P p.s. et dans L*(Q) lorsque t — oo.

Démonstration. Soit ¢ € A? et (¢,)new € EN une suite qui converge vers ¢ dans chaque
A2([0,T)), T > 0. D’apres le lemme 3.2.4) Vn € IN, {B(p,,);,t > 0} est une martingale conti-
nue.

D’autre part, toujours d’apres le lemme [3.2.4} si ¢ € &£ alors {B(gp)? — fot oxdr,t > 0} est une

martingale continue et d’apres la formule (3.3} on a aussi

[ (B~ Blonh )| < 4B ([ (one o)

0<t<T

= llon — enllazqom
— 0 lorsque min(m,n) — oo



3.3. GENERALISATION DE L’'INTEGRALE D’ITO (*) 43

Il s’ensuit que la suite B(yp,,) est une suite de Cauchy dans 1’espace L?(Q; C([0,T7])),VT > 0 qui
est un espace complet. Soit { B(¢);,t > 0} sa limite dans cet espace. On peut facilement vérifier
que la limite ne dépend pas de la suite d’approximation (¢,,), choisie et que {B(p);,t > 0}
est un processus a trajectoires continues JF;-adapté. De plus, comme V¢, B(p,); — B(y); dans
L?(Q)et que I’espérance conditionnelle est un opérateur continu de L?(Q2) dans lui-méme, on
obtient les deuxi¢me,troisieme et quatrieme égalité en utlisant le lemme [3.2.4]

Pour finir, si ¢ € A>(IR;),ona

E[(B(¢), — B(p),)?] = ( / 2 dr) ~5 0 lorsque min(s, £) = o0

Donc B(p); converge dans L?(Q2) quand ¢ — oo. Comme B(¢); est aussi une martingale conti-
nue bornée dans L?((2), elle converge P p.s. vers sa limite B() O

Remarque 3.2.8. 1l découle de la linéarité de v — B(y);, du lemme et des identités de
polarisation que pour o, € A2,0 < s <t

E[(B(g): - B(9).)(B(): — BW)J)|F.] = E ( [ un dum) |

3.3 Généralisation de ’intégrale d’Ito (*)

Nous aurons besoin de définir des intégrales stochastiques avec des intégrands plus généraux
que ceux considérés précédemment.

Notation 3.3.1. Pout T < oo, on notera A. ([0, T]) U'espace des processus progressivement
mesurables qui vérifient :

T
/ @2 dt < 0o Pp.s.
0

et
Ajpe = () AZe([0.T7)
T>0

2

i Pour cela,

On va maintenant définir I’intégrale stochastique {B(p), ¢ > 0} pour ¢ € A
on va introduire des temps d’arrét

Lemme 3.3.2. Soit ¢ € A} Pour n € N, on définit 7,, par

t
Tn:inf{tzo;/ gp?dSZn}.
0

Alors T, est un temps d’arrét.
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Démonstration. En effet, on a :

® 1
{r. <t} = ﬂ U {/ gpfdr>n—E}
k>1sef0,nQ 70
€ K
[]

Lemme 3.3.3. Soit 7 un temps d’arrét. Le processus {1[0771 (t);t > 0} est progressivement me-
surable.

Démonstration. Soit T' > 0, il faut montrer que 1’application

v Qx1[0,T] — R
(w,t) — 1[07T(w)](t)

est Fr ® B([0, T])-mesurable. Considérons les deux applications

p: Qx[0,T] — RxR etyx: [0,7]x[0,7] — R
(w,t) = (6 T(w)AT) (u,t) = liucy

Elles sont respectivement Fr ® B([0, T']) mesurables et 5([0, T]) ® B([0, T']) mesurables et ) est
la composée de ces deux fonctions et est donc elle-méme Fr @ B([0,7]) mesurable. O

2
locy

I1 découle du lemme précédent que Vn € IN,Vp € A
1[0,7,1]90 € AQ(IR+)
On peut alors définir pour tout 7,

t
B! = [ Lo (s)odBs t 20
0

11 faut donc montrer que pour tout 7' > 0, B}* converge P p.s. uniformément pour ¢ € [0, 7] en
n oo. Le processus limite sera alors noté

¢
Bi(p) = / psdBg, t > 0.
0

Or cette convergence résulte du fait que lorque n — co ona 7, T co P p.s. et du lemme suivant
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Lemme 3.3.4. Soit p € A? et T un temps d’arrét. Alors 1 ;10 € A* et P p.s.

t tAT
/ Lio,7)(8)ps dBs = / ¢s By, t > 0.
0 0

Démonstration. D’apres le lemme 1p,¢ € A®. Puis I’égalité annoncée est équivalente
au méme résultat avec le temps d’arrét borné ¢ A 7. Mais tout temps d’arrét borné est limite
décroissante d’une suite de temps d’arrét ne prenant chacun qu’un nombre fini de valeurs. En
effet, pour chaque n € IN etk < N, 00 N = sup {k € IN; 35 < t}, soit tF = Z et tl'+! = ¢.

) 9n
Alors la suite 7,, définit par
N+1

Ta(w) =Y Ly (w)th

00 Ak = {th=t <t A7 < tk}, est une suite de temps d’arrét qui convergent vers t A .
Maintenant il suffit d’établir I’égalité suivante pour tout n :

t t
/ 17, 0(8)ps dBs = / ©s B,
0 tATh

t t
/ 10psdBs = 1 4k / s dBs,
1k n n tﬁ

n

qui résulte de

soitpour 0 < s < t,A € F,, o € A%

t t
/ 1A(,0r dBT = ]-A/ Or dBT
Or

t t 2 t 2
]E[(/ 1A90rdBr_1A/ QOTdBT> |fS] = ]_AIE [(/ (]—A_l)SOrdBr) ’fs]
t 2
+1Ac]E [(/ 1A90r dBT) ’fs]

t t
= 1,4IE |:/ 1Acgofdr1+1AcIE |:/ 1Ag0$dT’fs:|

=0
]
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Proposition 3.3.5. Vo € A2 VT > 0, B(¢) converge P p.s. uniformément sur |0, T| lorsque
n — oo.

Démonstration. Soit n < m. Alors 7, < 7,, et le lemme [3.3.4] appliqué a 1o ., et 7,, assure
que :

t
B = /1[o,rn](5)1[o,rm](8)90sst
0

tATh
= / 1 [Oa'r'm] (8)()03 dBS
0

et cette derniere quantité ne dépend pas de m > n. Fixons T > 0. Sur Q,, = {7, > T}, la suite
{B(p);0<t<T}, m =n,n+1,... est constante et égal a sa limite. Le résultat découle
alors du fait que €2,, T Q P p.s. O

Nous pouvons maintenant résumer les propriétés de I’intégrale d’Itd6 obtenue.

2

i 1l existe un processus continu

Proposition 3.3.6. Pour tout p € A

t
Bt(QO) = / Ps st;t > Oa
0
qui est tel que pour tout n € IN, si 7, = inf {t; fg 0 ds > n}, alors B} = OtAT" psdBg, t >0

est une martingale convergeant P p.s. uniformément sur [0; T|,VT > 0 vers By(p) et vérifiant
pour() < s <t:

(B — BI|F.] =0

t
E[(B} - BP|F,] = E { / Lm0 drm] |

s

La variable aléatoire B,(p) n’est pas nécessairement intégrable mais vérifie :

t
(3.4) E [Bi(¢)’] <E { / 2 ds} :
0
Si de plus ¢ € A2, (IR.), alors

loc

Bi(¢) = Boo(p) = / psdBg P p.s., lorsque t — o0.
0
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Démonstration. La premiere partie résulte de la construction. L’inégalité [3.4] est triviale si le
membre de droite est infini, sinon ¢ € A%([0, T]) et on a I’égalité.
Pour finir, si ¢ € A2 (IR), soit

loc

BQO:/ ¢, dB.
0

Comme 2, = {7, = 00} 1 Q P p.s., on peut définir B, par By, = B sur §2,,,n € IN. Alors le
reste des affirmations découle de la proposition O

Le résultat suivant sera tres utile par la suite.

Proposition 3.3.7. Soit p € A?([0,T)). Alors VM, a > 0

T 1 T
P(sup | Bi()] Za) SP(/ gofdtzM) + —IE {inf(M,/ gofdt)}
0<t<T 0 a 0

Démonstration. Soit 7y = inf {t; fot ©ids > M } Alors

{TM<T}§{/OT<pfdt2M}.

On a aussi

{ s 180 2 af < (< 1Y0{ swp 1B 2 af 0 (o 2 7).

0<t<T 0<t<T

et

P ( sup |Bi(p)| > a,mar > T) < P ( sup |B(¢M)] > a)

0<t<T 0<t<T
1
< EE [Br(¢™)?] (déja vu pour les martingales)
1 T,
= —2E Pt 1[077'JM] (t) dt
a 0
<

1 T,

00 pM = ¢1y,,.1), d’ol le résultat. O
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Nous pouvons maintenant énoncer un théoreme de convergence qui résulte directement de la
proposition précédente.

Théoreme 3.3.8. Soit (,,), . une suite de A;, ([0,T7]) et p € A, ([0, T]). Supposons que

loc loc
T
/ |0y — i dt — 0 en probabilité lorsque n — o.
0

Alors

sup |B(¢) — Bi(¢n)| — 0 en probabilité.
0<t<T

3.4 Les formules d’Ito :

Considérons tout d’abord z € C'(IR, ), et ® € C'(IR). Alors la formule de dérivation des
fonctions composées donne

O (z(t)) = ®(x(0)) —i—/o ' (z(s)) dx(s).

Notre objectif dans cette section va étre d’obtenir une formule analogue si I’on remplace x par
un mouvement brownien.

3.4.1 Premiere formule d’Ito

Proposition 3.4.2. Premiere formule d’It6 :
Soit ® € C*(IR). Alors

O(B,) = ®(0) + /t ¥'(s) dB, +%/t o"(B,) ds.

Démonstration. Soit ® € C¢(IR) et ! = £t,n € IN. D’apres la formule de Taylor, il existe pour
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chaque ¢ < n un élément aléatoire 6" €|t |, t!'[ tel que

WB) = B(0)+ Y [@(By) - B(By,)]

n

- 1
= ®(0)+Y (B )(By — By )+ 5 ) " (By)(By — By )
=1

i=1

t 1 t
— <I>(0)+/ (I)/(BS)dBS+§/ ®"(By) ds,
0

0

en probabilité lorsque n — oo, car les deux sommes convergent en probabilité, ce que nous
allons montrer .
D’apres le théoreme [3.3.8] on a

n t
Z ' (Byr )(Bir — By ) — / ®'(B,) dB, en probabilité.
=1 0

Puis

S sup ‘(I)”(ngn) — CI)”(Bt}L,lﬂ Z(Btzn — Bt?71)2

1<j<n Py

< sup sup |[®"(B) — d"(Bp ) Z(Btn — By | )?
1<j<ntp_y <s<tp i "
— 0 en probabilité lorsque n — co

Finalement il ne reste juste qu’a montrer que

n

t
> @"(By )(Biw — By |)* — / ®"(B,) ds
0

=1

en probabilité. Or

t n
/ ®"(B,)ds = lim Z ®"(Byn )(t7 —t; ;) P p.s. donc aussi en probabilité
0 n—00 — -
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et on calcule alors

n n 2
an = IE (Z " (B ) (B — B |)* — Z O"(Byn | )(t] — t?_1)> ;
=1 i=1

ce qui donne

a, = E (Z " (Byn )[(Bir — By > — (£ — t?ﬁ])

= Z IE [(CDN(Bt;?_l))Q[(Bt;I — Btf_l)2 — (&7 — t?_l)]Q]

IN

2 sup |9 (z)[? 1 )2
sup 9 D07 —42)

—  0lorsque n — oo

Donc . .
Z " (B ) (B — B |)* — Z (B (] —ti1)
=1 =1

converge vers 0 en probabilité et on peut alors en déduire que

n t
> @"(Bin )(Bin — B |)* = / ®"(B,) ds en probabilité.
0

=1

Si maintenant ® € C?(IR), il existe une suite (®,,), € (C*(IR))N convergeant simplement
vers O et telle que ¢, (z) = ®(z), Vo € [—n,n]. Appliquant ce qui précéde, on obtient :

t 1 t
Vi € IN, @, (B,) = ,(0) +/ o' (s)dB, + 5/ o (B,) ds.
0 0

Mais on sait que ®,,(B;) — ®(B;) P p.s. .
Ensuite soit 7;, = inf {t > 0;|B;| > n},7,, = inf {t > 0; B; > n}et 7, = inf {t > 0; B; > n}.
Ona

T, > max(7,; T_p).

Or d’apres la proposition on a

M 2
P(r, < M) = / V2rtde =i dt
0
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et

00 00 M 2
SP<i) = 3 [ VarreE
n=1 n=1"0
M [ o 2
= / Z V2mt3e 2 | dt d’apres le théoréme de Tonnelli
0 n=1

M oo
/ Z Vortdest | dt
0 n=1
M 1
= / V27t3 — dt
0
00

IN

1—e2t
<
et en utilisant alors le lemme de Borel-Cantelli, on en déduit que 7,, — oo P p.s., de méme pour
T_, et par suite de 7;,.

Soit maintenant 2, = {7,, > T'}. Vu ce qui précede, on a 2, T Q P p.s., et sur 2,,, on a
Vi <T,® (B;) = ¢'(B;) donc

T
/ B(B,) — @' (By)| dt = 0
0
ce qui implique que
T
/ |®! (B;) — ®'(B;)| dt — 0 en probabilité
0

et d’apres le théoreme [3.3.8| on sait qu’alors
T T
/ ' (B,) dBy — / ®'(B;) dB; en probabilité
0 0

On a aussi
1

t 1 t
—/ ¢ (B,)ds = —/ ®"(B,) ds sur £,
2 Jo 2 Jo

ce qui implique toujours la convergence en probabilité. On obtient donc le résultat en invoquant
I’unicité de la limite en probabilité 0

Notons que le calcul différentiel d’It6 differe du calcul différentiel usuel par I’apparition du
terme de la dérivée seconde ®” qui est due au fait que le mouvement brownien a une variation
quadratique non nulle.
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3.4.3 Processus d’Ito

Nous généralisons maintenant la formule d’Itd ci-dessus en remplacant le mouvement brow-
nien par une classe plus générale de processus.

Définition 3.4.4. Un processus { X;t > 0} est appelé processus d’Ito s’il est de la forme

t t
(3.5) Xy = Xo+ / Vs ds + / @5 dB;
0 0

00 X est une variable aléatoire JFy-mesurable, 1) et p sont des processus progressivement me-
surables qui vérifient

t
/ 5| ds < co Pp.s. .t >0et p€ AL,
0

Il en découle qu’un processus d’Itd est presque slirement continu et progressivement mesu-
rable.

Lemme 3.4.5. Soit X une variable aléatoire F,-mesurable, p € A2 et() < s < t. Alors

loc
t t
/ XgprdBr:X/ 0. dB,

Démonstration. Reprenons un travail déja fait : Si A € F,, o € A2, alors

t t
/ ]-ASOT dBr - ]-A/ Pr dB'r;
car

t t 2 t 2
IE[(/ ]-ASordBr_]-A/ gDrdBT) ’FS] = ]_AIE [(/ (1A_1)S0rdBr> ‘JT"S]
t 2
+1AcIE [(/ ]-ASordBr) |.F3]

t t
= ]_AIE [/ 1Ac(,02d7"}+114c]E [/ 1A(,02d7"|f'5}

= 0
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2
loc?

Ensuite si ¢ € A7, on applique ce qui précede a 1y ,,; € A% on a alors

t t
/ ]-Agou]-[D,Tn} dBu = ]-A/ Spu]-[O,Tn} dBU

et en faisant tendre n vers oo on obtient

t t
/1A90udBu:1A/ gOudBu

Par linéarité, on en déduit que le résultat reste vrai pour les fonctions étagées, puis si X est une
variable aléatoire F;-mesurable alors elle est limite presque slire d’une suite de fonctions étagées
Fs-mesurables(X,,),,. Comme

t t
/|gouX—<pan|ds§|X—Xn|/ oul du = O P pis.
0 0

le théoreme [3.3.8| permet de conclure O

Théoréme 3.4.6. (Deuxiéme formule d’Itd) Soir {X;;t > 0} un processus d’1t6 de la forme[3.5]
et ® € C*(IR). Alors P p.s. :

t 1 t
o(X,) :@(X0)+/0 @’(Xs)wsds+/<1>’(Xs)gpsdBS+5/0 O"(X,) 2 ds, t >0,

expression que 1’on peut aussi écrire sous la forme plus concise suivante :

1
dd(X;) = &' (X;) dX; + 5@”()@)@3 ds.

Démonstration. Fixons t > 0 et soit ® € C?(IR). En utilisant le théoréme il suffit de

prouver le résultat pour une suite ¢” d’éléments de AZ  telle que

t
/ P — s|* ds — 0 en probabilité quand p — co.
0

Choisissons
2P _1 it

2P
P _— 9P ) )
Ps = 2 Z ([i—m Ps dS) 1}(%71}#7%}(3)7

=1 2D

20 0 2P

ainsi on peut dorénavant supposer que ¢ est borné et constant sur chaque intervalle } -1yt “]
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En utilisant la formule de Taylor comme dans la proposition précédente, on obtient
tn

" ds

n
ti*l

B(X,) = <I>(X0)+i61>/(Xt?_l)

i 1 i
+ Z (X ,) /t podB, + 5 Y ¥ (Xop)(Xp = X ).
-1 =1

On va montrer maintenant que chacune des sommes converge vers le terme désiré.

La premiere des sommes est une somme de Riemann pour la mesure signée p = s ds sur le
compact [0, ] donc

Z(I) (Xin ) / wsds—>/ X;)sds P p.s. quand n — oc.

Pour la seconde, on remarque que, ®'(X,) étant continue P p.s., > ;" ®'(Xin )1y | n1(s)
converge P p.s. uniformément sur [0, ¢] vers ®’(X;), d’0d

/

et ceci entraine d’apres le théoreme que

Z q)/(Xt?,l)(Psl]t?_l,t?KS) — O'(X)ps

i=1

ds — 0 en probabilité

t n
/ Z‘I’/(thzl)%l} t"] s)dBs — / s)@s dBs en probabilité.

Or d’apres le lemme[3.4.5|on a
t

/Z@ (Xix sy Zcb (Xer ) / ¢ dB,

n
tz 1

Ceci traite donc le cas de la deuxieme somme.

En ce qui concerne la derniere somme, remarquons tout d’abord que

t7L t"L t;L t,Lr,"L 2
(Xt? - Xt?_l)Q = (/ (R ds) + 2/ g ds/ s dBs + (/ s dBS>
t ¢ t -

1



3.4. LES FORMULES D’ITO : 55

et la somme sur 7 des deux premiers termes du membre de droite est majorée en valeur absolue

par
tr t? t
/ wsds"i_/ (deBS X / |w8|d87
iy s 0

expression qui tend vers 0 P p.s. lorsque n — oo. Donc il ne reste qu’a étudier la limite de

n tn 2
Z(I)//(Xeln) </ Ps dBS> ,

i=1 2488)

sup
i

et 1’on peut toujours se restreindre a étudier cette limite le long de la sous-suite n = 2!, 1 € N,

Ainsi pour [ > p, ¢ est constant sur | ¢ |, 7] car il Pest sur |2, ¢*"]. On a alors

i—17 %

n tn 2 n
Z‘I’"(Xef) (/ Ps st) = Z(‘I’”(Xey) — " ( Xy ))gin (B )’

i=1 ti 1 i=1
n
" 2 2
+ E P (Xt;l_l)‘;@t;l_l(Bt;l—t?_l)
i=1

Comme P p.s. la fonction ¢ — ®”(X;) est uniformément continue, P p.s. le processus { ;0 < s < t}
est borné et en raison de la proposition[2.4.2] le premier terme du membre de droite converge en
probabilité vers 0.

De plus, une généralisation facile de la proposition [2.4.2] assure que

Z @"(Xt?_l)gof?_l [(Bt? - Bt?_1)2 — (7 =t )
=1

tend vers 0 en moyenne quadratique quand n — oo. Puis il est clair en utilisant les sommes de
Riemann que

n t
SO (X Joh (17— ) / " (X,)p ds.

i=1

Le résultat est démontré pour ® € C?(IR). Si maintenant ® € C?(IR), soit f € D(IR) telle que
f=1sur[-1;1], f=0sur R\ [-2,2] et 0 < f < 1. Pour n € IN*, on pose

gn(z) = nf (%) 7€ Ret () = ga(P(z)).

On vérifie alors que Vn > 1,®,, € C%(R), @, (x) = ®(z) siz € [-n,n] et || Pp]lco < [|P]]oo-
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Comme IE [|®,(X;) — ®(X})|] — 0 quand n — oo (d’apres le théoréeme de Lebesgue), on a
®,,(X;) = ®(X;) en probabilité

Toujours d’apres le théoreme de Lebesgue, on a

t t
/ B (X))o ds — / B(X,)be ds P pis.
0 0

et
1

t t
5/ O (X,)p? ds —>/ d"(X,)p2ds Pp.s..
0 0

Ensuite le dernier terme se traite a 1’aide du théoréme [3.3.§|en remarquant que P p.s.
t
/ 1@ (X)) — ®'(Xy)ps| ds — 0 quand n — oo,
0

ceci résultant encore du théoreme de Lebesgue [

3.4.7 Formule d’It6 avec dépendance en t

En adaptant la preuve précédente on peut montrer le théoreme suivant, ou I’on a rajouté une
possible dépendance par rapport a la variable temporelle ¢.

Théoréme 3.4.8. Soit { X;;t > 0} un processus d’Ité et ® € C'*(IR,. x R). Alors P p.s.

) ) )
o(t, X)) = @(0,X, —(s,X5)d —(s5, X d —(s5, X dB
(X0 = 005+ [ o Xds+ [ ThXgwds+ [ G X)pa,

1 [1o%d

— | =—(s,X,)p*d
+2 0 ax2<87 )903 S

3.4.9 Exercices

Exercice 3.4.10. Le processus d’Ornstein-Ulhenbeck
On considere le processus X a valeurs dans IR solution de I’EDS linéaire a coefficients
constants :

(3.6) dX; = —aX,dt + fdB;, Xo =&

00 « et [ sont des constantes, B est un JF;-mouvement brownien et £ est une variable JFy-
mesurable. On suppose que o > (.
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1) Montrer que la solution de ([3.6)) est donnée par
t
X, =e ¢+ / e~ (=993 dB,, t >0
0
2) En déduire que si & est une variable gaussienne, alors X est un processus gaussien

d’espérance et de fonction de covariance données par

E[X)] = ¢ "E[¢
Cov(X, Xy) = e IVar(g) + 57 [} emH7 du

. 2 , . . .
3)SiE[(] = 0et Var = g—a alors le processus X est centré et de covariance stationnaire,

ie
2

Cov(Xs, Xy) = g—e_aﬁ_sl,‘v’s,t >0
a

En particulier, Vt € Ry, X; ~ N(0, 32 /2q).

4) Si & est une variable gaussienne, alors quand t — oo, ’espérance et la fonction de
covariance du processus {X;15;0 > 0} tendent vers celle du cas stationnaire :

2

E[X,] — 0, Cov(X,, X;) — 25—6—5“.
«

Réponse :

1) Si X est solution de (3.6)) alors on a

t t
Xt:X0+/wsds+/gosst
0 0

avec Xy = &,y = —aX; et s = 5. Donc X est un processus d’It6 et en appliquant le
théoreme aXetad(t,z)=ec"“r,ona:

t t t
X, =€+ / ae’* X, ds + / e*(—aXy)ds —I—/ Be** dBg
0 0 0

et en multipliant les deux termes de cette égalité par e~*“, on obtient bien

t
Xt _ e—ta€+/ Be—(t—s)a st
0
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Réciproquement on applique le méme raisonnement au processus d’Itd V; = €' X; et a
la fonction ®(¢, x) = e~z et on trouve bien que

t
Xt _ e—ta§+/ Be—(t—s)a st
0

est solution de (3.6).

2) Si £ est gaussienne, comme fot Be dB; est un processus gaussien indépendant de
Fo, X est un processus gaussien. De plus on a

—(t—s)a

E[X;] = a1 €]

et
Cov(Xs, X;) = E {(e‘to‘é + / t Be =W qB, ) (e ¢ + / S Be~(smwe dBu)] ~E[X,]E[X,
0 0

t s
= IE{ / Be” " dB, / 5e—<5—“>“d3u] + e Var (¢)
0 0
= ¢ K [B(Be* Ly () B(Be* L (w)] + e T Var(€)

= e(t“)a/ pe" L (u)Be" Ly g (u) du + ef(t“)a\/ar(ﬁ)
0

tAs
_ e—(t+s)a/ 6262au du+€—(t+s)avar(€)
0

3)SiE() =0et Var(¢) = % alors X est centré et

ﬁ2 tAs
COV(X57Xt) — e(t+s)a_+ﬁ2e(t+s)a/ e2audu
200 0
5_26—(t+s—2t/\s)a
2a
ﬁQ —|t—s|a

4) Si £ est gaussienne on a

IE [ X, 5] = e 9% 5 0 quand t — oo
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et
245 32 pYa) 2at+2a(del
Cov(Xiys, Xepy) = e~ GOy (€) + ﬁe*( t+5+7)a (e at+2a(deltany) _ 1)
(2t+35+7) 32 [6—~] 3 (2t+35+7)
— - ++'yav 7 o=yl 7 —(2t+0+7)o
e ar(§) + 5 e 2@@
52
— e Pl Jorsque t — o0
2x
et ceci termine 1’exercice. ]

Exercice 3.4.11. Mouvement brownien avec dérive :

Soit B un JF;-mouvement brownien, et X; = B; + ut, 06 p € IR. Pour a > 0, on définit
T=Inf{t>0;X;>a}l

1) Montrer que pour tout \ € IR, le processus

est une martingale.

2) Montrer que E [Zinr] = 1 pour tout t > 0. En déduire que si X > (—2u)™",

)\2
E 1{T<oo}€_<7+u>\>T = €7Aa
3) Montrer que

P(T < o0) =1 Ae*

Réponse :

1) On applique le théoréeme au processus d’Itd B; (avec By = 0,1 = 0 et p, = 1) et

Ax—

a la fonction ®(¢, z) = e’z pour obtenir :

_(22 22t
X (2+“)‘>t — B

)\2 t 2, t 2, )\2 t 2,
= CI)(O,BO)——/ e*Bs=72 ds—i—/ AeMBa— 5 st+—/ B3 g
0 0 0

2 2

t )\28
=1 +)\/ M5 dBs
0

/\23 . .
Comme e*Ps="2 € A2, Z, est bien une JF;-martingale.

S



60

CHAPITRE 3. CALCUL STOCHASTIQUE D’ITO

2) On a d’apres le lemme [3.3.4]
AT 2, t A2,
Zinr =1+ )\/ M2 dBs =1+ )\/ 17 (s)e*? =2 dBsPp.s.
0 0

donc vu la proposition on a
]E [Zt/\T] — ]_

SiA > (—2u)" alors Vt > 0, (’\72 + ,u)\> t > 0 et donc on a

0 < Zip < M.

De plus, sur {T' < oo}, on a

. Aa—(ﬁ—‘ru)\)T
lim Zijar =€ 2
t—o0

etsur {T'= o0} ona
lim Zt/\T =0
t—o0

donc le théoreme de convergence dominé de Lebesgue assure que
A2

soit ,
IE {1{T<m}€_<é+ﬂA)T} = e,
3) Si p > 0 alors d’apres le théoreme [2.3.1]
X
lim =t = 1 Pp.s.
t—o0

donc
Xy — oo Pps.

et donc P (T < 00) = 1. Sinon p < 0 et en passant a la limite pour A — —2u dans
I’égalité obtenue a la question 2) dont les deux membres sont des fonctions continues de
A € [—2p,00[,0n a

P (T < o0) = e

ce qui termine I’exercice.
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3.5 Extension des résultats a IR? :

3.5.1 Mouvement brownien et intégrale stochastique vectoriels

Commengons par donner la définition d’un mouvement brownien a valeurs dans IR,

Définition 3.5.2. (Mouvement brownien k-dimensionnel) Un processus stochastique { B;;t > 0}
avaleurs dans R” est appelé mouvement brownien si ses composantes { B};t > 0}, ..., {Btk; t> O}
sont de mouvements browniens scalaires mutuellement indépendants. De facon équivalente, { B;;t > 0}
est un mouvement brownien de dimension k si c’est un processus gaussien centré, a trajectoires

P p.s. continues et de matrice de covariance donnée par :

[E [B;B;] = min(t, s)I

Soit maintenant { B, ¢t > 0} un mouvement brownien de dimension & et {¢;,¢ > 0} un pro-
cessus a valeurs dans les matrices d X k. Supposons que pourtous 1 < < d, 1 < j < k,p" €
A2. On peut alors définir

k t
B(p)i =) /goideg,lgigd,tZQ
j=1"0

et B(y); est alors le vecteur d-dimensionnel dont les composantes sont égales & B(p):. Nous
avons alors

Proposition 3.5.3. Soit p,1) € (A2)¥k. Alors Vs,0 < s < t,

i) B(p), = fot s dBy est un vecteur aléatoire d-dimensionnel F;-mesurable.
i) [E[B(¢)] =0

i) I [(B(g), — Blp))(BW). — Bb))'|F] = B [ [ o7 dr| 7]

iv) B [(B(p): — B(o), B) — B()J)] = B [ [ Tr(g,us) dr|F]

Démonstration. Tout ceci résulte en fait de la proposition et de I’identité suivante :

IE [(Bi() = Bi(9))(B () = Bi(v))|F] =0,
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00 v, € A?i # 5,0 < s < t. 1l suffit pour montrer cela de le montrer pour ¢, € £ et ceci
résulte de

E [XY (B - B))(B] = B))|F,] = XYE[(B; - B)(B] - B])|F.]
= XYE((B; - B)| E[(5] - B])]
=0

000 < s <t X,Y € L*(QF,,P) et nous avons utilisé le fait que F,, B! — B, B/ — BJ sont
indépendants L

FIGURE 3.1 — Trajectoire d’'un mouvement brownien dans le plan

3.5.4 Formule d’Ito vectorielle

On va maintenant généraliser la formule d’Itd au cas vectoriel, qui se démontre de la méme
facon que pour la dimension 1.

Définition 3.5.5. Un processus stochastique {X;;t > 0} est un processus d’It6 d-dimensionnel
s’il est de la forme

t t
(37) Xt - XO + / % ds + / Ps dB57
0 0
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00 X est un vecteur aléatoire d-dimensionnel Fy-mesurable, 1) est un processus d-dimensionnel
progressivement mesurable satisfaisant

t
/ |9s|ds < oo P p.s. ,t >0,
0

{By;t > 0} est un mouvement brownien k-dimensionnel, © est un processus progressivement
mesurable a valeurs dans les matrices d X k et satisfaisant

¢
/ Tr(psps)ds < ocoPp.s.,t>0
0

On notera C1?(IR* x IRY) I’espace des fonctions continues qui sont une fois continiiment
différentiable par rapport a la premiere variable et qui le sont deux fois par rapport a la variable
vectorielle.

Théoreme 3.5.6. Formule d’It6 vectorielle :
Soit {X;;t > 0} un processus d’Ito d-dimensionnel de la forme (3.7), et ® € C*(IR* x IRY).
Alors P p.s.

t 5P t t
O(t, Xy) = P(0,Xg) + i aa—s(s,Xs)ds—i—/o (V. P(s, Xy), 1s) ds+/0 V. ®(s, X), ps dBs

1 t
4y [ T Xes)ds
0

3.6 Les inégalités de Burkholder-Davis-Gundy

Nous allons montrer dans cette section la double inégalité suivante qui sera un outil intéres-
sant pour la suite :

Théoreme 3.6.1. Soit { B;,t > 0} un mouvement brownien d-dimensionnel. Pour chaque
p > 0, il existe une constante c, > 1 telle que Yo € (A2 )?

1 oo p/2 t P o0 p/2
—E (/ |g0t|2dt) <IE {Sup / (ps, dBs) } < ¢ E (/ |<,0,f|2 dt)
Cp 0 t>0 |Jo 0
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L’inégalité la plus importante est celle de droite. Le cas p = 2 résulte des théorémes sur la
construction des intégrales stochastiques et des inégalités de Doob pour les martingales. Nous
allons d’abord montrer le résultat pour p assez grand puis nous en déduirons alors le cas général.

)4 et si B est un mouvement brownien d-dimensionnel

] <R [( I |sor|2dr)p/2]

Proposition 3.6.2. Vp > 2, Vo, € (A7,
alors

/0 t (or,dB,)

E {sup

t>0

p/2
avec C), = (%) .

Démonstration. Appliquons la formule d’1t6 au processus d’It6

t
zi= [ (ondB)
0

et a la fonction ®(z) = |z|P € C*(IR..) car p > 2. On a alors Vs > 0
s B p(p — 1 s B
|Zs|p :p/ ’Zr|p ! <90r7dBr> + (T)/ |Zr|p 2’()07"2 dr
0 0
Notons X, = |Z,[P"p, et T;, = inf {t > 0; fot X2%ds > n} On a ainsi

tAT, tAT,
n _1 n
Zonl=p [ 120 (o) + B2 [z
0 0

et en prenant I’espérance de cette expression, on obtient :

tATy . p(p o 1) tATy ) )
ElZonl] = B o [ 1207 ordn)] + K22 | [ 120 0P ar]
0 0
t -1 tATy,
= B [ a1z ena| + P2 | [z ]
0 0

_ 1 tATy,
p(p )IE |:/ |Zr|p—2|¢r|2 d?":|
2 0
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En utilisant le lemme de Fatou en noo, on obtient :
-1 t
Elzr < Ve | [ zpap o]
0

Puis on écrit :
t t
B| 120 ka| < B s 1202 [ ok ]
0 0<s<t 0

(el 2r]) ™ (e[ 1))
g

alors I’'inégalité voulue est triviale sinon on a

¢
E {/ |g08|2ds} < 00
0

et o € (A2([0,%]))". Dans ce cas, Z, = Jy @rdB, (0 < s < t), est une martingale et en
appliquant la formule (3.2) page#4], on a:
t pp1/p
/ o, dB, } .
0

s pq1/p
/sordBr } SQE{
0

On obtient alors en combinant les expressions (3.8) et (3.9) :

/05 (¢¢r,dB,) (/Ot !sor\ery/Q]

et le théoreme de Fatou permet alors de passer a la limite en ¢ — oo et d’obtenir le résultat
demandé ]

2/p

(3.8)

IN

Ensuite si

3.9 IE { sup

0<s<t

P
E {sup } < C,E

0<s<t

Proposition 3.6.3. Pour tout p > 4, il existe une constante c, telle que pour tout ¢ € (A2 )?

00 p/2 s p
E (/ lor? dr) < ¢, E {sup / (pr,dB,) }
0 t>0 |Jo
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Démonstration. Comme dans la proposition précédente et avec les mémes notations, on déduit
de la formule d’It6 que :

t t
23:2/ Zs<sos,st>+/ sl ds
0 0

t p/
(Zf — 2/ Z, <cps,dBS>)
0

t
op/2-1 <|Zt|p+2p/2 / Zs (s, dBs)
0

On obtient alors :

t p/2
( / wczs)
0

2

IN

p/2>
p/2>

t
/ 7, (p., dB,)
0

< ort (sup | Z,|P 4 sup
£>0 >0

t
/ Z (pe, dBY)
0

et en prenant I’espérance et en passant a la limite en ¢ — oo

00 p/2
E [(/ |<,08|2ds) ] <ot (IE (sup |Zt|p> +E (sup
0 >0 >0

D’autre part, en utilisant la proposition précédente, on a :

)

t p/2 (| poo p/4
IE | sup / Zs (s, dBs) < C,IE ‘/ |Zs|2|g05\2d5
>0 |Jo 0

i o0 P/4

< C,IE sup]Zs|p/2/ |gos]2ds
>0 0

C_

<

© o (efue]) ([ ])
([ |sat|2dt)p/2]>

et ceci pour tout e > 0. En choisissant ¢ = 2P~ (), et en combinant les deux inégalités précédente,
on obtient alors le résultat []

abgﬂ C 1
< 71) (dE [sup|Z5|p} + -IE
€

>0

Il reste alors a déduire le résultat pour p petit des résultats obtenus pour p grand.
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Définition 3.6.4. Un processus continu, positif et progressivement mesurable { X;,t > 0} est dit
dominé par le processus croissant et continu { Ay, t > 0} si pour tout temps d’arrét borné T,

E[X:] <E[A,].

Lemme 3.6.5. Soit {X;,t > 0} un processus positif, continu et progressivement mesurable do-
miné par le processus croissant et continu { Ay, t > 0}. Alors

1. Pour tous x,y > 0,

t>0
k
IE [ (sup Xt)
t>0

Démonstration. 11 est suffisant de prouver (avec Fatou) que pour tout n € IN,

1
p (sup Xy > 2, A < y> < —E [min(Ay, y)]
x

2. Pour tout k €)0; 1],

1
P(Sup Xt>x,An§y) §E]E[An/\y}.

0<t<n

Définissons les temps d’arrét :
T=inf{t; A, >y} An

n=inf{t; X; >z} An
On peut déja remarquer que {A,, < y} = {7 = n}. Alors

P(Sup Xt>a:,An§y) = P(sup Xt>x,7'—n>

0<t<n 0<t<n

P(n<n,7=n)

< P(Xopy=1)

= Lo (Xony = 7))
< éE [XorAn]

< ilE [Ar i)

< LEmin(4,,y)

X
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caronaalafois A r, < Ay et Apny < .
Pour le 2), soit F' une fonction croissante et croissante de IR* dans lui-méme satisfaisant de
plus F'(0) = 0. En utilisant le théoréme de Fubini et le 1), on obtient :

E {F(sup Xt)} -~ E { /O e dF(x)}

>0
= / p <sup X, > x> dF(x)
0 t>0

< /Ooo [P (supXt S A < g;) 4P (AL > x)} dF(z)

t>0

< /000 (1113 A A 2] +P (A > x)) dF(z)

xZ

< [ (2p (Ao > o)t iE [Aoo1{Aw<x}]) 4F (z)

xz

= 2E[F(A.)] + E {Aoo /mldF( )}

Ao x
~- E [F(AOO)}

00 F(z) = 2F(x) + [7° £ dF(u). En choisissant F'(z) = z* on obtient bien 2) O

Nous allons maintenant finir la preuve du théoréme [3.6.1] Pour prouver I’inégalité de droite,

2
on utilise le lemme [3.6.5| avec X; = fg <gps,st>‘ et A, = ¢ f(f |0s|? ds. L’hypothese de
domination résulte de la proposition appliquée a @1y, au lieu de . Ainsi pour k €]0; 1],

k
IE [ (Sup Xt)
>0
et en posant p = 2k 00 p €]0; 2], on obtient

/0t<sos,st>p] 7, 4 [(/ |sos|2ds) ]

Pour prouver 1’inégalité de gauche pour p < 4, on utilise le lemme [3.6.5]avec
2
Xy = (f(f |c,05|2ds> et Ay = ¢4 Supg< <y Uo (o, dB,)

2k
< T AL

IE {sup

>0

4 o . .
. La domination résulte de la proposi-
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tion On a alors pour k €]0; 1] :

E [(sup Xt)k] < %E [A% ]

>0 —

et en posant p = 4k,0 < p < 4 cela nous donne :

t p/2 8—p t
([repas) | <52 fsup [ touam
0 p t>0 |Jo

Nous énoncons maintenant un corollaire qui sera tres utile :

E

1

)4 tel que TE [(fooo lp¢|? dt) 1/2} < 00. Alors le processus

Corollaire 3.6.6. Soit ¢ € (A}

loc
{ fot (ps,dBs) ,t > 0} est une martingale uniformément intégrable. En particulier pour tout t >

0, la variable aléatoire f(f (ps, dBg) est intégrable et

IE Uot <s08,st>} = 0.

Démonstration. En posant M; = f(f (ps, dBs), on a d’apres le théoreme m :

Vt >0, | M| < sup |M;] € L'()
>0

donc la martingale est bien uniformément intégrable et le reste en découle facilement 0

3.7 Théoremes de représentation des martingales

Nous avons vu que le mouvement brownien ainsi que les intégrales stochastiques d’éléments
de A? sont des martingales. Dans cette section, nous allons étudier les conditions sous lesquelles
une martingale est un mouvement brownien ou une intégrale stochastique par rapport a un mou-
vement brownien.

Nous aurons par la suite besoin de la remarque suivante :
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Remarque 3.7.1. Soit {M,;,t > 0} une martingale continue d-dimensionnelle telle que

My = 0 P ps et {M;M; — tI;t > 0} est une martingale a valeurs dans les matrices d x d. Soit
F € Cy(IR?, RY), on peut alors construire de la méme maniére que pour le mouvement brownien
l’intégrale stochastique

[ ). a

qui est aussi une martingale continue. On peut également montrer de la méme maniére que nous
I’avons fait la formule d’Ito suivante pour ® € CZ(IRY) :

Vit > 0,P(M;) = @(0) + /t V(M) dM, + % /t Tr(®"(M,)) ds

0
Nous pouvons alors prouver le fameux théoréme suivant :

Théoréeme 3.7.2. Paul Lévy Soir {M;,t > 0} une martingale continue d-dimensionnelle telle
que My = 0 P ps et { MM} — tI;t > 0} est une martingale a valeurs dans les matrices d X d.
Alors {M,,t > 0} est un F,-mouvement brownien.

Démonstration. Appliquons la remarque précédente a la fonction ® € CZ(IR¢,C) donnée par
P(x) = =M*> 06 X € IR%. Nous avons :

t )\ 2 t
ez</\,Mt> — ez<)\,MS> + i <)\7/ ez<)\,MT>dMT> o ’ 2| / ez<)\,Mr> dr
s s

) o A 2 o
6z</\,M,g—Ms> — 1+ i </\7/ €z<>\,Mr—Ms>er> . | | / ez<>\,M7~—M5> dr
S 2 S
et en prenant I’espérance conditionnelle :
: A2 [ :
E [61<A,Mt*Ms> ‘Fs} -1 / E |:€Z<)\,Mt*Ms> fs} dr
2 Js

Ainsi le processus a valeurs complexes ¢(t) = IE [e" <M =M:> | F 1 ¢ > g satisfait 1’équation

différentielle suivante :

2
{di}—f’ = —Hrpt)t>s
p(s) =1

En conséquence, on a

2
E [€i<)\,Mt—M5> ]_-S} _ e—%(tﬂ)’ 0<s<t e R

et ceci prouve que M, est a accroissements M; — M, sont indépendants de F; et suivent la loi
N(O,(t —s)I) [
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Nous supposerons maintenant que { B, ¢ > 0} est un mouvement brownien d-dimensionnel
et que la filtration {F;,¢ > 0} est la filtration naturelle de {B;,t > 0} ie F; = 0(B;,0 < s < t)
(aux ensembles de P mesure nulle pres).

Théoreme 3.7.3. Soit {M;,t > 0} une martingale telle que My = 0 P ps et
IE [|M]*] < o0,t > 0.

Alors il existe un unique @ € (A?)? tel que

t
Mt—/ <S057st>at207 Pps
0

Démonstration. L'unicité de ¢ résulte du fait que si ¢, ¢’ satisfont le théoreme alors

T
E U |gpt—g02|2dt} = 0,7 > 0.
0

Pour prouver I’existence de ¢ il suffit de montrer (en utilisant I’unicité) que pour tout 7" > 0,
il existe ¢ € (A%([0,T]))¢ tel que

T
MT = / <g0t, dBt> .
0

Ceci résulte du fait que I’ensemble

w={ot [ Gamyicemp e o)

coincide avec L*(Q), Fr, P). 1l est facile de voir que
H C L*(Q, Fr, P).

Il suffit alors de montrer que H est 2 la fois dense et fermé dans L?($2, Fr, P).
a) H est fermé. Soit {c,,n € N} C Ret {¢",n € IN} C (A%([0,T]))? et soit

T
fn:cn—l—/ (o}, dBy)y ,n € IN.
0
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On suppose que &, — & dans L*(Q, Fr, P). Alors IE[¢,] — E [¢] et ainsi ¢, — ¢. D autre part
ona:

T
Var(e, — &) = I { / o — soﬂ?dt] o,

lorsque m,n — oco. Ainsi la suite {¢", n € IN} est une suite de Cauchy dans (A%([0, T]))? et il

existe ¢ € (A%([0,T]))¢ tel que
T
E [/ lof — got|2dt} — 0,
0

T
§:C+/O (¢r,dBy) .

b) H est dense dans L?(Q, Fr, P). Soit p € L*([0,T],1R?), on pose

t 1 t
Xt = [ tewdb) -5 [ Infds
0 0

o — exp(X), e £ .

et

En appliquant la formule d’It6 au processus X/ et a la fonction ® () = exp(x) on obtient
e’ = exp(X7)
T

T 1 T
= 1+/ exp(X. (——\ptV) d8+/ exp(X7) (1, dBy) + 2/ Tr(pepy) exp(X7) ds
0 0 0
T
= ]."’/ eXp QOt,dBt>
0

De plus on a

T T
IE[/ |5fpt|2dt} = [ o) a
0 0
T t
= / |pt|2exp(/ IpslzdS) dt
0 0

< oocarp € L*([0,T],RY)

et donc e” € H.
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Nous allons maintenant montrer que pour Z € L?(Q, Fr, P),
E[Ze?] =0, Vp € L*([0,T],IRY) = Z = 0.

et ceci prouvera la densité. Or

E (Z2"] = ¢, {Z exp ( /0 Y dBQ)} |

n
En choisissant p = Z Ailp, (t) 00 Vi, A eCl0=1ty<t, <---<t, <T,nousavons :
i=1

IE [Zexp <<>\1th1> + <>\2aBt2 - Bt1> + -+ <>\naBtn - Btn—1>):| = O,
et quitte 2 changer les notations, on a V..., € RLV0 <ty <to < -~ <t, <T,

E[Z exp (i (1, Buy) + i (2, Biy) + -+ + 1 (i, Br,,))] = 0.

H1 By,
Posons pour alléger 1’écriture 1 = : ety =

/’Ln Btn
Nous avons [E [Ze"<#¥Y>] = 0,Vy € IR™. Nous allons montrer que IE [Z|Y] = 0. Il suffit pour
cela de montrer que pour toute fonction f € Co(IR™) IE [f(Y)Z] = 0 et par densité il suffit de
le montrer pour les fonctions f étant des transformées de Fourier de fonctions de L' (IR™). Soit
donc

— 1<z, t> d
fa)= [ =gt
on a alors
E[f(Y)Z] = IE[ / Ze <Yt g(t) dt
IRdn

_ / g(t)]E [Zei<Y,t>} dt
Rdn
=0
Ainsionamontré : Vn € N,VO < t; <ty <---<t,<T

E[Z’Btl,...,Btn] — O
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Soit A = U o(By,...,By,). Pourtout A € Aona

{n,0§t1<-"<tn}
/ ZdP =0
A

et par le théoreme de la classe monotone ceci est encore vrai pour tout A € o(A) = Fr donc
Z =0Pps. L

Corollaire 3.7.4. Soit T > 0 et £ € L*(Q), Fr, P). Alors il existe un unique ¢ € (A?([0,T]))?
tel que

T
=B+ [ (ondB).
0
Démonstration. Pour ¢ > 0 on définit
M, =E[£|F] - E[¢].

Alors M, est une martingale qui vérifie les hypotheses du théoreme précédent et le résultat en
découle. ]

Corollaire 3.7.5. Soit T > 0 et & € LP(Q, Fr, P) pour un p > 1. Alors il existe un unique

@ € (A2 _([0,T)))¢ tel que ; o2
e[([ 1) ] <=

loc
T
—E . dB,) .
¢ Kkﬁé (o dBY)

et

Démonstration. Supposons que 1’on dispose d’un tel . Alors en combinant les inégalités de
Burkholder-Davis-Gundy et Doob et en posant M; = fot (ps,dBs) ona:

T p/2
E [(/ |g0t]2 dt> ] < o lE {sup |Mt]p]
0 t<T

p P
< LBl - B

L’unicité de ¢ résulte alors de cette inégalité, il suffit de I’appliquer a la différence de deux
éventuels candidats. Le cas p > 2 résulte du corollaire précédent et de la méme inégalité. Si
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1 < p < 2alors L*(Q, Fr, P) est dense dans LP(§2, Fr, P) et alors il existe une suite
{&n,n € N} C L*(Q, Fr, P) telle que &, — £ dans LP(Q), Fr, P).
A chaque &, on associe d’apres le corollaire précédent o™ € (A2([0,T7]))? tel que

T
t = E[6] + /0 (o0, dBy)

Toujours d’apres I'inégalité précédente, on a

T p/
(/ lof — w?l2dt)
0

Ainsi la suite (,,), est de Cauchy dans I’espace des processus progressivement mesurables de
LP2(Q, L*([0; T],]R%)) et a donc une limite dans cet espace. Il ne reste alors plus qu’a passer a
la limite dans 1’égalité ci-dessus. 0

2
p

-1

IE CPIE an - gm - IE [gn - gm] |p]

<
p



Chapitre 4

Equations différentielles stochastiques

4.1 Introduction

Le but de ce chapitre est d’étudier les équations différentielles stochastiques de la forme :

{dXt = f(t7Xt)dt+g(t7Xt) dBt

(4.1) X —

qui est une facilité d’écriture pour

t t
Xy =x+ / f(s, Xs)ds + / g(s, Xs) dBg,
0 0

ou {By;t > 0} est un mouvement brownien k-dimensionnel. Le coefficient f(¢, X;) de ‘dt‘ est
appelé la dérive et le coefficient g(¢, X;) de ‘dB;‘ est appelé coefficient de diffusion.

Nous rechercherons des solutions {X;;¢ > 0} qui sont des processus d-dimensionnels pro-
gressivement mesurables et doivent nécessairement vérifier :

t t
Pp.s.,Vt > 0,/ |f(s, Xs)|ds < coet / llg(s, Xo)||*ds < oo
0 0

On conviendra par la suite que
f: Ry xR = R% g: Ry x RY — IR™**

sont des fonctions mesurables.

76
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4.2 Estimations préliminaires

Pour établir des conditions d’existence et d’unicité, nous serons amenés a utiliser certaines
estimations. Plus précisément, considérons les conditions suivantes sur le couple (f, g) :

<z, f(t,r) > < C(1+ |z|?)
4.2 VT > 0,3Cr tel que Vo € R4, 0<t < T, 1 AD
“2 e dne v == { et [|g(t, 2)|| < Cp(1+[a])
et
43) {Vr>O,EIKT>0,Vaz,y€B(0;r),Vt20,

On rappelle aussi le lemme important suivant :

Lemme 4.2.1. Lemme de Gronwall
Soit f une application localement intégrable de R, dans IR, a et b deux applications croissantes
et non négatives telles que

f(t) <al(t)+b(t) /Otf(s) ds,0<t<T

Alors on a
vt € [0;T), £(t) < a(t)e™

Proposition 4.2.2. Supposons que le couple de fonctions (f, g) vérifie la condition , que X
soit un processus vérifiant

t t
Xo=Xo+ [ fsX)ds+ [ gl xan,
0 0

et que IE[| Xo|P] < oo pour un p > 2. Alors VT > 0, il existe une constante C(p,T) telle que
pour 0 <t < T on ait

E [|Xt|p] < (IE [|X0|P] + C(p7 T)t)eC(p,T)t
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Démonstration. Soit T > 0 et Cr donnée par la condition #.2] Appliquons la formule d’Itd au
processus X et a la fonction ®(z) = |z|P,ona:

X, :\XW+W/QWﬂp%Xmﬂwa>mH:/pMHpWXmﬂmedBJ
0 0

1 /¢ _ . _
+§ / Tr (p|Xu‘p 29(“7 Xu)g" (u, Xu)) +p(p — 2)| X, P 4(9(U7Xu)a Xu)2 du
0

s

<X+ el Cr) [ 1P du [ DX (X X,) 4B
Soit 7}, le temps d’arrét défini par
T, = inf {t > 0; /t | XY (X, g(u, X)) |? du > n} .
0
En écrivant I’expression précédente au point ¢ A 7;, puis en prenant I’espérance du résultat et
en utilisant les arguments habituels pour supprimer le terme relatif a I’intégrale stochastique, on
obtient

tA\Ty,
E [ Xz, [") < E[[Xof"] + ¢(p, Cr)(t ATy) + clp, Cr)E {/ | Xul? dU]
0

Puis en utilisant le lemme de Fatou et le théoreme de Fubini pour inverser les intégrales du
membre de droite, on a :

¢
I [|X["] < B [|Xo|"] + c(p, Cr)t + c(p, C1)E {/ |Xu|pdu:| , 0<t<T
0

puis on obtient le résultat final en utilisant le lemme de Gronwall L

4.3 Existence et unicité de la solution

On établit tout d’abord un résultat d’existence et d’unicité sous une condition de Lipschitz
uniforme, i.e. nous supposerons que le couple ( f, g) vérifie :

@44) 3KVt >0,Va,y € R |f(t,z) — f(t,y)] + |g(t,z) — g(t,y)| < K|z — y|
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et de plus

T
4.5) VT > 0, / (£ (O + [lg(t, 0)[1?) df < oo
0

Nous avons alors

Théoreme 4.3.1. Sous les hypothéses et pour tout point initial x € IRY, il existe une
unique solution {X;;t > 0} € (A%)? de 'EDS (4.1).

Démonstration. Considérons I’application ® de (A%)¢ dans lui-méme définie par
t t
VU € (A%, d(U), = x+/ f(s,US)der/ g(s,U,) dBs.
0 0

En utilisant la proposition page [68] et les conditions [4.4] et il est facile de montrer que
®(U) € (A?)?. Une solution de I’équation[4.1]est un point fixe de ®. L existence et I'unicité d’un

point fixe va résulter du fait que pour tout T > 0, ® est strictement contractante sur (A?)?([0; 7))

muni de la norme
T
X0 = (| [ el )
0

pour (3 choisi convenablement.

Soit U, U’ € (A?)?. Pour soulager I’écriture, on pose U = U — U, f, = f(t,U,) — f(t,U}), 5, =
g(t,Uy) — g(t, U)), @, = ®(U), — ®(U’),. 1l résulte de la formule d’Itd vectorielle appliquée au
processus d’Itd @ et a la fonction I'(¢, z) = e~#|x|? que pour chaque 3 € R :

1/2

t t t
TP = - / Be P [B,[2 ds + 2 / e (T, F.,) ds +2 / e (B,.g, dB.)
0 0 0
t
+ / e Tr(g,gs) ds
0
Introduisons le temps d’arrét 7;, défini par
t —
T, = inf {t > O;/ e 24 (®,,7,)|? ds > n} :
0

En écrivant I’expression précédente au point 7' A T;, et en prenant I’espérance, puis en minorant
par 0 le terme IE [e #(""T")[®1,.7, |?], on obtient
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TAT, _ TAT, o TAT,
BIE [/ 668\@3]2ds] < 2E [/ e P (D, o) ds] +E [/ e P Tr(g,3%) ds]
0 0 0
TAT, _ TAT, o
< E V 658|<I>s]2d5] + K*IE [/ 653|U|2ds]
0 0
TAT, o
+K*IE [/ 6_55|U|2ds] car 2 (z,y) < |z|> + |y|* et avec 4.4,
0

En choisissant 3 = 1 + 4K2, on obtient :

TNy, . 1 TN o
IE [/ e_ﬁs|®s|2ds] < §]E {/ e P5|U|? ds} :
0 0

puis le lemme de Fatou assure que 1’application ® est bien contractante et ceci acheve la démons-
tration O

Si I’on considére maintenant I’EDS
t t
(4.6) Xo=Xo+ [ fsx)ds+ [ (s, ab,
0 0

00 la condition initiale n’est plus déterministe mais est un vecteur aléatoire Jy-mesurable (et est
donc indépendant du mouvement brownien { B; }).

Si IE [| Xo|?] < oo alors les conclusions et la preuve du théoreme peuvent étre adaptées
sans aucune modification.

Nous allons maintenant étendre les résultats précédents dans le cas de conditions de Lipschitz
locales qui correspondent a la condition dont on rappelle 1I’énoncé

{ Vr > 0,3K, > 0,Yx,y € B(0;7),Vt >0,

Proposition 4.3.2. Supposons que le couple de fonctions (f, g) vérifie la condition , que
X, X' soit deux processus vérifiant

t t
X, =X+ / f(s, X,)ds + / g(s, X) dB
0 0
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et que IE [| Xo — X{|P] < oo pour un p > 2. Si T) désigne le temps d’arrét défini par
T, =inf {t > 0;|X,| V| X]| > n}

et si IK,, est donnée par la condition alors on a

—1)K?
E (X = Xayl) < B(Xo - XgPlex (e + Z2Z 0500 ) o2 0

En particulier si la condition de Lipschitz est uniforme, on a :

—1)K?
B (X, - X7 < Bl - Xjrlewp (pe+ L2 2 0

Démonstration. SoitT > 0 et K,, donnée par la condition[4.3|pour la boule B(0; n). Appliquons
la formule d’1td au processus X — X’ et a la fonction ®(z) = |z|P,on a:

‘XS o X;’p = |X0 - X(/)’p _'_p/ ’Xu - X;‘p72 <Xu - X{n f(ua Xu) - f(u7 X/'LL)> du
0
+ [ BN = X X = X (90, X0) — 9w X)) dB)
0
]- y — * *
4y [T = XU g ) = gl X0 (0. X) - 7 ( X)) du
0

1 s
+§/ p(p - 2>|Xu - X;|p—4<g(u7 Xu) - g(u, X’L’L)? Xu - X’L’L)Q du
0

On introduit le temps d’arrét 7}, défini par

t
i =int {12 0, 11X = XU (6 - XU (00000 = gl X0
0

puis on prend la formule précédente au point ¢t A T, AT et on prend I’espérance de 1’expression
obtenue et on obtient :

p<p _ 1)K2 AT AT,
B (X = Xy ) < B 1 = X301+ (o, + P22 250) (70 g 1, - 0
0
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pour ¢ > 0 puis on utilise le lemme de Fatou (en k) pour obtenir
- 1)K\ [
B (X = Xayl) < B (X0~ X501+ (6, + LS50 ) T [, — XLy ]
0
et le lemme de Gronwall donne alors

—1)K?
E UXMTA . Xt/AT,g‘p] <IE HXO _ X(’)‘P] exp (pKnt + p(p 5 ) nt)

d’00 le résultat L]

Cette proposition permet de démontrer 1’unicité de I’éventuelle solution de I’EDS [4.6] sous
I’hypothese [d.3]

Théoreéme 4.3.3. Sous les hypothéses et et si Xo € L*(Q), 'EDS admet une

unique solution dans (A?)?.

Démonstration. L’ unicité résulte de la proposition précédente. Soit f,, et g,, deux suites de fonc-
tions coincidant avec f et g sur [0;n] x B(0,n) et qui vérifient 4.2 avec la méme constante C,
que f et g. Pour chaque n, soit {X}*,t > 0} la solution de I’équation avec les coefficients f,, et
gn- Posons pour chaque n,

T, =inf {t > 0,|X"| > n}.

On a clairement pour m > n, X" = X" sur [0;T,] car la suite T, est croissante. De plus il
résulte de la proposition que V1" > 0,3C(T) indépendant de n tel que

B | sup x| <c)

0<t<T

On en déduit que
c(T)

P(T, <T)< =5

et donc que 7, converge P p.s. vers +-oc.
Le processus alors défini par X; = X[ sur [0;7,],n € IN est une solution de notre équation
qui est bien défini pour presque tout w € ), V¢ > 0. [
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4.4 Exemples

4.4.1 Processus d’Ornstein-Uhlenbeck
Considérons I’EDS suivante en dimension un.

(47) { dXt = O'dBt — CXtdt

Xo=H indépendant de (B;),
Posons X; = e~ Y] et appliquons la formule d’1td a Y.

dY; = ce® X, dt + e“'d X,
d’06
dY; = e“odB;
et par suite

t
Yt:H—l—a/ e dB,
0

t
X, = He “ + ae_Ct/ e“ dB;.
0

L’équation (4.7) porte le nom d’équation de Langevin et X est le processus d’Ornstein-Uhlenbeck.

4.4.2 Processus de Black et Scholes

Considérons I’EDS suivante :

{ dX, = X,(cdB, + cdt)

(4.8) Xo=H indépendant de (B;);

Posons X; = exp(ct + 0B;).Y; et appliquons la formule d’Itd a Y;. On obtient :

1/t 02X, —o 1
Xiexp(—ct —oB;) = H+§/0 Tr (< o 0 )( X, )( 1 oX; )) exp(—cs — o By)ds

2

t
= H- %/ exp(—cs — 0 Bs) X ds
0

d’0d .
dY, = —EUQY; dt
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SoitY; = He % et X, = HeoBrm30%tet [ eg trajectoires de X ont un signe constant et pour
t1oo,ona:

. 2
X;—0 sic < %
. 2
| X;| — o0 sic> %
3 . . 2
lim = +ooetlim|Xy| =0 sic= %

4.5 Dépendance par rapport aux conditions initiales

Définissons maintenant pour (t,7) € Rt x IRY, {X%! s > 0} comme étant la solution de
I’EDS suivante qui part du point « au temps ¢ :

tVs tVs
Xetmas [ X dre [ gtr Xz b,
t t

Nous avons tout d’abord le résultat de continuité suivant par rapport aux conditions initiales :
Proposition 4.5.1. Supposons que f et g vérifient les conditions et . Pour chaque
T > 0,p > 2 il existe une constante c¢(p,T) telle que

IE | sup |X7 — X;”I’t/l”} < e(p, T)(L+ [z + |2'P) (1t = ¢'P2 + |2 — '|7)
t<s<T

Théoreme 4.5.2. Soit {Zv; v € [0; a]k} un processus a valeurs dans un espace de Banach pour
lequel il existe trois constantes strictement positives v, c, € telle que

E[|Z, — Z,||"] < clv—ulf™e, u,v € [0;a]".
Alors il existe un processus {Zv; v € [0; a}k} tel que
i) Z est une modification de 7
7 > Y
i) IE [(supwéu %) } < 00,

pour tout o € [0; % [, ce qui implique en particulier que les trajectoires de Z sont a-holderiennes.

Ce dernier théoreme est une sorte de généralisation du critere de Kolmogorov-Centsov que
I’on a déja vu. Il résulte aussi de ce théoreme et de la proposition précédente que toute solution
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de I’EDS (@.1)) admet une modification qui soit continue par rapport au conditions initiales, c’est-
a-dire telle que I’application .
(t,z,8) > X5t

soit presque slirement continue. On choisira toujours par la suite une telle modification pour la
solution d’une EDS.

4.6 Propriétés de la solution

On peut montrer en utilisant le lemme de Gronwall comme on I’a fait auparavant que
vVt > 0,IE {sup | X — Xg|p} <IE[|X,— XP] C(p,t).
0<s<t

Il en résulte que si deux processus X et X' définis sur le méme espace de probabilité sont solu-
tions de la méme EDS [.1] par rapport au méme processus B; et a la méme condition initiale H
ont presque sirement les mémes trajectoires ie

Cette propriété est appelée 1'unicité trajectorielle.
Un autre type d’unicité est également intéressant, c’est I’unicité en loi.

Proposition 4.6.1. Soient (2, F,P) et (U, F', P’) deux espaces de probabilité sur lesquels deux
mouvements browniens By et By sont définis et deux variables aléatoires de méme loi H et H'
sont données de telle sorte que les hypotheses du théoréme[d.3.3|soient vérifiées. Alors la solution
X sur (2, F,P) et la solution X' sur (', F', P’) ont méme loi (ie lois marginales).

Démonstration. Comme on utilise le théoreme de Picard pour démontrer I’existence des solu-
tions, on sait que si I’on pose pour X € (A?)?

t t
O(X), = X0+/ f(t,Xs)ds—l—/ g(s, Xs) dB
0 0
et

¢ ¢
(X)), =X+ / f(t, Xs)ds + / g(s, X,) dB;.
0 0

alors les suites ®"(0) et ®"n(0) convergent vers les solutions X et X’ pour la norme définie
dans le théoreme [4.3.1] et ceci entraine la convergence en loi des processus. Or il est facile de
vérifier que ®"(0) et ®"(0) ont pour tout n les mémes lois marginales, d’0d le résultat O
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Sous les hypothéses du théoréme [4.3.3] notons X, la solution de I’équation

dXy = f(Xi)dt+g(X;)dB,
X() = xz€IR"

Remarquons aussi que si u € IR™ le processus B, = By, — B, est un mouvement brownien
indépendant de la tribu F, et est F;,-adapté.

Notons alors X;; la solution de I'EDS avec I comme condition initiale et avec le brownien
B;, autrement dit

t t
X = Ho+ [ X ds+ [ o(Xy) dB
0 0
Proposition 4.6.2. On a P presque siirement
X}I,mt == X:c,tJru

Démonstration. Remarquons que

t+u t+u
Xa:,t—i—u - Xx,u + / f(X:c,s) ds + / g(Xac,s) st

d’00 on tire par un changement de variable dans les intégrales

t t
Xx,tJru = Xac,u + / f(Xac,eru) ds + / g(ch,eru) ng
0 0

ce qui signifie exactement que X, ;,, est la solution de I’équation avec H = X, ,, O]

Notons F; I’opérateur défini par
P, f(x) =IE[f(X.+)] f borélienne bornée
Enoncons tout d’abord le lemme suivant qui facilitera les calculs ultérieurs.

Lemme 4.6.3. Si pour une fonction g mesurable en (x,w) € R* x Q, ona
Elg(z,w)|B] = h(z,w)
alors pour toute variable aléatoire H B-mesurable on a

E{g(H,w)[B] = h(H,w)
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Démonstration. Vu le théoreme de la classe monotone, il suffit de montrer le résultat pour les
fonctions étagées :

Blg(H,w)|B] = E g<§"jm,@,w) |B]

k=1

= E Z ]-AﬁQ ()\I:uw) ’B
LEk=1

— 21%11«3 [g (\F,w) |B]
k=1

= Z]-Ablh()‘fww)
k=1

= h <Z 1A¢L}\Z,w)
k=1

= h(Hp,w)

On peut alors montrer la proposition suivante

Proposition 4.6.4. Pour toute f € Cy(IR¥), on a

IE [f(Xx,t—I—u)LFu] = Ptf(X:v,u)

Démonstration. Utilisons le lemme précédent avec

g9(z,w) = f(X74(w))

qui est bien presque slirement une fonction continue de x d’apres les propriétés des solutions
d’une EDS, et avec
h(z,w) =1E [f(X;‘7t)|]-"u] )

On obtient alors d’apres le lemme et la proposition 4.6.2]

h(Xx,ua LU) = lE [f(X:p,tJru)“Fu] .
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Mais X}, est o(B;, s < t)-mesurable donc est indépendant de 7, et par suite
h(z,w) =1 [f(X:?t)‘fu] =1E [f(X;‘t)] .
Remarquons alors d’aprés la proposition que (X}',); et (X,,); ont méme loi et donc que
hz,w) =E[f(X.:)].

Finalement on obtient
IE [f (Xatru) | Ful = Pof (Xew)

ce qui donne le résultat L



Chapitre 5

Propriétés de Markov des solutions des
EDS

5.1 Processus de Markov

5.1.1 Définitions et exemples
Tous les processus sont définis sur I’espace de probabilité (2, 7, P) muni de la filtration (F).

Définition 5.1.2. Un processus stochastique d-dimensionnel {X;,t > 0} adapté a la filtration
(F1) est appelé processus de Markov si pour tout 0 < s < t, B € B,

P (X, € B|Fs) =P (X; € B|Xj)
Le processus de Markov { X;,t > 0} est dit homogéne si pour tout v € R, B € By, la quantité
P (X, € B|X, = 1)
ne dépend de (s,t) que par la différence t — s.
Soit { X;,t > 0} un processus de Markov homogéne. On lui associe le semi-groupe { P;, ¢ > 0}
d’opérateurs linéaires bornés sur By (IR?) défini par
(P f)(z) =E[f(X)|Xo=12], t >0,z € R.
La propriété de semi-groupe P, s = P, o P, résulte de la propriété de Markov de { X;,¢ > 0}. Le

semi-groupe est dit de Feller si P, € £(Cy(IRY)).

89
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Le générateur infinitésimal du semi-groupe est I’opérateur linéaire (généralement non borné)
(L,D(L)) défini par :

Vf e D(L) C Cy(RY),t >0, %Pt(f) = P,Lf = LP,f.

Proposition 5.1.3. Un processus (X;)cr+ a valeurs dans (E, €) est un processus de Markov de
fonction de transition P, et de mesure initiale 7 si et seulement si
YO <ty < -+ <tn,Vfo, f1,..., fn mesurables et bornées sur (E,¢),

B0 5061 = [ o) ([ e ([ fe Pl dn) ) Poo(oden) ) dnto

Cette proposition permet de montrer par le théoreme de Kolmogorov I’existence d’un pro-
cessus de Markov de fonction de transition donnée et de mesure initiale donnée.
Le lemme suivant sera utile pour prouver le caractere markovien de certains processus.

Lemme 5.1.4. Soient X et Y deux vecteurs aléaoires de dimensions respectives d et k,
® : R™* — IR une application borélienne. Soit G une sous tribu de F telle que

i) X est G mesurable.
ii) Y et G sont indépendants.

Alors on a
E[Q(X,Y)|G] =E[®(X,Y)|X]

Démonstration. Les deux membres de 1’égalité sont égaux a
/ (X, y)Py (dy).
Rk

[]

Proposition 5.1.5. Un F;-mouvement brownien d-dimensionnel { B;,t > 0} est un processus de
Markov homogene de semi-groupe de transition P, donné par :

Pf(x) = /IR d W@Wf(y) dy Vo € R%,Vf € By(RY).

De plus, le générateur infinitésimal est donné par

(L. (1) = (34, CEm
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Démonstration. Pour A € By, t > 0,h > 0,
P (Biyn € AlF) = E[1aA(Bin — By + By)|F
= IE[1A(Biyn — By + By)|By] par le lemme précédent
= E[1a(Bin)|Bl]
Cherchons a déterminer le semi-groupe dans le cas de la dimension un pour simplifier les

calculs. Soit v € IR
E [eiu(Bt—Bs)

F] = B[]

v
e =" dy

d’00 I’on tire ,
__y . _
e 2(—s) ezu(BS y) dy

i 1
1D 61UBt J,—_- _ / I
e |F] A=)
Donc si f est de la forme | |
f<1'> = Alewlx 4+ .4 )\nezunx

on a
2

1 y
E[f(B)|Fs) = / —————¢ -9 f(By —y)dy.
Cette relation s’étend ensuite & L?(IR) par densité et a By (IR) par le théoréme de la classe mono-
tone.
Pour le générateur infinitésimal, on utilise la formule d’Itd : pour f € CZ(IRY) on a

d t t
1) = 180+ 3 [ 5L Byasi+ g [ ds

Les intégrales stochastiques du second membre sont des martingales de carré intégrable et nulles
en 0 de sorte qu’en prenant I’espérance des deux membres, on obtient :

BB = BB+ | SEIAf(B) ds

@00 E|f(B IE|f(B 1

car les trajectoires sont continues et A f est borné. Donc si 9, est la mesure initiale,

t10 t
et on a le résultat O]
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5.1.6 Propriétés de Markov

Considérons maintenant la réalisation canonique d’un processus de Markov homogene (X;);
a valeurs dans (F, £) admettant P, pour semi-groupe de transition. Ceci signifie que pour chaque
mesure initiale v (probabilité sur (E,£)) on a construit par le théoréme de Kolmogorov (donc
E doit étre métrique complet a base dénombrable d’ouverts muni de sa tribu borélienne) une
probabilité P, sur

(Q,F) = (BB, £51)

telle que les applications coordonnées X; soient sous P, un processus de Markov de semi-groupe
de transition F;.

Introduisons alors les fonctions 6, : 2 — €2 appelées opérateurs de translation définies par la
relation

X, (0,(w)) = Xpss(w), Ve € Q.

Il est facile de vérifier que Vs € IR, 0, : (2, F) — (€2, F) est mesurable : il suffit de remarquer
que les pré-images par 6, des sous-ensembles de {2 de la forme

Ex - XAy XEX - XA, xEXx--xA, XxXExXxXEx... nelNA,, . .,A, €&

sont dans F. Donc si F est une variable aléatoire réelle sur (£, F) alors F o §, est encore une
variable aléatoire mesurable sur (€2, 7). On a alors :

Proposition 5.1.7. Propriété de Markov simple :
Soit (X;) un processus de Markov homogéne admettant P, comme semi-groupe de transition.

Soient Fs = o(X,;u < s) et F une fonction mesurable bornée sur (2, F), on a

IE [F o, Fs| =Ex, [F] P, ps pour toute mesure initiale v

Démonstration. Si F est de la forme f(X;) f mesurable bornée on a :
E[F o 0,|F] =E[f(Xes|Fs] = Pf(Xs) = Ex, [f(X0)].

Si Festde laforme F' = fi(Xy,) fa(Xy,) - .. fu(X4,) on raisonne par récurrence sur n.



5.1. PROCESSUS DE MARKOV 93

En effet,on a :

IE[F o 0] F] IE [f1( Xty 15) fo(Xigs) - -+ fo(Xipps) | F]

= [E [fl(th—i-s) .- fn—l(th 1+s) [fn(th—O—s)‘En 1+s} |~Fs}
= E[fi(Xore) - fa1(Xeust6) Pty (X y) | F]
=By, [A(Xy) . faa (X, )Ptn—tn (X, )]
= Ex, [i(X0) . foor (X ) [ fo(Xe,) [ X0, ]
= Ex, [i(X0) - fao1(Xe B [fa(Xe,)| P ]]
- IEXS [IE [f1<Xt1) fn I(th 1)fn th)|"rtn 1”
= Ex, [A(Xy) - for(Xi, ) fa(Xe,)]

et le résultat général s’obtient ensuite par le théoréeme de la classe monotone [

La plupart des processus de Markov usuels possede une propriété plus forte que la propriété
de Markov simple. Il s’agit du fait que dans la proposition précédente on peut remplacer I’instant
s par une variable aléatoire 7' a condition que ce soit un temps d’arrét.

Théoreme 5.1.8. Propriété de Markov forte :
Nous faisons les hypotheses suivantes :

1. L’espace d’état (E,E) est un espace métrique complet a base dénombrable d’ouverts
muni de sa tribu borélienne.

2. Les opérateurs P, sont tels que ¥V f € Cy,(E), P.f € Cy(E).

3. (Q,F, (Fo)i, (Xt)t, (Py),) est la réalisation canonique d’un processus de Markov a va-
leurs dans E et admettant P, comme semi-groupe de transition et F; = 0(Xg; s < t).

4. (Xy)¢ est a trajectoires continues a droite (c’est-a-dire que 1’ensemble des trajectoires
non continues a droite est de . mesure nulle pour toute loi initiale |1).

Sous ces hypotheses, soit T' un temps d’arrét de la famille G, 06 ¥t > 0,G;, = ﬂ Fs, alors pour

s>t
toute I' F-mesurable bornée on a :

IE [F 0 0r1{1<5}|G7] = Lirco}Ex, [F] P, ps,Vp

en particulier quelle que soit f mesurable bornée de F dans IR

IE [f(XT+t)]-{T<oo}‘gT:| = ]-{T<OO}IEXT [f(Xt)] P,u ps, v,u
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Démonstration. Par le théoreme de la classe monotone, il suffit de démontrer la propriété lorsque
F estdelaforme F' = f1(Xy,)... fu(Xy,) avec Vi, f; € Cy(E) et par une récurrence similaire
a la proposition précédente il suffit de le prouver pour une seule fonction. On suppose donc
maintenant que F est de la forme f(X;) avec f € Cy(E).

On montre le résultat lorsque 7' est un J; temps d’arrét étagé ne prenant qu’un ensemble
dénombrable de valeurs (¢, ),, suite strictement croissante de réels. En effet, on a alors

0o
T = Z Cn]-{T:Cn} + OO]—{T:oo}a

n=0

et pour tout A € Gr, A € Frcar:
An{T =c,} =(AN{T >c, 1 })N{T =¢,} €G.,_, NF., CFe,

Ainsi on obtient :

E[14f(Xer)lreey] = B 1Aiof (Keve ) Lir=c)
_ im Lanirmen f (Xeto,)]
_ fjna Langro B (Xiso, )5 ]
oy i]E Lanir—e Ex, [F(X)]

= E []-A Z Lir—cy Ex,, [f(X1)]

n=0

= ELiEx, [f(X)]
On en déduit que
E [1{T<oo}f(Xt+T)|gT] = 1{T<oo}]EXT [f(Xt)]

pour 7' temps d’arrét a valeurs dans un ensemble dénombrable.
Ensuite, on considere un G, temps d’arrét 7' quelconque. On pose alors Vn € IN :

Et1 . k. k+1
Tnz{% si Te [
400 st T'=o0
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Comme {7, =%} = {T € [E2, 5[} € Fyn, (T0,), est une suite décroissante de F; temps

n 'n

d’arrét qui converge presque stirement vers 7' lorsque n — oco. Soit A € G alors A € Gp,, car
T < T, et en appliquant ce qui précede, on obtient :

(G.D E [1al(z, <00} f (Xeym,)] = B [1al(z, <00} Ex,, [f(X0)]]

On remarque que X,.;, — X;ir lorsque n — oo car 7,, converge presque slirement vers
T en lui restant supérieur et (X;) est presque slirement a trajectoires continues a droite, puis
f(Xit1,) — f(Xitr) en restant majoré en module par une constante car f € Cy(E).

Ensuite IEx, (f(X¢)) = P.f(Xr,) = P.f(Xr) car P.f € Cy(E) et aussi en restant majoré
en module par une constante. Le théoreme de convergence dominée permet alors de passer a la
limite dans [5.1] pour obtenir :

E [1al(rcoo} f(Xirr)] = E [1alireooyEx, [f(X0)]]
qui est exactement le résultat demandé [

Remarque 5.1.9. Dire que T est un temps d’arrét de G, signifie que
VE>0{T <t} eG

et ceci est équivalent a dire que
Vi > 0,{T <t} € F.

Les temps d’arrét de F,; sont des temps d’arrét de G,.

Remarque 5.1.10. Notons que les hypothéses précédentes sont vérifiées pour les processus de
Markov associés a une équation différentielle stochastique a coefficients lipschitziens qui sont
donc fortement markoviens.

5.2 Générateur infinitésimal des solutions des EDS

Nous avons montré a la proposition 4.6.4] que toute solution d’une EDS de la forme

dXy = [(Xy)dt+ g(X;)dB,
Xo = HeF

est un processus de Markov homogene a trajectoires continues, de semi-groupe de transition
donnée par

Fip(r) = B [p(Xe)] -
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Proposition 5.2.1. Soit ¢ € CZ(IR™). Avec les notations précédentes, on a

P _
Vo € R”, lim W(x)t PO _ po(a)

t—0

00 l’opérateur A est elliptique donné par

n n

Ap(e) = 5 3 a5 (o) 4 3 A5 o)

i,j=1 i=1

00 la matrice n x n a(x) est donnée par

et est donc semi-définie positive.

Démonstration. Comme ¢ est de classe C? on peut lui appliquer la formule d’It6 :

PX) = w(X0)+Y / fi<Xs>§—;’;<Xs>ds+ / Vi (X.)g(X.) dB,

+%/0 Tr (Ap(Xs)g(Xs)g"(Xs)) ds

Les intégrales stochastiques du second membre sont des martingales de carré intégrable du fait
des hypotheses sur ¢ et g, et sont nulles en 0. De plus les intégrands des intégrales traditionnelles
sont bornés. Si nous prenons 1’espérance sous Xy = x, on obtient par continuité des trajectoires

que

ce qui est bien le résultat annoncé ]

lim
t—0

5.3 La formule de Feynman-Kac

On va maintenant donner une introduction a une formule due originalement a Feynman et
Kac, qui donne une expression probabiliste des solutions de certaines équations différentielles
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paraboliques linéaires. Nous considérerons des équations différentielles paraboliques définies sur
I’espace tout entier. Fixons un certain temps 7' > 0. Soit ¢, h : [0; 7] x R* = Ret® : R¢ — R
des applications continues qui sont telles qu’il existe des constantes K, k > 0 telles que

e(t,2)| < K, |h(t,2)] +|2(2)] < K(1+]al), (t,2) € [0:T] x R

Considérons alors 1’équation différentielle parabolique suivante pour 0 < ¢t < T,z € IR¢

(5.2) { E—?(t#ﬁ) + (Lu)(t,z) + c(t, z)u(t, x) + h(t,z) =0

On pose pour 0 < s,¢t < T', X" est la solution de 'EDS partant de z a I'instant ¢ :

tVs tVs
Xt —at [ fr X [ gr X0 B,
t t

Pour (t,z) € [0;T] x IR? on définit alors

7 T t t,x
(5.3) u(t,z) = B [@(X%x)effc(S»Xs“)du / h(s, X07)els X0 g

t

Proposition 5.3.1. Soitu € C*?([0; T]x IR?) une solution de qui satisfait aussi la condition
(Voug(t,z)| < K'(1+|z¥), (t,2) € [0;T] x R?

pour des certaines constantes k', K’ > 0. Alors u(t, x) satisfait la formule de Feynman-Kac,
c’est-a-dire que u(t, x) est donné par (5.3).

Démonstration. Appliquons une premiére fois la formule d’It6 a la fonction u(s, z) et au pro-
cessus d’Itd X**, on obtient

du(s, X2 = @(s, XINds + (Vou(s, X2, f(s, X2 ds 4+ (Vu(s, XI'), g(s, X2')dBy)

0s
+Lu(s, X*")ds
ou

- (a_ + Lu) (5, X7")ds + (Vou(s, XJ), g(s, XI*)dBy)
S
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Puis utilisons encore une fois la formule d’Itd6 d’intégration par partie, on a :

d (U(S,sz’t)efts C(r,vat)dr> — U(S,X;j’t)d (efts C(T,vat)dr> + efts C(T,vat)drdu(&X;E,t)

E] z,t .
+ <u(s, X®h, el erXs )dr> (et ce dernier terme est nul)
S

= u(s, X7)d (efts C(”’Xz’t)dr> el e XEDdr gy (g X

s x, s T, a
=l X3, Xl NN g X (B ) (5, X5
S
+eld XTI (G (s, X2, g(s, XE)dB,)
En utilisant alors (5.2) on a :
d (U(S, X;c,t)efts C(T,X:!t)d'r> — —h<S, X;ﬂ’t)efts c(r, XZ ) dr + efts e(r, XE dr <va(S, X;ﬂ,t)7 g(S, sz,t)st> 7

soit en appliquant ceci entre ¢ et T,
T x,t T s z,t
u(t,x) = @(X%’t)eft o(r Xy )dr+/ h(s,Xj’t)eft e(rXr)dr g
t

T
- [ el (9, X2, (s, X70BY

t

Or, vu les hypothéses faites sur V,u(t,x)g et c(t, x), I'intégrale stochastique du membre de
droite est une martingale de carré intégrable entre 0 et 7', et est presque slirement nulle en 7’
donc on peut prendre I’espérance de cette intégrale et celle-ci est nulle. En utilisant de méme les
hypotheses de domination faites sur les fonctions en jeu et le fait que

< 00

VE > 0,IE [ sup | X

t<s<T

(car la condition initiale est une constante = et donc appartient a L¥'(Q2)!), les espérances des
termes restants sont bien définies et finalement on obtient

ot T . ot
u(t,z) = B {<I>(X%’t>effc(“x*’>d’“+ / h(s, X24)el crXiDdr g
t

ce qui est bien le résultat demandé. O]

Enoncons maintenant le résuktat principal de cette section :
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Théoreme 5.3.2. Formule de Feynman-Kac
La quantité u(t, x) définie par la formule est une fonction continue de
(t,z) € [0, T] x RY possédant une croissance au plus polynémiale en Iinfini et c’est I'unique so-

lution de viscosité de I’EDP (5.2)), parmi les fonctions u qui satisfont ~ sup  u(t, :L’)e_Am < 00
0<t<T,welRd
pourun A > 0.

Avant de prouver ce théoreme il faut définir la notion de solution de viscosité de (5.2).

Définition 5.3.3. Solution de viscosité
eu € C([0; T] x RY) est appelée une sous-solution de viscosité si
u(T,z) < ®(x),r € R?
ii) Pour tout o € CV2([0;T] x RY, pour tout maximum local (t,x) € [0;T] x R? de la
fonction u — ¢,

Oy

—a(t, x) — Lo(t,z) — (cu)(t,x) — h(t,x) < 0.

eu € C([0; T] x IR?) est appelée une sur-solution de viscosité i
i)u(T,z) > ®(x),r € R?

ii) Pour tout ¢ € CY2([0;T] x IRY, pour tout minimum local (t,z) € [0;T] x R? de la
fonction u — ¢,

D

—E(t, x) — Lo(t,x) — (cu)(t,z) — h(t,z) > 0.

eu € C([0;T] x RY) est appelée solution de viscosité de si ¢’est a la fois une sur et sous
solution de viscosité.

Remarque 5.3.4. Une solution classique de est bien une solution de viscosité.
Toute solution de viscosité de classe C? est une solution classique.

Preuve du théoréme :
L’unicité de la solution de viscosité peut étre prouvée par les méthodes de viscosité et sera ici
admise. La proposition (5.3.1) montre toutefois I’unicité pour les solutions classiques.

Ensuite, considérons v donnée par la formule (5.3). La continuité de  résulte de la continuité
du processus (X ), par rapport aux conditions initiales (voir proposition page 88).
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Comme X" = x, on a bien u(T,z) = ®(x). Nous alons maintenant prouver le ii) de la
propriété de sous-solution (la propriété de sur solution étant analogue).

Soit o € CH2([0; T] x RY) et (¢, ) un maximum local de la fonction u — ¢. On va sup-
poser que u(t,x) = ¢(t,x) quitte a translater d’une constante (notre probléme est invariant par
translation de ().

Raisonnons par 1’absurde, on suppose que :

Iy

E(t’x) + Lp(t,z) + (cu)(t,z) + h(t,x) < 0.

Alors il existe 0 < § < T — t tel que pour tous s € [t,t + 4], |y — z| < 4,

u(s,y) < (s, y)

0
a—f(s, x)+ Lo(s,x) + (cu)(s,x) + h(s,z) <O0.
Soit 7 £ inf {s;t < s <t+0;|X%" — x| > §}. Reprenant la preuve de la proposition [5.3.1} on

obtient que Vz € [t, T

z

u(t,x) = u(z,Xf’t)eftzC(T’X?t)dT+/ h(r,Xf’t)eftrc(“’xiyt)d"ds

t

= [ el e (T, X5, g0, X))
t

x,t

En remplagant z par le temps d’arrét borné 7.t par s A 7 00 s € [t,T], puis x par X, dans
I’expression précédente puis en utilisant le fait que

Xtaxf:/’\tr —Xxvt v >
, =X, Vr 2 sNAT

d’apres la propriété de Markov forte du processus de diffusion X ** et en prenant I’espérance du
tout (I’intégrale stochastique est une martingale continu vu les hypotheses sur les fonctions mises
en jeu donc celle-ci disparait par le théoreme d’arrét), on obtient :

E[usAnt,XZ)] = E [U(T, Xt elins e(r X7 dr | / h(r, X&) elins e(w, X" du dr]

SAT
AT
Par un raisonnement analogue on montre que

Elp(snr.X5)] = E [p(r, X2teldoki

SAT
T 690 a,t\ [T e(u, X2 du
- 6_+LQD+C§0 (raX'r7)€ s e dr|Fs
s S

AT
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Définissons

0
,Bsé— (8—S0+L<,0+cu+h) (5, X" t<s<T
s

Il résulte des inégalités précédentes que 5, > 0 et si1’on pose Y 2 (o —u)(s AT, X5), Tas 2

eff C(u7Xff’t)du’t < a<b<t+ 4. Nous avons

T

I [Y;] =IE |:Y7‘Fs/\‘r,7- + /

AT

(ﬂs - C<T7 Xfyt)y;‘)rs/\f,r dT:| .

En différenciant, on obtient
d

%E [Y;] =-IE [/651{S<T}:| ’

KZE{YT+/tTﬁSds].

Comme Y, > 0,8, > 0,7 > t P ps, on en déduit que Y; > 0 et ceci contredit le fait que
o(t,z) = u(t,z) d’0d

et de 1a on déduit

g—f(t, x) + Lo(t, x) + (cu)(t, z) + h(t,z) > 0.

et u est une sous solution de viscosité. ]



Annexe A

Résultats préliminaires

A.1 Vecteurs gaussiens

Lemme A.1.1. Si le couple de vecteurs aléatoires (X,Y) est gaussien, si X est non dégénéré et
Si on pose
Syx =E[Y —EY))(X —E(X))] et Kx = [(X — E(X))(X — E(X))"] alors on
Y + Yy x K (X)X et BX|Y]=E(Y)+Xyx Ky (X — E(X))

Démonstration. On peut supposer X et Y centrés pour simplifier. On pose U = Y —Y xy K3 (X)
alors le couple (U, X) est gaussien car image de (X, Y") par une application linéaire et

Yux = BUXT) =E(YX") - Sxy Kx/(XXT) =Yy x — Syx Ky Kx =0

Il en résulte que X et U sont indépendants et donc que IE(U|X) = 0 et remplacant U par sa
valeur on trouve le résultat voulu. ]

A.2 Le théoreme de Kolmogorov d’existence des probabilités
sur les espaces produits

Soit (F, F) un espace mesurable et pour k£ < n on note 7} la projection canonique de E™ sur
EF ie
Tz, o xn) = (21, .., Tk).

Celle-ciest également mesurable par rapport aux tribus F®" et F=*,

102
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Définition A.2.1. Une famille de probabilités P,, . ., définies sur les produits (E™, F*") et
indexée par les n-uplets, n € IN, d’'un ensemble T" est une famille projective si elle satisfait

W]?(Ptl,...,tn) = Ptl,...,tk

pour tout entier n, tout n-uplet (t,...,t,) € T" et tout k < n.

Théoreme A.2.2. Théoreme des espaces produits de Kolmogorov

Soit E un espace localement compact a base dénombrable d’ouverts et F sa tribu borélienne. Si
T est un ensemble d’indices, si P = (P, . 4,) est une famille projective de probabilités sur les
produits finis E;, x -+ X E; , si (Q,.A) est un espace mesurable et X : (2, A) — (ET, F®T)
est mesurable alors il existe une unique probabilité P sur (2, A) telle que la loi temporelle de X
sous P soit égale a P.

On admettra la preuve de ce théoreme.

A.3 Un théoreme de compacité de Prokhorov :

Théoréme A.3.1. Si E est un métrique complet et séparable, de toute suite tendue (P,,), de
probabilités sur E, on peut extraire une sous-suite qui converge étroitement. Si la suite (P,,), ne
converge pas étroitement, on peut en extraire deux sous-suite qui convergent étroitement vers des
probabilités distinctes.

Démonstration. Résulte des théoremes de Riesz et Banach-Alaoglu. O
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