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1 Introduction

Liouville quantum field theory (LQFT) was introduced in the 1981 seminal work of Polyakov [39].
Roughly, LQFT can be seen as a canonical on the space of random surfaces X : M → R where
M is a Riemannian manifold. For the sake of simplicity, we will consider the Riemann sphere
S2 = R2∪{∞} equipped with the standard round metric g0(x)dx2 where g0(x) = 4

(1+|x|2)2 . Recall
that, in this framework, a subsetA ⊂ R2 has volume given by

∫
A
g0(x)dxwhere dx is the standard

Lebesgue measure on R2.

In this case, LQFT is a measure which takes on the following formal form for all functionals F

F 7→
∫
F (X)e−SL(X)DX (1)

where DX stands for some "uniform measure" and SL is the so-called Liouville action given by

SL(X) :=
1

4π

∫
R2

(
|∂g0X|2(x) +QRg0(x)X(x) + 4πµeγX(x)

)
g0(x)dx (2)

where:

• Rg0(x) is the curvature of ĝ, here equal to 2

• ∂g0X is the gradient of X in the round metric

• γ ∈ [0, 2[

• Q = γ
2

+ 2
γ

• µ > 0 is the so-called cosmological constant.

Hence, LQG is parametrized by two constants γ and µ. Rigorously constructing the measure (1)
is non trivial: it relies on the Gaussian Free Field (to interpret the gradient squared term) and the
theory of Gaussian multiplicative chaos (to interpret the exponential term). The purpose of these
notes is to provided some material to construct this measure and to connect it with the scaling
limit of random planar maps.
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2 Introduction

Roughly speaking, GMC is a theory that defines random measures with the following formal
definition

Mγ(dx) = eγX(x)σ(dx) (3)

where σ is a Radon measure on some metric space D (equipped with a metric d), γ > 0 is a
parameter and X : D → R is a centered Gaussian field. The variable X does not live in the space
of functions on D but rather in a space of distributions in the sense of Schwartz.

We will consider in the sequel the very important subcase where D is some subdomain of Rd,
σ is a Radon measure on D and X has a covariance kernel of log-type, namely

K(x, y) := E[X(x)X(y)] = ln+
1

|x− y|
+ g(x, y) (4)

where ln+(x) = max(ln x, 0) and g is a bounded function over D × D. In that case, one can
show that X lives in the space of distributions: this just means that for all smooth function ϕ with
compact support the integral

∫
D
ϕ(x)X(x)dx makes sense.

In these lecture notes, we will only study the theory of GMC in the case where D is some
subdomain of Rd, σ is a Radon measure of the form f(x)dx with dx the Lebesgue measure, f
a nonnegative L1(dx) function and X has a covariance kernel of log-type (4). The underlying
probability space will be (Ω,F ,P) and we will denote E[.] the associated expectation. The vector
space of p integrable random variables with p ≥ 1 will be denoted Lp. We will call a function
θ : R → R a smooth mollifier if θ is C∞ with compact support and such that

∫
Rd
θ(x)dx = 1.
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We will use θ to regularize the field X by convolution; we will denote by f ∗ g the convolution
between two distributions f and g. When θ is smooth, the convolution X ∗ θ is in fact C∞ and in
particular the exponential of X ∗ θ is well defined.

In section 2, we will also consider centered Gaussian fields Y, Z with continuous covariances
kernels and which are almost surely continuous.

3 Gaussian multiplicative chaos

Before explaining the construction of the GMC measures, we first give a few reminders on Gaus-
sian vectors and processes.

3.1 Reminder on Gaussian vectors and processes

Here, we recall basic properties of Gaussian vectors and processes that we will need in these
lecture notes. The first one is the Girsanov transform:

Theorem 1. Girsanov theorem

Let (Y (x))x∈D be a smooth centered Gaussian field with covariance kernel K and Y some
Gaussian variable which belongs to the L2 closure of the subspace spanned by (Y (x))x∈D. Let
F be some bounded function defined on the space of continuous functions. Then we have the
following identity

E[eY−
E[Y 2]

2 F ((Y (x))x)] = E[F ((Y (x) + E[Y Y (x)])x)]

Though we state the Girsanov theorem under the above form, it is usually stated in the follow-

ing equivalent form: under the new probability measure eY−
E[Y 2]

2 dP, the field (Y (x))x∈D has same
law as the (shifted) field (Y (x) + E[Y Y (x)])x∈D under P.

We will also need the following beautiful comparison principle first discovered by Kahane:

Theorem 2. Convexity inequalities. [Kahane, 1985].

Let (Y (x))x∈D and (Z(x))x∈D be continuous centered Gaussian fields such that

E[Y (x)Y (y)] ≤ E[Z(x)Z(y)].

Then for all convex (resp. concave) functions F : R+ → R with at most polynomial growth at
infinity

E
[
F

(∫
D

eY (x)−E[Y (x)2]
2 σ(dx)

)]
≤ (resp. ≥)E

[
F

(∫
D

eZ(x)−E[Z(x)2]
2 σ(dx)

)]
. (5)

3.2 Construction of the GMC measures

In this section, we will state a quite general theorem which will be used as definition of the GMC
measure. The idea to construct a GMC measure is rather simple and standard: one defines the
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measure as the limit as ε goes to 0 of cεeγXεσ(dx) where Xε is a sequence which converges to X
as ε goes to 0 and cε is some normalization sequence which ensures that the limit is non trivial.

Theorem 3. Let θ be a smooth mollifier. Set Xε = X ∗ θε where X has a covariance kernel of
log-type (4) and θε = 1

εd
θ( .

ε
). The random measures

Mε,γ(dx) = eγXε−
γ2E[Xε(x)2]

2 σ(dx)

converge in probability in the space of Radon measures (equipped with the topology of weak con-
vergence) towards a random measure Mγ . The random measure does not depend on the mollifier
θ. If σ(dx) = f(x)dx with f > 0, the measure Mγ is different from 0 if and only if γ <

√
2d.

Proof. For simplicity, we will prove the above theorem in the simple case where γ <
√
d, the

so-called L2 case. It is no restriction to suppose f = 1 in the proof (the proof works the same
with general f ). Let θ be some smooth mollifier and Xε = X ∗ θε. For all compact A, we have by
Fubini

E[Mε,γ(A)] =

∫
A

E[eγXε(x)− γ
2E[Xε(x)2]

2 ]dx = |A|.

Hence, we see that the average of Mε,γ(A) is constant and equal to the Lebesgue volume of A:
this explains the normalization term γ2E[Xε(x)2]

2
in the exponential. By a simple computation, one

can show that for all ε′ ≤ ε there exists global constants c, C > 0 such that

c+ ln
1

|y − x|+ ε
≤ E[Xε′(x)Xε(y)] ≤ C + ln

1

|y − x|+ ε
(6)

One can notice that the bounds in the above inequality are independent of the smaller scale ε′.
Hence, using Fubini, we get that for all compact A

E[Mε,γ(A)2] = E

[(∫
A

eγXε(x)− γ
2E[Xε(x)2]

2 dx

)2
]

=

∫
A

∫
A

E
[
eγ(Xε(x)+Xε(y))− γ

2E[Xε(x)2]
2

− γ
2E[Xε(y)2]

2

]
dxdy

=

∫
A

∫
A

eγ
2E[Xε(x)Xε(y)]dxdy

→
ε→0

∫
A

∫
A

eγ
2K(x,y)dxdy,

where the last convergence is a consequence of the simple convergence of E[Xε(x)Xε(y)] towards
K for x 6= y and the dominated convergence theorem using (6) (the condition γ2 < d ensures the
integrability of eγ2K(x,y)).

Now, along the same lines (using Fubini), one can expand for ε′ < ε the quantity E[(Mε,γ(A)−
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Mε′,γ(A))2] and show that

E[(Mε,γ(A)−Mε′,γ(A))2]

=

∫
A

∫
A

eγ
2E[Xε(x)Xε(y)]dxdy +

∫
A

∫
A

eγ
2E[Xε′ (x)Xε′ (y)]dxdy − 2

∫
A

∫
A

eγ
2E[Xε′ (x)Xε(y)]dxdy

→
ε′,ε→0

∫
A

∫
A

eγ
2K(x,y)dxdy +

∫
A

∫
A

eγ
2K(x,y)dxdy − 2

∫
A

∫
A

eγ
2K(x,y)dxdy

= 0

hence (Mε,γ(A))ε>0 is a Cauchy sequence.

Let θ̄ be another smooth mollifier and let M̄ε,γ(dx) = eγX̄ε−
γ2E[X̄ε(x)2]

2 dx with X̄ε = X ∗ θ̄ε.
Along the same lines as previously, one can show that Mε,γ(A)− M̄ε,γ(A) converges to 0.

In conclusion, we have shown that for all compact A, the variable Mε,γ(A) converges in L2

to some random variable Z(A) of mean |A|, and the limit Z(A) does not depend on the smooth
mollifier θ. Using standard results of the theory of random measures (see [17]), one can show that
there exists a random measure version Mγ of the variables Z(A) such that in fact Mε,γ converges
in probability in the space of random measures (equipped with the weak topology) towards Mγ .
Of course, Mγ is non trivial since for all compact A we have E[Mγ(A)] = |A|.

Now for the case γ ∈ [
√
d,
√

2d[, the above L2 computations no longer converge and one must
use more refined techniques to show convergence: we refer to Berestycki’s approach [4] for a
simple proof in that case.

Remark. In case the field X can be written as a sum of continuous independent Gaussian field, a
0−1 law argument straightforwardly then shows Mγ gives positive mass to any (non empty) open
set.

3.3 Main properties of the GMC measures

Now, we turn to some important properties of the GMC measures which we will need in our study
of LQG.

Existence of moments and multifractality

Theorem 4. For γ <
√

2d, let Mγ be a GMC measure associated to a log-correlated field X with
covariance (4) and σ(dx) = f(x)dx with bounded f . Then, for O ⊂ D an open ball we have

E[Mγ(O)q] <∞

if and only if q ∈]−∞, 2d
γ2 [.

We will not prove this theorem here: we refer to [43] for a proof. Now, we turn to the multi-
fractal scaling of the measure. This is the content of:
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Proposition 5. For γ <
√

2d, let Mγ be a GMC measure associated to a log-correlated field X
with covariance (4) (with g continuous) and σ(dx) = f(x)dx with bounded continuous f (non
identically null). Then for all x and all q ∈] −∞, 2d

γ2 [, there exists some constant Cx > 0 (which
depends also on f , q and the exact form of the kernel K in (4)) such that

E[Mγ(B(x, r))q] ∼
r→0

Cxr
ζ(q) (7)

where ζ(q) = (d+ γ2

2
)q − γ2q2

2
is called the structure function of Mγ .

Proof. Let us treat a particular case when the covariance kernel in (4) is the pure ln, ie K(x, y) =
ln+

1
|x−y| (dim 1 ≤ d ≤ 3).

In that case, we have the following relation in distribution for x ∈ B(0, 1/2) and r < 1

X(rx)
law
= X(x) +Nr

where N an independent Gaussian random variable independent of X . This entails∫
B(0,r)

eγX(x)− γ
2

2
E[X2(x)] dx

law
=

∫
B(0,1/2)

eγX(2ru)− γ
2

2
E[X2(2ru)] dx

=eγN2r− γ
2

2
E[N2

2r]

∫
B(0,1/2)

eγX(u)− γ
2

2
E[X2(u)] dx

by making a formal change of variables ru = x/2.

Multifractal formalism

Now, we turn to the multifractal formalism of the measuresMγ . The measuresMγ are multifractal
in the sense that the regularity of the measure around a point x ∈ D depends on the point x: this
can easily be seen on figure ??. Multifractal formalism is a general theory to study the regularity
of measures like Mγ around each point: for more background on this see section 4 in [41].

For γ2 < 2d and q ∈]0,
√

2d
γ

[, we consider the following set:

Kγ,q =

{
x ∈ D; lim

ε→0

lnMγ(B(x, ε))

ln ε
= d+ (

1

2
− q)γ2

}
.

In words, the set Kγ,q is made of the points x such that Mγ(B(x, r)) ≈
r→0

rd+( 1
2
−q)γ2

. We can state
the following theorem:

Theorem 6. The set Kγ,q has Hausdorff dimension d− γ2q2

2
.

In fact, the same theorem holds with the set K̄γ,q defined by

K̄γ,q =

{
x ∈ D; lim

ε→0

Xε(x)

− ln ε
= γq

}
,
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where Xε = X ∗ θε with θ any smooth mollifier. The reason is that it is useful to have in mind the
following approximation

Mγ(B(x, r)) ≈
r→0

rdeγXr(x)− γ
2E[Xr(x)2]

2 (8)

where here ar ≈ br means that the ratio a/b is a (random) constant Cr of order 1, i.e. E[Cr]
belongs to an interval [c, C] with c, C > 0 independent of r. The main difficulty in our context is
that the random constantCx,r for the ratio of both sides in (8) really also depends on x so the above
approximation can not be used directly but is rather a guideline to get intuition on the behaviour
of Mγ . In our case, if we assume Cx,r = 1, then the sets Kγ,q = K̄γ,q are the same (however
we stress that rigorously these two sets are not the same). Finally, following the terminology of
Hu-Miller-Peres [30], a point x which belongs to K̄γ,1 is nowadays called a γ-thick point.

Now, among the sets Kγ,q (and K̄γ,q), the set Kγ,1 (resp. K̄γ,1) is of particular importance for
Mγ since it is the set on which the measure Mγ "lives". More specifically, we have

Mγ(
cKγ,1 ∪ cK̄γ,1) = 0 (9)

In the modern terminology of [30], one says that Mγ lives on the γ-thick points of X . This
property was proved by Kahane in his seminal paper [32]. Here, we will show a slightly weaker
result, namely that:

Mγ

(
c

{
x ∈ D; lim

n→∞

X 1
2n

(x)

n ln 2
= γ

})
= 0 (10)

The only difference with K̄γ,1 is that we restrict the limit in K̄γ,1 to a dyadic sequence (in fact,
with little effort, one can reinforce (10) to prove (9)).

Proof of (10):

We introduce η > 0 and a compact set A. We have for all n ≤ p and by using the Girsanov
theorem 1 that

E[

∫
A

⊥⊥{
x∈D;

X
2−n (x)

n ln 2
∈c[γ−η,γ+η]

}eγX2−p (x)− γ
2

2
E[X2−p (x)2]dx]

=

∫
A

E[⊥⊥{
x∈D;

X
2−n (x)

n ln 2
∈c[γ−η,γ+η]

}eγX2−p (x)− γ
2

2
E[X2−p (x)2]]dx

=

∫
A

E[⊥⊥{
x∈D;

X
2−n (x)+γE[X

2−n (x)X
2−p (x)]

n ln 2
∈c[γ−η,γ+η]

}]dx

≈
∫
A

P
(
X2−n(x)

n ln 2
∈ c[−η, η]

)
dx

Now, since X2−n(x) is a Gaussian of variance roughly equal to n ln 2 by (6), we get that

P
(
X2−n(x)

n ln 2
∈ c[−η, η]

)
≤ 2e−nη

2 (ln 2)2

2

Therefore, by taking the limit p→∞ in the above considerations, we get that there exists C > 0

Mγ

({
x ∈ D;

X2−n(x)

n ln 2
∈ c[γ − η, γ + η]

})
≤ Ce−nη

2 (ln 2)2

2
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One can easily deduce from this by a Borell-Cantelli type argument that

Mγ

(
∩N ∪n≥N

{
x ∈ D;

X2−n(x)

n ln 2
∈ c[γ − η, γ + η]

})
= 0

Since the result is valid for all η > 0, we get (10).

The first Seiberg bound

In this subsection, we state and prove a theorem we will need to define LQG: indeed, we will see
that it corresponds to the so-called Seiberg bound in LQG. We have the following

Lemma 7. Let α ∈ R and x ∈ D. We have∫
B(x,1)

1

|y − x|αγ
Mγ(dy) <∞, a.s.

if and only if α < d
γ

+ γ
2
.

Proof. We only prove the if part; for the only if part, we refer to [18]. With no loss of generality,
we suppose that x = 0. We consider η ∈]0, 1[. We have

E
[(∫

B(0,1)

1

|y|αγ
Mγ(dy)

)η]
≤

∞∑
n=1

E

[(∫
1

2n
≤|y|≤ 1

2n−1

1

|y|αγ
Mγ(dy)

)η]

≤
∞∑
n=1

2nαηγE[(Mγ({y;
1

2n
≤ |y| ≤ 1

2n−1
}))η]

≤
∞∑
n=1

2nαηγE[(Mγ({y; |y| ≤ 1

2n−1
}))η]

≤ C

∞∑
n=1

2nαγη2−nζ(η),

where recall that ζ(q) = (d + γ2

2
)q − γ2q2

2
. Now, since α < d

γ
+ γ

2
, one can choose η > 0 small

such that αγη − ζ(η) < 0 hence we get the conclusion.

4 Liouville quantum gravity on the Riemann sphere

4.1 Elementary Riemannian geometry on the sphere

We consider the standard Riemann sphere S = C ∪ {∞}. The Riemann sphere S is just the
complex plane C with a point at infinity and is obtained as the image of the standard 2d sphere by
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stereographic projection. We equip S with the standard round metric. On S, the round metric is
given in Riemannian geometry notations by g(z)|dz|2 where g(z) = 4

(1+|z|2)2 . This means that the
length L(σ) of a curve σ : [0, 1]→ S is given by

L(σ) =

∫ 1

0

g(σ(t))1/2|σ′(t)|dt.

One then gets the distance between two points z1, z2 ∈ S by taking the infimum of L(σ) over all
curves σ which join z1 to z2. The volume form is simply given by the measure g(z)dz where dz
is the Lebesgue measure on R2 (by using polar coordinates, it is easy to see that

∫
S g(z)dz = 4π,

thereby recovering the well known fact that the surface of the sphere is 4π!). In this context, one
can of course do differential calculus and Ck functions on S are just functions φ defined on C
which are such that φ is Ck on C and z 7→ φ(1

z
) admits a continuous extension on C which is Ck.

The gradient∇g of a function φ is given by the simple formula

∇gφ(z) =
1

g(z)
∇zφ(z).

where∇z is the standard Euclidean gradient on C. Finally, the (Ricci) curvature Rg is given by

Rg(z) = − 1

g(z)
∆z ln g(z),

where ∆z is the standard Euclidean Laplacian. In the specific case of the round metric (g(z) =
4

(1+|z|2)2 ), one finds by a simple computation a constant curvature Rg = 2.

4.2 Introduction to LQFT on the Riemann sphere

LQFT is a family of CFTs parametrized by two constants γ ∈]0, 2] and µ > 0; in these notes, we
will only consider the case γ ∈]0, 2[. In the probabilistic setting, the goal of LQFT is to make sense
of and compute as much as possible the following correlation functions which arise in theoretical
physics under the following heuristic form:

< eα1X(z1) · · · eαnX(zn) >:=

∫
eα1X(z1) · · · eαnX(zn)e−SL(X,g)DX

where DX is the "Lebesgue" measure on functions S→ R and SL is the Liouville action:

SL(X, g) :=
1

4π

∫
S

(
|∇gX|2(z) +QRg(z)X(z) + 4πµeγX(z)

)
g(z)dz (11)

where recall that g is the round metric, the constant Q is defined by Q = γ
2

+ 2
γ

and µ > 0. LQFT
is therefore an interacting quantum field theory where the interaction term is

µ

∫
S
eγX(z) g(z)dz. (12)

The positive parameter µ, called the cosmological constant, is necessary for the existence of
LQFT. However, a remarkable feature of LQFT is that the parameter γ is the essential param-
eter of the theory as it completely determines the conformal properties of the theory (in CFT
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language, the parameter γ determines the central charge: we will come back to this point later in
more detail). Following the standard terminology of CFT (see previous chapter), the eαiX(zi) are
local primary fields (the conformal covariance property will be proved in the next chapter); in fact,
in the context of LQFT, the eαiX(zi) are also called vertex operators.

It is a well known fact that the "Lebesgue measure" DX does not exist since the space of
functions S → R is infinite dimensional; however, it is a standard procedure in the probabilistic
approach to quantum field theory (see Simon’s reference book [47] on the topic) to interpret the
term e−

1
4π

∫
R2 |∇gX|2(z) g(z)dzDX as the Gaussian Free Field (GFF).

4.3 Gaussian Free Field

The GFF on the Riemann sphere is a centered Gaussian random distribution X with covariance
kernel given by the Green function G of the Laplacian on S with vanishing g-mean.

Let (λn)n≥1 be the (non null) positive increasing eigenvalues of the Laplacian on S with eigen-
functions (en)n, which form a o.n.b. of L2(S),

−4gen = 2πλnen.

Mercer’s representation of the Green function is

G(x, y) =
∑
n

en(x)en(y)

λn
.

Consider an i.i.d. sequence (αn) of standard Gaussian r.v. Set

X =
∑
n≥1

αnen√
λn
.

Define the Sobolev spaces (with norm ‖ · ‖s)

Hs(S) := {f =
∑
n

fnen|
∑
n

|fn|2λsn < +∞}.

Then

‖X‖2
s =

∑ α2
n

λ1−s
n

If s < 0 then E[‖X‖2
s] < +∞by Weyl’s law λn ≈ Cn. Hence, a.s. X ∈ Hs(S).

Take f, h ∈ Hδ(S) with δ > 0

E[X(f)X(h)] =E
[(∑

n

αnfn√
λn

)(∑
k

αkhk√
λk

)]
=
∑
n

fnhn
λn

=

∫
f(x)G(x, y)h(y)g(x)g(y)dxdy

10



Definition 8. The GFF with vanishing mean on the sphere Xg is the Gaussian field living in the
space of distributions such that for all smooth functions f, h on S

E
[(∫

S
f(z)Xg(z)g(z)dz

)(∫
S
h(z′)Xg(z

′)g(z′)dz′
)]

=

∫
S

∫
S
Gg(z, z

′)f(z)h(z′)g(z)g(z′)dzdz′

where G is the Green function for the Laplacian on the sphere defined for all z ∈ S by

−∆gG(z, .) = 2π(δz −
1

4π
),

∫
S
Gg(z, z

′)g(z′)dz′ = 0

Observe that
∫
SXg(z)g(z)dz makes sense and is equal to 0 actually: this is why we call Xg the

GFF with vanishing mean on the sphere.

It turns out that the Green function has the following explicit form on S

Gg(z, z
′) = ln

(1 + |z|2)1/2(1 + |z′|2)1/2

|z − z′|
− 1

2
,

where recall that |.| is the standard Euclidean distance.

Now we interpret the gradient squared in the action as∫
F (x)e−

1
4π

∫
R2 |∇gX|2(z) g(z)dzDX =(

′

det(−4g))
−1/2

∫
F (

c

vg(M)
+Xg) dc

=
(det

′
(−4g)

vg(M)

)−1/2
∫
F (c+Xg) dc.

4.4 Construction of LQFT

This leads to the following correct definition (up to some global constant)∫
F (X)e−SL(X,g)DX = lim

ε→0

∫
R

E[F (Xg + c)e−
Q
4π

∫
SRg(z)(Xg(z)+c)g(z)dz−µεγ2/2eγc

∫
S e
γX̄ε,g(z)g(z)dz]dc

(13)
A standard computations shows that

E[X̄ε,g(z)2] = ln
1

ε
− 1

2
ln g(z) + C + o(1) (14)

where C is some global constant, therefore the measure εγ2/2eγX̄ε,g(z)g(z)dz converges to e
γ2

2
C

times the GMC measure Mγ associated to Xg and g(z)dz which we write

Mγ(dz) = eγXg(z)g(z)dz. (15)

By the previous results on GMC theory, this GMC measure is well defined and non trivial. In the
sequel, we will exclusively work with this GMC measure.

With the preliminary remarks of the previous subsection, we are ready to introduce the correla-
tion functions of LQFT on the sphere and recover many known properties in the physics literature.
In fact, it is standard in the physics literature to express the correlations of LQFT in the complex

11



plane and therefore to shift the metric dependence of the theory in the field Xg + c: this simplifies
many computations. Let us describe how to do so. If ε is small then a ball Bg(z, ε) of centre z and
radius ε in the round metric g is to first order in ε the same as an Euclidean ball B(z, ε

g(z)1/2 ) of
centre z and radius ε

g(z)1/2 . Hence, the average X̄ε,g(z) (with respect to balls in the round metric)
is roughly the same as X ε

g(z)1/2
,g(z) where Xε,g(z) is the average of Xg on an Euclidean ball of

radius ε. Finally, notice that we can write for all ε′ > 0

(ε′)γ
2/2

∫
S
eγX̄ε′,g(z)g(z)dz =

∫
S

(
ε′

g(z)1/2

)γ2/2

eγ(X̄ε′,g(z)+Q
2

ln g(z))dz (16)

where recall that Q = γ
2

+ 2
γ

. Since X̄ε′,g(z) ≈ X ε′
g(z)1/2

,g
(z), by making the change of variable

ε = ε′

g(z)1/2 in (16), it is not suprising that one can prove that the random measures

eγ(Xε,g(z)+Q
2

ln g(z))dz

converge in probability as ε goes to 0 towards e
γ2

2
CMγ(dz) where C is defined by (14) and Mγ

is defined by (15). Therefore, instead of working with Xg + c, we will work with the shifted
field φ(z) = Xg(z) + c + Q

2
ln g(z) and the approximations φε(z) = Xε,g + c + Q

2
ln g(z). The

field φ under the probability measure (13) is called the Liouville field. Finally, we set formally
Vα(z) = eαφ(z) and define the associated approximate vertex operators

Vα,ε(z) := εα
2/2eαφε(z). (17)

The correlation functions of LQFT are now defined by the following formula

<
n∏
i=1

Vαi(zi) >:= ZGFF(g) lim
ε→0

∫
R

E[
n∏
i=1

Vαi,ε(zi)e
− Q

4π

∫
SRg(z)(Xg(z)+c)g(z)dz−µεγ2/2

∫
S e
γφε(z)dz]dc,

(18)
where one can notice the presence of the partition function of the GFF ZGFF(g) given by Det∆−1/2

g

where Det∆g is the standard determinant of the Laplacian (this determinant is in fact non trivial to
define since the Laplacian is defined on an infinite dimensional space: see [19] for background).
The constantZGFF(g) is a global constant and plays no role here so it is not important to understand
exactly how it is defined. For the readers who are unfamiliar with Det ∆g they can take out this
term in definition (18) and remember that it only plays a role in the Weyl anomaly formula (see
proposition 11 below).

Of course, it is crucial to enquire when the limit (18) exists. This is the object of the following:

Proposition 9 ([18]). The correlation functions (18) exist and are not equal to 0 if and only if the
following Seiberg bounds hold

∀i, αi < Q and
n∑
i=1

αi > 2Q. (19)

In particular, the number of vertex operators n must be greater or equal to 3 for the correlation
functions to exist and be non trivial. If the Seiberg bounds hold then we get the following ex-
pression (up to some multiplicative constant which plays no role and depends on the C of (14),

12



α1, · · · , αn and γ)

<
n∏
i=1

Vαi(zi) >= ZGFF(g)e
1
2

∑
i6=j αiαjGg(zi,zj)

n∏
i=1

g(zi)
αiQ

2
−α

2
i

4 Γ(

∑
i αi − 2Q

γ
, µ)E[(Z(zi,αi)(S)−

∑
i αi−2Q

γ ]

(20)
where Γ(

∑
i αi−2Q

γ
, µ) =

∫∞
0
u

∑
i αi−2Q

γ
−1e−µudu and

Z(zi,αi)(dz) = eγ
∑n
i=1 αiGg(zi,z)Mγ(dz).

Proof. Here, we give a sketch of the proof of the if part of proposition 9: therefore, we suppose
that the (αi)i satisfy the Seiberg bounds (19). We denote <

∏n
i=1 Vαi,ε(zi) > the right hand side

of (18). Since Rg = 2 and Xg has vanishing mean on the sphere one has

<

n∏
i=1

Vαi,ε(zi) > /ZGFF(g) =

∫
R

E[
n∏
i=1

Vαi,ε(zi)e
− Q

4π

∫
SRg(z)(Xg(z)+c)g(z)dz−µεγ2/2

∫
S e
γφε(z)dz]dc

=

∫
R

E[e(
∑
i αi−2Q)c

n∏
i=1

εα
2
i /2eαi(Xg,ε(zi)+

Q
2

ln g(zi))e−µε
γ2/2eγc

∫
S e
γ(Xg,ε(z)+

Q
2 ln g(z))dz]dc

Now, the first step is to get rid of the vertex fields Vαi,ε(zi) in the above expression since they do
not converge pointwise as ε goes to 0. First, we have by (14) that

E[(
n∑
i=1

αiXg,ε(zi))
2] = (

n∑
i=1

α2
i ) ln

1

ε
− 1

2

n∑
i=1

α2
i ln g(zi) +

∑
i 6=j

αiαjGg(zi, zj) + (
n∑
i=1

α2
i )C+ o(1)

(21)
where o(1) converges to 0 when ε goes to 0. We set

Yε =
n∑
i=1

αiXg,ε(zi).

If we apply the Girsanov theorem with the variable Yε and the field Xg,ε(z), we get using (21) that
up to eO(1) terms we have

<

n∏
i=1

Vαi,ε(zi) > /ZGFF(g)

= e
1
2

∑
i 6=j αiαjGg(zi,zj)

n∏
i=1

g(zi)
αiQ

2
−α

2
i

4

∫
R

E[e(
∑
i αi−2Q)ce−µε

γ2/2eγc
∫
S e
γ(Xg,ε(z)+H(zi,αi),ε

(z)+
Q
2 ln g(z))

dz]dc,

where H(zi,αi),ε(z) = γ
∑n

i=1 αiGg,ε(zi, z) with Gg,ε(z, y) = E[Xg,ε(z)Xg,ε(y)]. We set

Z(zi,αi),ε(dz) = eγ
∑n
i=1 αiGg,ε(zi,z)Mγ,ε(dz),

where Mγ,ε(dz) = eγ(Xg,ε(z)+
Q
2

ln g(z))dz. Now, we make the change of variables

u = εγ
2/2eγcZ(zi,αi),ε(S)

13



in the above formula which leads to

<
n∏
i=1

Vαi,ε(zi) > /ZGFF(g)

=
1

γ
e

1
2

∑
i6=j αiαjGg(zi,zj)

n∏
i=1

g(zi)
αiQ

2
−α

2
i

4 Γ(

∑
i αi − 2Q

γ
, µ) E[(Z(zi,αi),ε(S)−

∑
i αi−2Q

γ ].

In particular, since Gg,ε(z, y) converges pointwise to Gg(z, y) for z 6= y, it is natural to expect in

view of lemma 7 that E[(Z(zi,αi),ε(S)−
∑
i αi−2Q

γ ] converges to E[(Z(zi,αi)(S)−
∑
i αi−2Q

γ ] as ε goes to 0
(we do not prove this here): if we admit this convergence, we get (20).

4.5 Properties of the theory

Now, we state that the vertex operators are indeed primary local fields (these relations are called
the KPZ relations after Knizhnik-Polyakov-Zamolodchikov [33])

Proposition 10 (KPZ relation, [18]). If ψ is a Möbius transform, we have

<
n∏
i=1

Vαi(ψ(zi)) >=
n∏
i=1

|ψ′(zi)|−2∆αi <
n∏
i=1

Vαi(zi) >

where ∆αi = αi
2

(Q− αi
2

).

Hence, in CFT language, the vertex operators Vα are primary local fields with conformal weight
αi
2

(Q − αi
2

). Therefore, in LQFT, there is an infinite number of primary local fields hence it is a
very rich theory. The above KPZ relation, which is an exact conformal covariance statement,
should not be confused with the geometric KPZ relations proved in Duplantier-Sheffield [21] and
Rhodes-Vargas [40] for the GMC measures defined in theorem 3. In particular, these geometric
formulations of KPZ are very general and do not rely specifically on conformal invariance: they
are valid in all dimensions and for all GMC measures defined in theorem 3.

Finally, as is common in CFT, one would like to understand the background metric depen-
dence of the theory and express it in terms of the central charge. More specifically, if ϕ is a
smooth bounded function on S, we can consider the metric eϕ(z)g(z)|dz|2. Then all the formulas
of Riemannian geometry of subsection 4.1 are valid in this new metric by replacing the function
g(z) by the function eϕ(z)g(z). One can also define a GFF with vanishing mean Xeϕg in this new
metric, etc... Therefore, one can similarly define correlations <

∏n
i=1 Vαi(zi) >eϕg by formula

(18) where one replaces g with the metric eϕg. The relation between the two correlation functions
is given by the so-called Weyl anomaly formula:

Proposition 11 (Weyl anomaly, [18]). If ϕ is a smooth bounded function on S, we have

<

n∏
i=1

Vαi(zi) >eϕg= e
cL
96π

∫
S(|∇gϕ|2(z)+2Rg(z)ϕ(z)) g(z)dz <

n∏
i=1

Vαi(zi) > (22)

where cL = 1 + 6Q2. Hence LQFT is a CFT with central charge cL.
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In CFT, the above property can be seen as a definition of the central charge. There are other
ways to see the central charge of the model but we will not present them here. Since the function
γ 7→ 1 + 6(γ

2
+ 2

γ
)2 is a bijection from ]0, 2[ to ]25,∞[, the Weyl anomaly formula (22) shows

that LQFT can be seen as a family of CFTs with central charge varying continuously in the range
]25,∞[. Hence, LQFT is an interesting laboratory to check rigorously the general CFT formal-
ism developped in physics following the seminal work of Belavin-Polyakov-Zamolodchikov [5];
LQFT should also arise as the scaling limit of many models in statistical physics (just like the SLE
introduced by Schramm [45] which is a family of continuous random curves corresponding to a
geometrical construction of CFTs with central charge ranging continuously in ]−∞, 1]).

4.6 The Liouville measures

As mentioned in subsection ??, one can usually (but not always) define primary local fields as
random distributions. In the context of LQFT, one can indeed construct the vertex operators
Vα(z) as random distributions in the sense of Schwartz; in fact, since the approximate vertex
operators (17) are positive random functions, one can in fact show that they converge in the space
of random measures hence Vα(z) can be defined as random measures. Of particular interest is the
case α = γ on which we will focus in this subsection. To be more precise, let us fix n points
zi with n ≥ 3. We want to define the random measure Vγ(z)dz under the formal probability
measure F 7→< F

∏n
i=1 Vαi(zi) > / <

∏n
i=1 Vαi(zi) >. In this context, we denote the underlying

probability space E(zi,αi)[.]. In view of the definition (18), this leads to the following definition
of the Liouville measure (where one just inserts a functional of the measure in the correlation
function): if F is a functional defined on measures we have

E(zi,αi)
µ [F (Vγ(z)dz)]

= ZGFF (g) lim
ε→0

∫
R

E[F (Vγ,ε(z)dz)
n∏
i=1

Vαi,ε(zi)e
− Q

4π

∫
SRg(z)(Xg(z)+c)−µεγ2/2

∫
S e
γφε(z)dz]dc/ <

n∏
i=1

Vαi(zi) >

Like for the correlation functions, we can obtain a very explicit expression for these Liouville
measures in terms of GMC measures. Along the same line as the proof of the correlations, one can
show the following explicit expression for the Liouville measure (with the notations of proposition
9)

E(zi,αi)
µ [F (Vγ(z)dz)] =

E
[
F (ξ

Z(zi,αi)
(dz)

Z(zi,αi)
(S)

)Z(zi,αi)(S)−
∑
i αi−2Q

γ

]
E
[
Z(zi,αi)(S)−

∑
i αi−2Q

γ

] (23)

where ξ is an independent variable with density the standard Γ-law density 1
Z
e−µxx

∑
i αi−2Q

γ
−1dx

on R+ (where Z is a normalisation constant to make the integral of mass 1). We can get rid of the
ξ variable by conditioning the measure to have volume 1. This leads to the unit volume Liouville
measures we will denote V 1

γ (z)dz:

E(zi,αi)[F (V 1
γ (z)dz)] =

E
[
F (

Z(zi,αi)
(dz)

Z(zi,αi)
(S)

)Z(zi,αi)(S)−
∑
i αi−2Q

γ

]
E
[
Z(zi,αi)(S)−

∑
i αi−2Q

γ

] (24)
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One can notice that the µ dependence has disappeared in the expression of the unit volume
Liouville measure. However, the unit volume Liouville measure is not a specific GMC measure

(divided by its total mass to have volume 1) as there is still the Z(zi,αi)(S)−
∑
i αi−2Q

γ term in ex-
pression (24): this term really comes from the interaction term (12) in the Liouville action (11).
Though the Liouville measures are defined when the (αi)1≤i≤n satisfy the Seiberg bounds (19),
one can show that the unit volume measures exist under the less restrictive conditions

∀i, αi < Q and Q−
∑n

i=1 αi
2

<
2

γ
∧ min

1≤i≤n
(Q− αi), (25)

where x ∧ y denotes the minimum of x and y.

Among the unit volume Liouville measures, one has a very special importance in relation to
planar maps: the one where n = 3 and for all i we have αi = γ (one can check that for all γ in
]0, 2[, this choice of (αi)1≤i≤n satisfies (25)). By conformal invariance, we can consider the case
z1 = 0, z2 = 1 and z3 = ∞. In this case, the measure has a very special conformal invariance
conjectured on the limit of planar maps called invariance by rerooting. In words, if you sample
a point x according to the measure and send 0 to 0, the point x to 1 and ∞ to ∞ by a Möbius
transform then the image of the measure by the map has same distribution as the initial measure.
More precisely, for a point x different from 0 and ∞ let ψx(z) = z/x be the unique Möbius
transform of S which sends 0 to 0, the point x to 1 and ∞ to ∞. Then we have the following
equality for any functional F defined on measures1

E(0,γ),(1,γ),(∞,γ)

[∫
S
F ((V 1

γ (z)dz) ◦ ψ−1
x )V 1

γ (x)dx

]
= E(0,γ),(1,γ),(∞,γ)[F (V 1

γ (z)dz)] (26)

where if ν is a measure on S and f : S → S some function, the measure ν ◦ f−1 is defined by
(ν ◦ f−1)(A) = ν(f−1(A)) for all Borel sets A.

Finally, we mention that a variant to LQG was developped in a series of works by Duplantier-
Miller-Sheffield: see [20] and [46]. The framework of these works is a bit different than the
one we consider in these notes. Duplantier-Miller-Sheffield consider a GFF version of LQG with
no cosmological constant µ and in particular no correlation functions. In this approach based
on a coupling between the GFF and SLE, they construct equivalence classes of random measures
(called quantum cones, spheres, etc...) with two marked points and coupled to space filling variants
of SLE curves. In some sense, their framework is complementary with the one of [18] which
considers random measures with 3 or more marked points. The framework of Duplantier-Miller-
Sheffield [20] is interesting because it establishes non trivial links between (decorated) random
planar maps and the so-called quantum cones, spheres, etc...

4.7 Conjectured relation with planar maps

Following Polyakov’s work [39], it was soon acknowledged by physicists that one should recover
LQG as some kind of discretized 2d quantum gravity given by finite triangulations of size N as
N goes to infinity (see for example the classical textbook from physics [1] for a review on this
problem). From now on, we assume that the reader is familiar with the definition of a triangulation
of the sphere equipped with a conformal structure: otherwise, he can have a look at the appendix

1A simple and elegant proof of this property was communicated to us by Julien Dubédat.
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where we gathered the required background. More precisely, let TN be the set of triangulations of
S with N faces and TN,3 be the set of triangulations with N faces and 3 marked faces (see figure
1 for a simulation of a random triangulation with N = 105 and sampled according to the uniform
measure on TN ). We will choose a point in each each marked face: these points are called roots.
We equip T ∈ TN with a standard conformal structure where each triangle is given volume 1/N
(see the appendix). The uniformization theorem tells us that we can then conformally map the
triangulation onto the sphere S and the conformal map is unique if we demand the map to send the
three roots to prescribed points z1, z2, z3 ∈ S. Concretely, the uniformization provides for each
face t ∈ T a conformal map ψt : t→ S where t is an equilateral triangle of volume 1

N
. Then, we

denote by νT,N the corresponding deterministic measure on S where νT,N(dz) = |(ψ−1
t )′|2dz on

each distorted triangle t̃ image of a triangle t by ψt. In particular, the volume of the total space S
is N × 1

N
= 1. Now, we consider the random measure νN defined by

EN [F (νN)] =
1

ZN

∑
T∈TN,3

F (νT,N), (27)

for positive bounded functions F where ZN is a normalization constant given by #TN,3 (the
cardinal of the set TN,3). We denote by PN the probability law associated to EN .

We can now state a precise mathematical conjecture:

Conjecture 12. Under PN , the family of random measures (νN)N≥1 converges in law as N →∞
in the space of Radon measures equipped with the topology of weak convergence towards the law

of the unit volume Liouville measure given by (24) with parameter γ =
√

8
3
, where n = 3 and

(zi, αi) = (zi, γ).

Figure 1: Random triangulation with 105 faces (no isometric embedding into the space). Courtesy
of F. David
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Though such a precise conjecture was first stated in [18], it is fair to say that such a conjecture
is just a clean mathematical formulation of the link between discrete gravity and LQG understood
in the 80’s by physicists. As of today, conjecture 12 is still completely open (though partial
progress has been made on a closely related question in a paper by Curien [16]). One should also
mention that a weaker and less explicit variant of conjecture 12 appears in Sheffield’s paper [46].
More precisely, Sheffield proposed a limiting procedure involving the GFF to define a candidate
measure for the limit of (νN)N≥1 as N → ∞ (see the introduction of section 6 and conjecture
1.(a)); however, he left open the question of convergence of this limiting procedure. Recently,
Aru-Huang-Sun [2] proved that the limiting procedure does converge and that the limit is the unit

volume Liouville measure given by (24) with parameter γ =
√

8
3
, where n = 3 and (zi, αi) =

(zi, γ).

Let us consider the case z1 = 0, z2 = 1 and z3 = ∞ (by conformal invariance, this is no
restriction). In this case, one could also consider triangulations with a fourth marked point and
send the fourth marked point to z3 in place of the third. Of course, this should not change the limit
measure and therefore the limit measure should satisfy the invariance by rerooting property (26).

Finally, we could also state many variants of conjecture 12 as it is expected that some form of
universality should hold. More precisely, conjecture 12 should not really depend on the details to
define the measure νN in (27). For instance, one expects the same conjecture to hold where νT,N
could be defined by putting uniform volume 1/N in each triangle of the circle packed triangula-
tion: see figure 2 for a circle packed triangulation with large N (however, in this situation, there
is a subtelty in the way one fixes the circle packing in a unique way: indeed, Möbius transforms
send circle packings to circle packings but the centers of the circles of the latter are not necessarily
the image of the centers of the former by the Möbius transforms).

(a) Circle packing of a triangulation (b) corresponding adjacency circles

Figure 2: Courtesy of F. David
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4.8 On the Ising model at critical temperature

In this section, we give an account on the recent breakthroughs which occured in the understanding
of the Ising model in the plane at critical temperature. This will provide the reader with another
example of model where CFT can be made rigorous. Let us start with a few notations.

On the lattice Z2 and if x, y are in Z2 we denote x ∼ y the standard adjacency relation. Let
N be a positive integer. We consider the box ΛN = [| − N,N |]2 and its frontier ∂ΛN = {x ∈
cΛN , ∃y ∈ ΛN , x ∼ y}. The state space of the model is {−1, 1}ΛN and the energy of a spin
configuration is given by

H+
N(σ) = −

∑
x∈ΛN , x∼y

σxσy

where we will consider + boundary conditions, i.e. we set the spins in ∂ΛN equal to 1.

The Ising model on ΛN is then the Gibbs measure µN on the state space {−1, 1}Λ
N where the

expectation of a functional F is given by

µ+
N,β(F (σ)) =

1

ZN,β

∑
σ∈{−1,1}ΛN

F (σ)e−βH
+
N (σ)

where β > 0 is the inverse temperature of the model and ZN,β a normalization constant ensuring
that µ+

N,β is a probability measure. The model undergoes a phase transition and the critical temper-
ature is explicitly given by βc = 1

2
ln(1 +

√
2). One can show that the measure µ+

N,βc
converges as

N goes to infinity towards a measure µβc defined in the full plane, i.e. with state space {−1, 1}Z2

(one can notice that we have removed the superscript + in the full plane measure; indeed one can
show that this limit does not depend on the boundary conditions used to define the approximation
measures on ΛN ).

The model was conjectured by physicists to be described by a specific CFT with central charge
c = 1

2
with two primary fields (to be precise there are three primary fields in the theory but the

third one is just the constant 1). We will denote the two primary fields σ(z) (the spin field) and
ε(z) (the energy density field). We consider the spin field first and set the following definition for
non coincident points z1, · · · , zn and n even

< σ(z1) · · ·σ(zn) >:=

2−n/2
∑

µ∈{−1,1}n,
∑
i µi=0

∏
i<j

|zi − zj|µiµj/2
1/2

If ψ is a Mobius transform on the sphere then |ψ(z)− ψ(y)| = |ψ′(z)|1/2|ψ′(y)|1/2|z − y| and
therefore

< σ(ψ(z1)) · · ·σ(ψ(zn)) >=
n∏
i=1

|ψ′(zi)|−1/8 < σ(z1) · · ·σ(zn) > (28)

hence in CFT langage σ has conformal weight 1
16

.

Let b.c denote the integer part. For ε > 0, we are now interested in the scaling limit as ε goes
to 0 of the discrete spin field x 7→ σbx

ε
c defined on the rescaled lattice εZ2 under the measure µβc

(see figure 3 for a simulation of the spin field). In view of (28), it is natural to rescale the field by
the factor ε−1/8.
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Figure 3: Simulated Ising model at critical temperature with free boundary conditions (courtesy
of C. Hongler).

Now the following convergence holds for the rescaled correlations

µβc [
n∏
i=1

(ε−1/8σb zi
ε
c)] →

ε→0
Cn < σ(z1) · · · σ(zn) > (29)

where C is a lattice specific constant. This important theorem was proved by Chelkak-Hongler-
Izyuorv [13] building on the fermionic observable first studied by Smirnov [48] and Chelkak-
Smirnov [12]; in fact the main theorem in [13] shows the convergence of the rescaled correlations
to an explicit expression in any domain (not just the full plane). The convergence result (29)
was also proved independently by Dubédat [19] by an exact bosonization procedure (roughly,
bosonization means in this context that there exists an exact relation between the squared cor-
relation functions of the Ising model on a lattice and the correlations of the exponential of the
discrete GFF on a lattice). As is standard in rigorous CFT, one can define the limit σ as a random
distribution. More precisely, Camia-Garban-Newman [11] proved that there exists a random dis-
tribution σ defined on some probability space such that ε−1/8σbx

ε
c converges in law in the space of

distributions towards σ.

Finally, let us mention that similar results can be proved for the energy density field ε. In this
case, the properly rescaled (and recentered) energy σiσj of a bond between two adjacent vertices
i ∼ j converges towards the field ε (in the sense of the correlation functions): this is proved in
Hongler [28] and Hongler-Smirnov [29] (in any domain and not just the full plane). It was also
proved independently in the full plane by Boutillier and De Tilière on general periodic isoradial
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graphs [8, 9]. There also exist explicit formulas for the correlations < ε(z1) · · · ε(zn) > of the
field ε (but we will not write them here: see [28]) and the field ε has conformal weight 1/2, i.e.

< ε(ψ(z1)) · · · ε(ψ(zn)) >=
n∏
i=1

|ψ′(zi)|−1 < ε(z1) · · · ε(zn) > (30)

Let us further mention that the energy density field cannot be understood as a random distribution
hence < . > is not a real measure in (30).

5 Appendix

5.1 The conformal structure on planar maps

In this subsection, we recall basic definitions and facts on triangulations equipped with a confor-
mal structure. This part is mostly based on Rhode’s paper [26]. A finite triangulation T is a graph
you can embed in the sphere such that each inner face has three adjacent edges (the edges do not
cross and intersect only at vertices). The triangulation T has size N if it has N faces. We see
each triangle t ∈ T as an equilateral triangle of fixed volume a2 say that we glue topologically
according to the edges and the vertices. This defines a topological structure (and even a metric
structure). Now, we put a conformal structure on T . We need an atlas, i.e. a family of compatible
charts. We map the inside of each triangle t to the same triangle in the complex plane. If two
triangles are adjacent in the triangulation, we map them to two adjacent equilateral triangles in the
complex plane. Now, we need to define an atlas in the neighborhood of a vertex a. The vertex a is
surrounded by n triangles. We first map these triangles in the complex plane in counterclockwise
order and such that each is equilateral. Then we use the map z 7→ z6/n to "unwind" the triangles
(in fact, this unwinds the triangles only if n > 6) to define a homeomorphism around the vertex
a. By the uniformization theorem, we can find a conformal map ψ : T 7→ C where we send 3
points in T called roots to fixed points x1, x2, x3 ∈ S. For each triangle t, we can consider ψt, the
restriction of ψ to t, as a standard conformal map from t to a distorted triangle t̃ ⊂ S. It is then
natural to equip C with the standard pullback metric. More precisely, in each triangle t̃ the metric
is given by |(ψ−1

t )′(z)|2dz and then one can define the metric in C by gluing the metric of each
distorted triangle t̃. This metric has conical singularities at the points α of the form α = ψ(a)
where a is a vertex of T .

Since ψ−1 is analytic, we have |ψ−1(z)| ≈ |z − α|n/6 around α (to see this compose ψ−1 with
the chart z 7→ z6/n ). Recall that the metric on S around α is of the form |(ψ−1)′(z)|2dz = eλ(z)dz.
We have |(ψ−1)′(z)|2 ≈ |z − α|2(n/6−1). Therefore, there is little mass around points n > 6 and
big mass around points n < 6. This metric has a cone interpretation. If θ > 0 is some angle
and Cθ is the corresponding cone, one can put a conformal structure on the cone by the function
ψ : z 7→ z

2π
θ in which case the metric is

|(ψ−1)′(z)|2dz =
θ

2π
|z|2( θ

2π
−1)dz =

θ

2π
|z|2βdz

where β = θ
2π
− 1 is in ] − 1,∞[. Therefore, around 0, the average Ricci curvature is then given

by

−2β

∫
|z|≤1

∆z ln |z|dz = −4πβ = 2(2π − θ)
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In the case of triangulations, the angle θ is related to n by the formula θ = nπ
3

: this means that
there is negative curvature (and little mass) around α if n > 6 and the opposite if n < 6.
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