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AN INTRODUCTION IN FIRST-ORDER
REWRITING



FIRST-ORDER REWRITING

• First-order finite terms:

TΣ ∋ 𝑠, 𝑡, … ≔ 𝑥 | c(𝑠1, … , 𝑠ar(c))

• Truncation ⌊𝑠⌋𝑑 of a term 𝑠 ∈ TΣ at depth 𝑑 ∈ N:
⌊𝑠⌋0 ≔ ∗ ⌊𝑥⌋𝑑+1 ≔ 𝑥 ⌊c(𝑠1, … , 𝑠𝑘)⌋𝑑+1 ≔ c(⌊𝑠1⌋𝑑 , … , ⌊𝑠𝑘⌋𝑑)

First-order (infinitary) terms are the elements of the metric completion T∞Σ
of TΣ wrt. the metric defined by d(𝑠, 𝑡) ≔ inf {2−𝑑 | ⌊𝑠⌋𝑑 = ⌊𝑡⌋𝑑}.

• An ITRS is a set ℛ of rewrite rules, i.e. pairs (𝑙, 𝑟) ∈ TΣ × T∞Σ such that (...).

(𝑙, 𝑟) ∈ ℛ 𝜎 ∶ 𝒱 → T∞Σ
𝜎 ⋅ 𝑙 ⟶0 𝜎 ⋅ 𝑟

𝑠𝑖 ⟶𝑑 𝑠′𝑖 1 ⩽ 𝑖 ⩽ ar(c)
c(𝑠1, … , 𝑠ar(c)) ⟶𝑑+1 c(𝑠1, … , 𝑠′𝑖 , … , 𝑠ar(c))
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STRONGLY CONVERGING REWRITING SEQUENCES

A rewriting sequence of ordinal length 𝛾:

𝑠0 ⟶𝑑0 𝑠1 ⟶𝑑1 … 𝑠𝜔 ⟶𝑑𝜔 𝑠𝜔+1 ⟶𝑑𝜔+1 … 𝑠𝛾

is

strongly

converging if for all limit ordinal 𝛾′ ⩽ 𝛾,

lim
𝛿→𝛾′

𝑠𝛿 = 𝑠𝛾′

and lim
𝛿→𝛾′

𝑑𝛿 = ∞.
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COMPRESSION

An ITRS ℛ is left-linear if for all rule (𝑙, 𝑟) ∈ ℛ, no variable occurs twice in 𝑙.
Compression lemma [KKSdV’95]
If ℛ is left-linear, then
for all s.c. rewriting sequence from 𝑠 to 𝑠′
there is a s.c. rewriting sequence from 𝑠 to 𝑠′ of length at most 𝜔.
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FIRST-ORDER INFINITARY REWRITING, COINDUCTIVELY

• First-order terms: just as before... but coinductively:

T∞Σ ∋ 𝑠, 𝑡, … ≔ 𝑥 | c(𝑠1, … , 𝑠ar(c))

• Infinitary closure of the rewriting relation⟶ induced by an ITRS:

𝑠 ⟿𝛾,𝑚 𝑠′ 𝑠′ −⇁𝛾 ∞ 𝑡
(split)

𝑠 ⟶𝛾 ∞ 𝑡
(lift𝑥)𝑥 −⇁𝛾 ∞ 𝑥

𝑠1 ⟶𝛾 ∞ 𝑠′1 … 𝑠ar(c) ⟶𝛾 ∞ 𝑠′ar(c)
(liftc)

c(𝑠1, … , 𝑠ar(c)) −⇁𝛾 ∞ c(𝑠′1, … , 𝑠′ar(c))

where 𝑠 ⟿𝛾,𝑚 𝑠′ denotes any sequence

𝑠 ⟶∗ 𝑠′1 −⇁
𝛿1

∞ 𝑡1 ⟶∗ 𝑠′2 −⇁
𝛿2

∞ … −⇁
𝛿𝑚

∞ 𝑡𝑚 ⟶∗ 𝑠′

such that ∀1 ⩽ 𝑖 ⩽ 𝑚, 𝛿𝑖 < 𝛾.
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FIRST-ORDER INFINITARY REWRITING, COINDUCTIVELY

𝑠 ⟿𝛾,𝑚 𝑠′ 𝑠′ −⇁𝛾 ∞ 𝑡
(split)
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∞ … −⇁
𝛿𝑚

∞ 𝑡𝑚 ⟶∗ 𝑠′ with 𝛿𝑖 < 𝛾.

Theorem [EHHPS’18]
𝑠 ⟶∞ 𝑡 iff there is a s.c. rewriting sequence from 𝑠 to 𝑡.
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COMPRESSION, COINDUCTIVELY
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∞ 𝑡𝑚 ⟶∗ 𝑠′ with 𝛿𝑖 < 𝛾.

𝑠 ⟶∗ 𝑠′ 𝑠′ −⇁𝜔 𝑡 (splitω)
𝑠 ⟶𝜔 𝑡

(liftω𝑥 )𝑥 −⇁𝜔 𝑥

𝑠1 ⟶𝜔 𝑠′1 … 𝑠ar(c) ⟶𝜔 𝑠′ar(c)
(liftωc )

c(𝑠1, … , 𝑠ar(c)) −⇁𝜔 c(𝑠′1, … , 𝑠′ar(c))

Compression lemma. If ℛ is left-linear, then⟶∞ = ⟶𝜔.

Proof 1. Translate everything to s.c. rewriting sequences.
Proof 2. [EHHPS’18], using a fixed-point presentation.
Proof 3. Consequence of this work.

6/15



A GENERIC FRAMEWORK FOR
COMPRESSION



REWRITING GENERIC NON-WELLFOUNDED DERIVATION TREES

Instead of terms, we will rewrite arbitrary non-wellfounded derivations trees
built from a family 𝒟 of coinductive rules:

𝑆1 … 𝑆ar(r)
(r)

r(𝑆1, … , 𝑆ar(r))
DT∞𝒟 is the set of (valid) derivation trees.

A set⟶0 ⊆ DT∞𝒟 × DT∞𝒟 of zero steps generates a relation⟶ inductively by:

𝑠𝑖 ⟶𝑑 𝑠′𝑖 1 ⩽ 𝑖 ⩽ ar(r)
r(𝑠1, … , 𝑠𝑖, … , 𝑠ar(r)) ⟶𝑑+coindr(𝑖) r(𝑠1, … , 𝑠′𝑖 , … , 𝑠ar(r))

We can define truncations, the corresponding metric d, s.c. rewriting sequences.
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REWRITING GENERIC NON-WELLFOUNDED DERIVATION TREES

Instead of terms, we will rewrite arbitrary non-wellfounded derivations trees
built from a family 𝒟 of mixed inductive and coinductive rules:

𝑆1 … 𝑆ar(r)
(r)
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Instead of terms, we will rewrite arbitrary non-wellfounded derivations trees
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INFINITARY REWRITING, COINDUCTIVELY

⟶∞ is defined by the rule

𝑠 ⟿𝛾,𝑚 𝑠′ 𝑠′ −⇁𝛾
∞ 𝑡

(split)
𝑠 ⟶𝛾

∞ 𝑡

and for each
𝑆1 … 𝑆ar(r) (r)
r(𝑆1, … , 𝑆ar(r))

by the rule

𝑠1 ⟶𝛾
∞ 𝑠′1 … 𝑠ar(r) ⟶𝛾

∞ 𝑠′ar(r)
(liftr)

r(𝑠1, … , 𝑠ar(r)) −⇁𝛾
∞ r(𝑠′1, … , 𝑠′ar(r))

Theorem. 𝑠 ⟶∞ 𝑠′ iff there is a s.c. rewriting sequence from 𝑠 to 𝑠′.
8/15



A CHARACTERISATION OF COMPRESSION

𝑠 ⟿𝛾,𝑚 𝑠′ 𝑠′ −⇁𝛾 ∞ 𝑡
(split)

𝑠 ⟶𝛾 ∞ 𝑡

+ −⇁𝛾 ∞ is⟶𝛾 ∞ above a rule

𝑠 ⟶∗ 𝑠′ 𝑠′ −⇁𝜔 𝑡 (splitω)𝑠 ⟶𝜔 𝑡
+ −⇁𝜔 is⟶𝜔 above a rule

Theorem
⟶∞ = ⟶𝜔 iff the following property 𝔔 is satisfied:

∀𝛿, 𝑠, 𝑡, 𝑡′, (∀𝑛 ∈ N, 𝔓𝛿,𝑛) ∧ .

9/15
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𝛿
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Looks like the usual thing to prove!

.
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APPLICATIONS



ALL THE COMPRESSION LEMMAS I KNOW

• Left-linear ITRS (first-order) [KKSdV’95]
• Infinitary λ-calculi [KKSdV’97]
• Left-linear, fully extended infinitary ICRS (higher-order) [KS’11]
• 𝜇MALL∞ cut-elimination sequences [S’23]

(Any other one you like?)
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FIRST-ORDER REWRITING IS BACK

Terms in T∞Σ can be encoded as derivation trees, by:

(varx)●
● … ●

(consc)●

Theorem
If ℛ is a left-linear ITRS, then⟶ satisfies the property 𝔔.
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INFINITARY λ-CALCULI

𝑎𝑏𝑐-infinitary λ-terms can be encoded as derivation trees, by:

(varx)●
●

(absx)●
● ●

(app)●
with coind(abcx,1) ≔ 𝑎, coind(app,1) ≔ 𝑏 and coind(app,2) ≔ 𝑐.

Theorem
⟶𝑎𝑏𝑐

𝛽 satisfies the property 𝔔.

Corollary
The usual coinductive definition of⟶𝑎𝑏𝑐

𝛽 , as introduced by [EP’13].

Claim
This generalises to left-linear, fully extended ICRS.
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INFINITARY λ-CALCULI

Proof sketch. Hypotheses: 𝑠 −⇁
𝛿
∞ 𝑡⟶ 𝑡′ and ∀𝑛 ∈ N, 𝔓𝛿,𝑛.

Goal: 𝑠 ⟶∗ 𝑠′ −⇁
𝛿
∞ 𝑡′.

𝑢1 ⟶∗ 𝜆𝑥.𝑢0

𝑢0 ⟶∗ 𝑢 𝑢 −⇁
𝛿
∞ 𝑢′

𝔓𝛿,𝑛𝑢0 ⟶𝛿
∞ 𝑢1

𝜆𝑥.𝑢0 −⇁𝛿
∞ 𝜆𝑥.𝑢1

𝔓𝛿,𝑛𝑢1 ⟶𝛿
∞ 𝜆𝑥.𝑢′

𝑣0 ⟶∗ 𝑣 𝑣 −⇁
𝛿
∞ 𝑣′

𝔓𝛿,𝑛𝑣0 ⟶𝛿
∞ 𝑣′

𝑢1𝑣0 = 𝑠 −⇁𝛿
∞ 𝑡 = (𝜆𝑥.𝑢′)𝑣′

Finally, 𝑠 = 𝑢1𝑣0 ⟶∗ (𝜆𝑥.𝑢)𝑣 ⟶ 𝑢[𝑣/𝑥]⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑠′

−⇁
𝛿
∞ 𝑢′[𝑣′/𝑥] = 𝑡.
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INFINITARY λ-CALCULI

𝑎𝑏𝑐-infinitary λ-terms can be encoded as derivation trees, by:

(varx)●
●

(absx)●
● ●

(app)●
with coind(abcx,1) ≔ 𝑎, coind(app,1) ≔ 𝑏 and coind(app,2) ≔ 𝑐.

Theorem
⟶𝑎𝑏𝑐

𝛽 satisfies the property 𝔔.

Corollary
The usual coinductive definition of⟶𝑎𝑏𝑐

𝛽 , as introduced by [EP’13].

Claim
This generalises to left-linear, fully extended ICRS.
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FURTHER WORK

• Compression for cut-elimination in 𝜇MALL∞, i.e. the system of
non-wellfounded proofs for 𝜇MALL, the multiplicative-additive linear logic
with fixed points
• Infinitary cut-elimination in 𝜇MALL∞ allows to deduce many cut-elimination
results for other logics...

• ... by crucially using compression of the former!
• We would like to obtain a fully coinductive cut-elimination proof.

• Is this a computable procedure?
What does it even mean precisely for it to be constructive?
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Thanks for listening!

César, Compression Ricard, 1962, Centre Pompidou.
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