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AN INTRODUCTION IN FIRST-ORDER
REWRITING



FIRST-ORDER REWRITING

- First-order finite terms:

Ts > s,t.. = x | C(51,---’5ar(c))
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FIRST-ORDER REWRITING

« First-order finite terms:
Ts > st.. = X | c(S1,..,Sarc)
« Truncation [s|; of aterm s € Ty at depth d € N:
Islo=+  IXlgp1=x  [c(s1...SR)]d+1 = C(US1]d > ISkla)

First-order (infinitary) terms are the elements of the metric completion Ty
of Ts wrt. the metric defined by d(s, t) == inf{27 | |s]4 = [t]4}.
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FIRST-ORDER REWRITING

« First-order finite terms:
Ts > st.. = X | c(S1,..,Sarc)
« Truncation [s|; of aterm s € Ty at depth d € N:
Islo=+  IXlgp1=x  [c(s1...SR)]d+1 = C(US1]d > ISkla)

First-order (infinitary) terms are the elements of the metric completion Ty
of Ts wrt. the metric defined by d(s, t) == inf{27 | |s]4 = [t]4}.
* AnITRs is a set R of rewrite rules, i.e. pairs (,r) € Ts x T3 such that (...).

ner 0:V->TY si—yg s 1<i<ar()

’
o-l—p0o-r C(S1 > Sar(c)) —d+1 C(S1, > S Sar(c))
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STRONGLY CONVERGING REWRITING SEQUENCES

A rewriting sequence of ordinal length y:

So —d, S —d, - Sw —d, Sw+1 Ty Sy
is converging if for all limit ordinal y’ <y,
lim sg =sy
o—-y’ 6 Y
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STRONGLY CONVERGING REWRITING SEQUENCES

A rewriting sequence of ordinal length y:

S0 —d, S1 —d, -+ Sw —d, Sw+1 —d Sy

w+1 77

is strongly converging if for all limit ordinal y’ <,

lim sg = sy and lim dg = .
6—’Y, 6 y 6i>yf 6
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COMPRESSION

An ITRS R is left-linear if for all rule (I,r) € R, no variable occurs twice in L.

Compression lemma [KKSdV'95]

If R is left-linear, then

for all s.c. rewriting sequence from s to s’

there is a s.c. rewriting sequence from s to s’ of length at most w.
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FIRST-ORDER INFINITARY REWRITING, COINDUCTIVELY

- First-order terms: just as before... but coinductively:

T 5 st.. = X | cS1,..,Sar()
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FIRST-ORDER INFINITARY REWRITING, COINDUCTIVELY

- First-order terms: just as before... but coinductively:
T§° > st.. = Xx | <S1,.,Sarc)

- Infinitary closure of the rewriting relation — induced by an ITRs:

Swes 8 —t $10781 o Sag 7 Saro)
,m

(splity  ———— (lift,) — (lift)
X (59, ..., Sar(c)) ¥ c(s1,...s sar(c))

s —® X —

Y Y

where s e s’ denotes any sequence

suchthatvl <i<m, §;<y.
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FIRST-ORDER INFINITARY REWRITING, COINDUCTIVELY

- First-order terms: just as before... but coinductively:
T§° > st.. = Xx | <S1,.,Sarc)

- Infinitary closure of the rewriting relation — induced by an ITRs:

’
S ern‘> S/ S’ _’oo t 5-] —> 51 Sar(c) T)oo Sar(c)

(split) — (lift,) — - (lifty)
X c(s1,...,sar(c))7 c(s1, .5 Sar©)

s —® X —

Y Y

where s e s’ denotes any sequence

suchthatvl <i<m, §;<y.
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FIRST-ORDER INFINITARY REWRITING, COINDUCTIVELY

s m S/ S/ _’oo t 51 700 S‘/l SBI'(C) T)oo Séll’(C)
: = (splity  ———— (lift,) — (lifto)
s - t X ~ X (81,5 Sare) ~ c(s1, ..., Sar©)

S v s’ denotes s —* s} ?°° t; —* s) —= .. 5_'00 t, —* s’ with §; < y.
B 1 2 'm

Theorem [EHHPS'18]
s —® tiff there is a s.c. rewriting sequence from s to t.
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COMPRESSION, COINDUCTIVELY

[ee)

S s §7 s ¢t Sq 7 S1 Sar(o) 700 Sar(c)
m

(splity ~ ———— (lift,) (lift)
X

s X~ C(S15 -+ Sar(e) 7 €(S1, - Sar(o))

S s’ denotes s —* s} 7“ t; —*s) 7“ . 5—’00 tm, —* s with §; <.
’ 1 2 m

t s —Y s1 Sar(o) —Y¥ Sé\r(c) )
(split) — —— (lifty) — (lifte)
s—¥t X —Yx c(S1, -5 Sare) —* (51, .., Sar(c))

s—*s s =Y

Compression lemma. If R is left-linear, then —® = —v,

Proof 1. Translate everything to s.c. rewriting sequences.
Proof2. [EHHPS18], using a fixed-point presentation.

Proof 3. Consequence of this work.
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A GENERIC FRAMEWORK FOR
COMPRESSION




REWRITING GENERIC NON-WELLFOUNDED DERIVATION TREES

Instead of terms, we will rewrite arbitrary non-wellfounded derivations trees
built from a family D of coinductive rules:

S‘] Sar(r)
r(S1, .. Sar(r)

DTg is the set of (valid) derivation trees.

)
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REWRITING GENERIC NON-WELLFOUNDED DERIVATION TREES

Instead of terms, we will rewrite arbitrary non-wellfounded derivations trees
built from a family D of coinductive rules:

S'] Sar(r)
r(51 yeees Sar(r))
DTg is the set of (valid) derivation trees.

(r)

Example: Terms in T° can be encoded as derivation trees, by:

[ ] [ ]
(vary) (cons.)
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REWRITING GENERIC NON-WELLFOUNDED DERIVATION TREES

Instead of terms, we will rewrite arbitrary non-wellfounded derivations trees
built from a family D of mixed inductive and coinductive rules:

------ s ) coind(r) €40, 1}

DTg is the set of (valid) derivation trees.
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REWRITING GENERIC NON-WELLFOUNDED DERIVATION TREES

Instead of terms, we will rewrite arbitrary non-wellfounded derivations trees
built from a family D of rules with inductive or coinductive premises:

------ =SS coind(r) € {0,110

DTg is the set of (valid) derivation trees.

7/15



REWRITING GENERIC NON-WELLFOUNDED DERIVATION TREES

Instead of terms, we will rewrite arbitrary non-wellfounded derivations trees
built from a family D of rules with inductive or coinductive premises:

------ S22 () coind(r) € {0,110
r(S1 e Sar(r))

DT; is the set of (valid) derivation trees.

Example: infinitary A-terms can be encoded as derivation trees, by:
° [ ] [ ]
(vary) o (abs,) — (@pp)
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REWRITING GENERIC NON-WELLFOUNDED DERIVATION TREES

Instead of terms, we will rewrite arbitrary non-wellfounded derivations trees
built from a family D of rules with inductive or coinductive premises:

------ S22 () coind(r) € {0,110
r(S'] e Sar(r))

DT; is the set of (valid) derivation trees.

Example: abc-infinitary A-terms can be encoded as derivation trees, by:

(varg — =g= @bsg = ——— (app)
with coind(abcy, 1) := a, coind(app, 1) := b and coind(app, 2) := c.
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REWRITING GENERIC NON-WELLFOUNDED DERIVATION TREES

Instead of terms, we will rewrite arbitrary non-wellfounded derivations trees
built from a family D of rules with inductive or coinductive premises:

------ =SS coind(r) € {0,110

DTg is the set of (valid) derivation trees.
Aset —( C DTg X DT; of zero steps generates a relation — inductively by:

si—qg s 1<i<ar()

’
r(S1, .. Sis > Sar(r)) ~d+coind,(i) r(S1,....Sjs - Sar(r))

We can define truncations, the corresponding metric d, s.c. rewriting sequences.
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INFINITARY REWRITING, COINDUCTIVELY

—® is defined by the rule

(split)

Sy Sar(r)
and for each === === (r) by therule

r(S1 EREE) Sar(r))

4 4
51 700 ST o Sar() > Sar()

Theorem. s — s’ iff there is a s.c. rewriting sequence from s to s’.
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A CHARACTERISATION OF COMPRESSION

S m s’ s’ —Yr°° t
s . * ! ’ w
s o (split,,)
% s —Yt
+ —yr°° is 7°° above a rule + —Yis—"“abovearule
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A CHARACTERISATION OF COMPRESSION

S m s’ s’ —Yr°° t
s . * ! ’ w
s o (split,,)
% s —Yt
+ —v’m is T>°° above a rule + —Yis—"“abovearule

Theorem

[o0]

—® = W iff the following property Q is satisfied:

v6,s,t,t/, (vn €N, 2135’,,> A (s ?“ t— t’) = (35’ €DTy, s —* s’ T°° t’).
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A CHARACTERISATION OF COMPRESSION

S potas s’ s —=%t
' ; s—'s s =Yt .
s —® (Spllt) w (5pl|tw)
Y s—"t
+ —%js—> above arule + —Yjs—%abovearule
Y Y
Theorem

[o0]

—® = W iff the following property Q is satisfied:

v8,s,t,t, (vn €N, 2[35’n> A (s -t t’) = (35' €eDTy, s —* s’ — t’).

Looks like the usual thing to prove!
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APPLICATIONS




ALL THE COMPRESSION LEMMAS | KNOW

« Left-linear 1TRs (first-order) [KKSdV'95]

« Infinitary A-calculi [KKSdV'97]

- Left-linear, fully extended infinitary Icrs (higher-order) [KS'11]
+ UMALL® cut-elimination sequences [S'23]

(Any other one you like?)
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FIRST-ORDER REWRITING IS BACK

Terms in T can be encoded as derivation trees, by:

o (vary) (cons,)

Theorem
If R is a left-linear ITRS, then — satisfies the property Q.
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INFINITARY A-CALCULI

abc-infinitary A-terms can be encoded as derivation trees, by:

(var) === (@abs) === (app)

with coind(abcy, 1) := a, coind(app, 1) := b and coind(app, 2) := c.
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INFINITARY A-CALCULI

abc-infinitary A-terms can be encoded as derivation trees, by:

(vary) e (abs,) = (app)
with coind(abcy, 1) := a, coind(app, 1) := b and coind(app, 2) := c.

Theorem
—>gbc satisfies the property Q.

12/15



INFINITARY A-CALCULI

Proof sketch. Hypotheses: s ?°° t—t and vneN, Ps,.
Goal: s —"yg ?°° t.
Ug—"u u—=u’
Sy
6.n
uO —® U1
5
U, —* AX.Ug AX.Ug _5’00 AX.Uq Vo —*V v —6'00 v’
Ps.n ~—— P
U, —* Ax.u’ Vg —* Vv "
5 5
UVg =S5 _5'00 t=Axu)v’
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INFINITARY A-CALCULI

Proof sketch. Hypotheses: s ?°° t—t and vneN, Ps,.
Goal: s —*s’ ?°° t.
Ug—"u u—=u’
e p
6.n
uO —® U1
6
U; —* AX.Ug AX.ug _5’00 AX.uy Vo —*VvV v T‘” v/
Ps.n ~—— P
U, —* Ax.u’ Vg —* Vv "
6 5
UVg =S5 _5'00 t=Axu)v’

Finally, s=uqvyg —"* (Ax.u)v — ulv/x] —= u’[v’/x] =t.
— o 13/15



INFINITARY A-CALCULI

abc-infinitary A-terms can be encoded as derivation trees, by:

(vary) e (abs,) = (app)
with coind(abcy, 1) := a, coind(app, 1) := b and coind(app, 2) := c.

Theorem
—>gbc satisfies the property Q.
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INFINITARY A-CALCULI

abc-infinitary A-terms can be encoded as derivation trees, by:

(vary) e (abs,) = (app)
with coind(abcy, 1) := a, coind(app, 1) := b and coind(app, 2) := c.

Theorem
—>gbc satisfies the property Q.

Corollary
The usual coinductive definition of —>gbc, as introduced by [EP"13].

Claim
This generalises to left-linear, fully extended ICRs. 14115



- Compression for cut-elimination in uMALL®, i.e. the system of
non-wellfounded proofs for yMALL, the multiplicative-additive linear logic
with fixed points

« Infinitary cut-elimination in uMALL* allows to deduce many cut-elimination
results for other logics...

» ... by crucially using compression of the former!

+ We would like to obtain a fully coinductive cut-elimination proof.

« Is this a computable procedure?
What does it even mean precisely for it to be constructive?
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Thanks for listening!
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