COMPRESSION FOR COINDUCTIVE INFINITARY REWRITING

(A PRELIMINARY ACCOUNT OF) A GENERIC APPROACH

Rémy Cerda, Alexis Saurin IRIF, CNRS and Université Paris Cité HOR 2025, Birmingham, 14 July 2025

AN INTRODUCTION IN FIRST-ORDER

REWRITING

FIRST-ORDER REWRITING

• First-order finite terms:

$$T_{\Sigma} \quad \ni \quad s,t,... \quad := \quad x \quad | \quad c(s_1,...,s_{ar(c)})$$

FIRST-ORDER REWRITING

First-order finite terms:

$$T_{\Sigma} \ni s, t, ... := x \mid c(s_1, ..., s_{ar(c)})$$

• Truncation $[s]_d$ of a term $s \in T_{\Sigma}$ at depth $d \in \mathbb{N}$:

$$[s]_0 := * [x]_{d+1} := x [c(s_1, ..., s_k)]_{d+1} := c([s_1]_d, ..., [s_k]_d)$$

First-order (infinitary) terms are the elements of the metric completion T_{Σ}^{∞} of T_{Σ} wrt. the metric defined by $\mathbf{d}(s,t) := \inf\{2^{-d} \mid \lfloor s \rfloor_d = \lfloor t \rfloor_d\}$.

FIRST-ORDER REWRITING

First-order finite terms:

$$T_{\Sigma} \ni s, t, \dots := x \mid c(s_1, \dots, s_{ar(c)})$$

• Truncation $[s]_d$ of a term $s \in T_{\Sigma}$ at depth $d \in \mathbb{N}$:

$$\lfloor s \rfloor_0 := * \qquad \lfloor x \rfloor_{d+1} := x \qquad \lfloor c(s_1, \ldots, s_k) \rfloor_{d+1} := c(\lfloor s_1 \rfloor_d, \ldots, \lfloor s_k \rfloor_d)$$

First-order (infinitary) terms are the elements of the metric completion T_{Σ}^{∞} of T_{Σ} wrt. the metric defined by $\mathbf{d}(s,t) \coloneqq \inf\{2^{-d} \mid \lfloor s \rfloor_d = \lfloor t \rfloor_d\}$.

• An ITRS is a set \mathcal{R} of rewrite rules, i.e. pairs $(l,r) \in T_{\Sigma} \times T_{\Sigma}^{\infty}$ such that (...).

$$\frac{(l,r) \in \mathcal{R} \quad \sigma: \, \mathcal{V} \to \mathsf{T}^{\infty}_{\Sigma}}{\sigma \cdot l \longrightarrow_{0} \sigma \cdot r} \qquad \frac{s_{i} \longrightarrow_{d} s'_{i} \quad 1 \leqslant i \leqslant \mathsf{ar}(c)}{\mathsf{c}(s_{1}, \dots, s_{\mathsf{ar}(c)}) \longrightarrow_{d+1} \mathsf{c}(s_{1}, \dots, s'_{i}, \dots, s_{\mathsf{ar}(c)})}$$

STRONGLY CONVERGING REWRITING SEQUENCES

A **rewriting sequence** of ordinal length γ :

$$s_0 \longrightarrow_{d_0} s_1 \longrightarrow_{d_1} \dots \quad s_{\omega} \longrightarrow_{d_{\omega}} s_{\omega+1} \longrightarrow_{d_{\omega+1}} \dots \quad s_{\gamma}$$

is **converging** if for all limit ordinal $\gamma' \leqslant \gamma$,

$$\lim_{\delta\to\gamma'}s_\delta=s_{\gamma'}$$

STRONGLY CONVERGING REWRITING SEQUENCES

A **rewriting sequence** of ordinal length γ :

$$s_0 \longrightarrow_{d_0} s_1 \longrightarrow_{d_1} ... \quad s_\omega \longrightarrow_{d_\omega} s_{\omega+1} \longrightarrow_{d_{\omega+1}} ... \quad s_\gamma$$

is **strongly converging** if for all limit ordinal $\gamma' \leqslant \gamma$,

$$\lim_{\delta \to \gamma'} s_\delta = s_{\gamma'} \qquad \text{and} \qquad \lim_{\delta \to \gamma'} d_\delta = \infty.$$

COMPRESSION

An ITRS \mathcal{R} is **left-linear** if for all rule $(l,r) \in \mathcal{R}$, no variable occurs twice in l.

Compression lemma [KKSdV'95]

If $\mathcal R$ is left-linear, then for all s.c. rewriting sequence from s to s' there is a s.c. rewriting sequence from s to s' of length at most ω .

• First-order terms: just as before... but coinductively:

$$T_{\Sigma}^{\infty} \quad \ni \quad s,t,... \quad := \quad x \quad | \quad c(s_1,...,s_{ar(c)})$$

• First-order terms: just as before... but coinductively:

$$T_{\Sigma}^{\infty} \quad \ni \quad s,t,... \quad \coloneqq \quad x \quad | \quad c(s_1,...,s_{ar(c)})$$

• **Infinitary closure** of the rewriting relation \rightarrow induced by an ITRS:

where $s \underset{vm}{\leadsto} s'$ denotes any sequence

$$s \longrightarrow^* s'_1 \xrightarrow{\delta_1}^{\infty} t_1 \longrightarrow^* s'_2 \xrightarrow{\delta_2}^{\infty} ... \xrightarrow{\delta_m}^{\infty} t_m \longrightarrow^* s'$$

such that $\forall 1 \leq i \leq m, \ \delta_i < \gamma$.

• First-order terms: just as before... but coinductively:

$$T_{\Sigma}^{\infty} \quad \ni \quad s,t,... \quad \coloneqq \quad x \quad | \quad c(s_1,...,s_{ar(c)})$$

• **Infinitary closure** of the rewriting relation \rightarrow induced by an ITRS:

where $s \underset{vm}{\leadsto} s'$ denotes any sequence

$$s \longrightarrow^* s'_1 \xrightarrow{\delta_1}^{\infty} t_1 \longrightarrow^* s'_2 \xrightarrow{\delta_2}^{\infty} ... \xrightarrow{\delta_m}^{\infty} t_m \longrightarrow^* s'$$

such that $\forall 1 \leq i \leq m, \ \delta_i < \gamma$.

$$\frac{s \underset{\gamma,m}{\longrightarrow} s' \quad s' \xrightarrow{\gamma'} t}{s \xrightarrow{\gamma}^{\infty} t} \text{ (split)} \qquad \frac{s_1 \xrightarrow{\gamma}^{\infty} s_1' \quad \dots \quad s_{ar(c)} \xrightarrow{\gamma}^{\infty} s_{ar(c)}'}{c(s_1, \dots, s_{ar(c)}) \xrightarrow{\gamma'}^{\infty} c(s_1', \dots, s_{ar(c)}')} \text{ (lift_c)}$$

$$s \underset{\gamma,m}{\longleftrightarrow} s' \text{ denotes } s \longrightarrow^* s'_1 \underset{\delta_1}{\longrightarrow^\infty} t_1 \longrightarrow^* s'_2 \underset{\delta_2}{\longrightarrow^\infty} ... \underset{\delta_m}{\longrightarrow^\infty} t_m \longrightarrow^* s' \text{ with } \delta_i < \gamma.$$

Theorem [EHHPS'18]

 $s \longrightarrow^{\infty} t$ iff there is a s.c. rewriting sequence from s to t.

COMPRESSION, COINDUCTIVELY

 $s \underset{\gamma,m}{\longleftrightarrow} s' \text{ denotes } s \longrightarrow^* s_1' \underset{\delta_1}{\longrightarrow^\infty} t_1 \longrightarrow^* s_2' \underset{\delta_2}{\longrightarrow^\infty} ... \underset{\delta_m}{\longrightarrow^\infty} t_m \longrightarrow^* s' \text{ with } \delta_i < \gamma.$

$$\frac{s \longrightarrow^* s' \quad s' \longrightarrow^{\omega} t}{s \longrightarrow^{\omega} t} \quad (split^{\omega}) \qquad \frac{s_1 \longrightarrow^{\omega} s'_1 \quad \dots \quad s_{ar(c)} \longrightarrow^{\omega} s'_{ar(c)}}{c(s_1, \dots, s_{ar(c)}) \longrightarrow^{\omega} c(s'_1, \dots, s'_{ar(c)})} \quad (lift^{\omega}_c)$$

Compression lemma. If \mathcal{R} is left-linear, then $\longrightarrow^{\infty} = \longrightarrow^{\omega}$.

Proof 1. Translate everything to s.c. rewriting sequences.

Proof 2. [EHHPS'18], using a fixed-point presentation.

Proof 3. Consequence of this work.

A GENERIC FRAMEWORK FOR

COMPRESSION

Instead of terms, we will rewrite arbitrary non-wellfounded **derivations trees** built from a family \mathcal{D} of **coinductive rules**:

$$\frac{S_1 \dots S_{ar(r)}}{r(S_1, \dots, S_{ar(r)})} (r)$$

 $\mathsf{DT}^\infty_{\mathcal{D}}$ is the set of (valid) derivation trees.

Instead of terms, we will rewrite arbitrary non-wellfounded **derivations trees** built from a family \mathcal{D} of **coinductive rules**:

$$\frac{S_1 \quad \dots \quad S_{ar(r)}}{r(S_1, \dots, S_{ar(r)})} \ (r)$$

 $DT_{\mathcal{D}}^{\infty}$ is the set of (valid) derivation trees.

Example: Terms in T_{Σ}^{∞} can be encoded as derivation trees, by:

Instead of terms, we will rewrite arbitrary non-wellfounded **derivations trees** built from a family \mathcal{D} of **mixed inductive and coinductive rules**:

$$S_1$$
 ... $S_{ar(r)}$... $r(S_1, ..., S_{ar(r)})$ $r(S_1, ..., S_{ar(r)})$ coind $(r) \in \{0, 1\}$

 $\mathsf{DT}^\infty_{\mathcal{D}}$ is the set of (valid) derivation trees.

Instead of terms, we will rewrite arbitrary non-wellfounded **derivations trees** built from a family \mathcal{D} of **rules with inductive or coinductive premises**:

$$\frac{S_1}{r(S_1, \dots, S_{ar(r)})} \dots coind(r) \in \{0, 1\}^{ar(r)}$$

 $\mathsf{DT}^\infty_\mathcal{D}$ is the set of (valid) derivation trees.

Instead of terms, we will rewrite arbitrary non-wellfounded **derivations trees** built from a family \mathcal{D} of **rules with inductive or coinductive premises**:

$$\frac{S_1}{r(S_1, ..., S_{ar(r)})} ... \frac{S_{ar(r)}}{r(s_1, ..., S_{ar(r)})} (r) \quad coind(r) \in \{0, 1\}^{ar(r)}$$

 $\mathsf{DT}^{\infty}_{\mathcal{D}}$ is the set of (valid) derivation trees.

Example: infinitary λ -terms can be encoded as derivation trees, by:

Instead of terms, we will rewrite arbitrary non-wellfounded **derivations trees** built from a family \mathcal{D} of **rules with inductive or coinductive premises**:

$$\frac{S_1}{r(S_1, ..., S_{ar(r)})} ... \frac{S_{ar(r)}}{r(s_1, ..., S_{ar(r)})} (r) \quad coind(r) \in \{0, 1\}^{ar(r)}$$

 $\mathsf{DT}^{\infty}_{\mathcal{D}}$ is the set of (valid) derivation trees.

Example: abc-infinitary λ -terms can be encoded as derivation trees, by:

$$(var_x)$$
 $\xrightarrow{----}$ (abs_x) $\xrightarrow{----}$ (app)

with coind(abc_x, 1) := a, coind(app, 1) := b and coind(app, 2) := c.

Instead of terms, we will rewrite arbitrary non-wellfounded **derivations trees** built from a family \mathcal{D} of **rules with inductive or coinductive premises**:

$$\frac{S_1}{r(S_1, ..., S_{ar(r)})} ... \frac{S_{ar(r)}}{r(s_1, ..., S_{ar(r)})} (r) \quad coind(r) \in \{0, 1\}^{ar(r)}$$

 $DT_{\mathcal{D}}^{\infty}$ is the set of (valid) derivation trees.

A set $\longrightarrow_0 \subseteq DT^{\infty}_{\mathcal{D}} \times DT^{\infty}_{\mathcal{D}}$ of zero steps generates a relation \longrightarrow inductively by:

$$\frac{s_i \longrightarrow_d s_i' \quad 1 \leqslant i \leqslant \operatorname{ar}(r)}{r(s_1, \dots, s_i, \dots, s_{\operatorname{ar}(r)}) \longrightarrow_{d+\operatorname{coind}_r(i)} r(s_1, \dots, s_i', \dots, s_{\operatorname{ar}(r)})}$$

We can define truncations, the corresponding metric \mathbf{d} , s.c. rewriting sequences.

INFINITARY REWRITING, COINDUCTIVELY

 \rightarrow^{∞} is defined by the rule

$$\frac{s \underset{\gamma,m}{\leadsto} s' \quad s' \xrightarrow{\gamma}^{\infty} t}{s \xrightarrow{\gamma}^{\infty} t}$$
(split)

and for each
$$\frac{S_1}{r(S_1,...,S_{ar(r)})}$$
 (r) by the rule

$$\frac{s_1 \xrightarrow{\gamma}^{\infty} s_1' \dots s_{ar(r)} \xrightarrow{\gamma}^{\infty} s_{ar(r)}'}{r(s_1, \dots, s_{ar(r)}) \xrightarrow{\gamma}^{\infty} r(s_1', \dots, s_{ar(r)}')} \text{ (lift}_r)$$

Theorem. $s \rightarrow^{\infty} s'$ iff there is a s.c. rewriting sequence from s to s'.

A CHARACTERISATION OF COMPRESSION

$$\frac{s \underset{\gamma,m}{\longrightarrow} s' \quad s' \xrightarrow{\gamma}^{\infty} t}{s \xrightarrow{\gamma}^{\infty} t} \text{ (split)}$$

$$+ \xrightarrow{\gamma}^{\infty} \text{is } \xrightarrow{\gamma}^{\infty} \text{ above a rule}$$

$$\frac{s \longrightarrow^* s' \quad s' \longrightarrow^{\omega} t}{s \longrightarrow^{\omega} t} \text{ (split}_{\omega})$$
+ $\longrightarrow^{\omega} \text{ is } \longrightarrow^{\omega} \text{ above a rule}$

A CHARACTERISATION OF COMPRESSION

$$\frac{s \underset{\gamma,m}{\longleftrightarrow} s' \quad s' \xrightarrow{\gamma}^{\infty} t}{s \xrightarrow{\gamma}^{\infty} t} \text{ (split)}$$

$$+ \xrightarrow{\gamma}^{\infty} \text{ is } \xrightarrow{\gamma}^{\infty} \text{ above a rule}$$

$$\frac{s \longrightarrow^* s' \qquad s' \longrightarrow^{\omega} t}{s \longrightarrow^{\omega} t} \text{ (split}_{\omega})$$

$$+ \qquad \longrightarrow^{\omega} \text{ is } \longrightarrow^{\omega} \text{ above a rule}$$

Theorem

$$\longrightarrow^{\infty} = \longrightarrow^{\omega}$$
 iff the following property \mathfrak{D} is satisfied:

$$\forall \delta, s, t, t', \quad \left(\forall n \in \mathbf{N}, \ \mathfrak{P}_{\delta, n} \right) \land \left(s \xrightarrow{\delta}^{\infty} t \longrightarrow t' \right) \Rightarrow \left(\exists s' \in \mathsf{DT}^{\infty}_{\mathcal{D}}, \ s \longrightarrow^{*} s' \xrightarrow{\delta}^{\infty} t' \right).$$

A CHARACTERISATION OF COMPRESSION

$$\frac{s \underset{\gamma,m}{\longleftrightarrow} s' \quad s' \xrightarrow{\gamma} t}{s \xrightarrow{\gamma} t} \text{ (split)}$$

$$+ \xrightarrow{\gamma} \text{ is } \xrightarrow{\gamma} \text{ above a rule}$$

$$\frac{s \longrightarrow^* s' \qquad s' \longrightarrow^{\omega} t}{s \longrightarrow^{\omega} t} \text{ (split}_{\omega})$$
+ $\longrightarrow^{\omega} \text{ is } \longrightarrow^{\omega} \text{ above a rule}$

Theorem

$$\longrightarrow^{\infty} = \longrightarrow^{\omega}$$
 iff the following property \mathfrak{Q} is satisfied:

$$\forall \delta, s, t, t', \quad \left(\forall n \in \mathbf{N}, \ \mathfrak{P}_{\delta, n} \right) \land \underbrace{\left(s \xrightarrow{\delta}^{\infty} t \longrightarrow t' \right) \Rightarrow \left(\exists s' \in \mathsf{DT}^{\infty}_{\mathcal{D}}, \ s \longrightarrow^{*} s' \xrightarrow{\delta}^{\infty} t' \right)}_{}.$$

Looks like the usual thing to prove!

ALL THE COMPRESSION LEMMAS I KNOW

- Left-linear ITRS (first-order) [KKSdV'95]
- Infinitary λ-calculi [KKSdV'97]
- Left-linear, fully extended infinitary ICRS (higher-order) [KS'11]
- μ MALL $^{\infty}$ cut-elimination sequences [S'23]

(Any other one you like?)

FIRST-ORDER REWRITING IS BACK

Terms in T_5^{∞} can be encoded as derivation trees, by:

Theorem

If $\mathcal R$ is a left-linear ITRS, then \longrightarrow satisfies the property $\mathfrak Q.$

abc-infinitary λ -terms can be encoded as derivation trees, by:

with $coind(abc_X, 1) := a$, coind(app, 1) := b and coind(app, 2) := c.

abc-infinitary λ -terms can be encoded as derivation trees, by:

with coind(abc_x, 1) := a, coind(app, 1) := b and coind(app, 2) := c.

Theorem

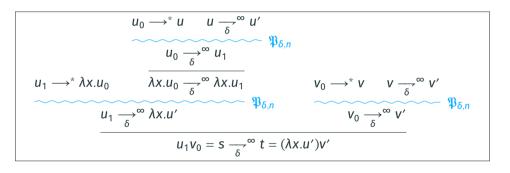
 $\longrightarrow_{\beta}^{abc}$ satisfies the property \mathfrak{Q} .

Proof sketch.

$$s \xrightarrow{\delta}^{\infty} t \longrightarrow t'$$

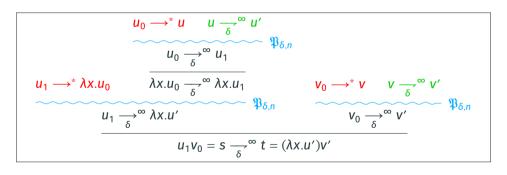
Hypotheses: $s \xrightarrow{\kappa} t \longrightarrow t'$ and $\forall n \in \mathbb{N}, \mathfrak{P}_{\delta,n}$.

Goal:
$$s \longrightarrow^* s' \xrightarrow{\delta}^{\infty} t'$$
.



Proof sketch. Hypotheses: $s \xrightarrow{\delta}^{\infty} t \longrightarrow t'$ and $\forall n \in \mathbb{N}, \ \mathfrak{P}_{\delta,n}$.

Goal: $s \longrightarrow^{*} s' \xrightarrow{\delta}^{\infty} t'$.



Finally,
$$s = u_1 v_0 \longrightarrow^* (\lambda x. u) v \longrightarrow \underbrace{u[v/x]}_{s'} \xrightarrow{\delta}^{\infty} u'[v'/x] = t.$$

abc-infinitary λ -terms can be encoded as derivation trees, by:

with coind(abc_x, 1) := a, coind(app, 1) := b and coind(app, 2) := c.

Theorem

 $\longrightarrow_{\beta}^{abc}$ satisfies the property \mathfrak{Q} .

abc-infinitary λ -terms can be encoded as derivation trees, by:

with coind(abc_x, 1) := a, coind(app, 1) := b and coind(app, 2) := c.

Theorem

 $\longrightarrow_{\beta}^{abc}$ satisfies the property \mathfrak{Q} .

Corollary

The usual coinductive definition of $\longrightarrow_{\beta}^{abc}$, as introduced by [EP'13].

Infinitary λ-calculi

abc-infinitary λ -terms can be encoded as derivation trees, by:

with coind(abc_x, 1) := a, coind(app, 1) := b and coind(app, 2) := c.

Theorem

 $\longrightarrow_{\beta}^{abc}$ satisfies the property \mathfrak{Q} .

Corollary

The usual coinductive definition of $\longrightarrow_{\beta}^{abc}$, as introduced by [EP'13].

Claim

This generalises to left-linear, fully extended ICRS.

FURTHER WORK

- Compression for cut-elimination in μ MALL, i.e. the system of non-wellfounded proofs for μ MALL, the multiplicative-additive linear logic with fixed points
 - Infinitary cut-elimination in μ MALL $^{\infty}$ allows to deduce many cut-elimination results for other logics...
 - ... by crucially using compression of the former!
 - We would like to obtain a fully coinductive cut-elimination proof.
- Is this a computable procedure?
 What does it even mean precisely for it to be constructive?

REFERENCES I

- Endrullis, Jörg, Helle Hvid Hansen, Dimitri Hendriks, Andrew Polonsky, and Alexandra Silva (2018). "Coinductive Foundations of Infinitary Rewriting and Infinitary Equational Logic". In: Logical Methods in Computer Science 14.1, pp. 1860–5974. DOI: 10.23638/LMCS-14(1:3)2018.
- Endrullis, Jörg and Andrew Polonsky (2013). "Infinitary Rewriting Coinductively". In: 18th International Workshop on Types for Proofs and Programs (TYPES 2011), pp. 16–27. DOI: 10.4230/LIPIcs.TYPES.2011.16.
- Kennaway, Richard, Jan Willem Klop, Ronan Sleep, and Fer-Jan de Vries (1995). "Transfinite Reductions in Orthogonal Term Rewriting Systems". In: Information and Computation 119.1, pp. 18–38. DOI: 10.1006/inco.1995.1075.
- (1997). "Infinitary lambda calculus". In: Theoretical Computer Science 175.1, pp. 93–125. DOI: 10.1016/S0304-3975(96)00171-5.

REFERENCES II

- Ketema, Jeroen and Jakob Grue Simonsen (2011). "Infinitary Combinatory Reduction Systems". In: Information and Computation 209.6, pp. 893–926. DOI: 10.1016/j.ic.2011.01.007.
- Saurin, Alexis (2023). "A Linear Perspective on Cut-Elimination for Non-wellfounded Sequent Calculi with Least and Greatest Fixed-Points". In: Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2023), pp. 203–222. DOI: 10.1007/978-3-031-43513-3_12.

Thanks for listening!

César, Compression Ricard, 1962, Centre Pompidou