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In the finitary case, it works...

In the infinitary case, it doesn’t!
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THE CHARACTERS




INFINITARY A-CALCULI?

The well known Y = Af.(Ax.(f)(X)x)Ax.(f)(x)x does not
normalise, but still computes “something”:
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The well known Y = Af.(Ax.(f)(X)x)Ax.(f)(x)x does not
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INFINITARY A-CALCULI!

Well, Bohm trees have existed for a long time (Barendregt
1977, following Bohm 1968)...
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INFINITARY A-CALCULI!

Well, Bohm trees have existed for a long time (Barendregt
1977, following Bohm 1968)...

... but infinitary A-calculi were formally introduced in the
1990s (Kennaway et al. 1997; Berarducci 1996) as an
example of infinitary rewriting.

Original definition: metric completion on the syntactic
trees (infinitary terms) and strong notion of convergence
(infinitary reductions).

Coinductive reformulation in the 2010s (Endrullis and
Polonsky 2013).
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OUR FAVORITE INFINITARY A-CALCULUS: N0
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OUR FAVORITE INFINITARY A-CALCULUS: N0

/

.. and AQ" is endowed with a reduction —>E°
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OUR FAVORITE INFINITARY A-CALCULUS: N0

P_)OO P/

B

M —p X M —p AX.P’
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P—>B

M —% (P)Q’
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OUR FAVORITE INFINITARY A-CALCULUS: N0

M —>E X M —>Z§ AXP P —>E° P’
M ———»Z? X M ———>E° AX.P’

M—g((P)Q P —>l°3° !

M —% (P)Q’
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WE GET WHAT WE WANTED

bi —>;§ f (Af)Af —>E° fe ‘
(Af)Af _)E (f)(Af)Af f —>E° f > (Af)Af _)1030 foo
@pds —F f2=(Hf° s

where A¢ := AXx.(f)(X)x, so that (Y)f —p (Af)Ay.
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THE TAYLOR APPROXIMATION OF THE A-CALCULUS

What is this thing called
B-reduction?
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THE TAYLOR APPROXIMATION OF THE A-CALCULUS
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THE TAYLOR EXPANSION

J(-) maps a term to the sum of its approximants.

As @
Terms n A A A
| As @
Approximants | % A ‘ ﬁl
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AND FOR INFINITE TERMS?

Terms may look like this:
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AND FOR INFINITE TERMS?
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THE STORY




THE CONSERVATIVITY CONJECTURE

We have a nice (?) theorem:

Forall M,N e A, if M —>E N then (M) s, T(N).

12/23




THE CONSERVATIVITY CONJECTURE

We have a nice (?) theorem:

Forall M,N € AQ, if M —% N then T(M) -, T(N).

12/23




THE CONSERVATIVITY CONJECTURE

We have a nice (?) theorem:

Forall M,N € AQ, if M —% N then T(M) -, T(N).

(It's not the point of this talk, but this has many nice
consequences!)
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THE CONSERVATIVITY CONJECTURE

We have a nice (?) theorem:

Forall M,N € AQ, if M —% N then T(M) -, T(N).

What about the converse?

For all M, N € A%, if 7(M) ww, T(N) then M —% N.
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WHAT WE CALL CONSERVATIVITY

Let (A, —,) and (B, —p) be two abstract rewriting systems. The
latter is an extension of the former if:

there is an injectioni : A< B, (inclusion)

va,a’ €A, if a —», a’ theni(a) —»g i(a’), (simulation)
Furthermore, this extension is conservative if:

va,a’ €A, ifi(a) »gi(a’)thena —, a’.  (conservativity)
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WHAT WE CALL CONSERVATIVITY

Let (A, —,) and (B, —p) be two abstract rewriting systems. The
latter is an extension of the former if:

there is an injectioni : A< B, (inclusion)
va,a’ €A, if a —», a’ theni(a) —»g i(a’), (simulation)

Furthermore, this extension is conservative if:

va,a’ €A, ifi(a) »gi(a’)thena —, a’.  (conservativity)

(P(Nr),~,) is a conservative extension of (A%91,—>E°).
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IN THE FINITARY CASE, IT WORKS...

Forall M,N € A, if 7:(M) -~ 7(N) then M —7 N.

Proof. Define a mashup relation + (Kerinec and V.A. 2023) such
that M + s means that s is an approximant of a reduct of M.
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IN THE INFINITARY CASE, THE MASHUP TECHNIQUE FAILS

If M = 7(N), then M _’E N.
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IN THE INFINITARY CASE, THE MASHUP TECHNIQUE FAILS

If M & 7(N), then M —% N.

B
Proof (finitary).

There is some [N] € J(N) mimicking N.
By assumption, M + |N|
Proceed by induction on N, for instance:

M—EAP P FI[P]

M |N| = |Ax.P’]
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IN THE INFINITARY CASE, THE MASHUP TECHNIQUE FAILS

If M = 7(N), then M N.

Proof (infinitary).

There is some [N] 4 € J(N)" mimicking N.
By assumption, M + |N|
Proceed by induction on N, for instance:

M —3 APy Py [P

M |N|y = |AX.P’]
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IN THE INFINITARY CASE, THERE'S A COUNTEREXAMPLE

There are terms A A € A" such that:

T(R) wsy T(R),
there is no reduction A —>I‘§° A.
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IN THE INFINITARY CASE, THE ACCORDION IS A COUNTEREXAMPLE

There are terms A,A € /\9;21 such that:

T (R) -~ T(R),
there is no reduction A —>E° A.
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IN THE INFINITARY CASE, THE ACCORDION IS A COUNTEREXAMPLE

There are terms A,A € /\9;21 such that:

T (R) -~ T(R),
there is no reduction A —>E° A.

From the topological point of view:

Q = (A)A generates a sequence of reductions with an
accumulation point (and limit) Q € A, but no strong limit,
Q3 = (A3)A3 generates a sequence of reductions with an

accumulation point (A3)(*) , but no Llimit.
A generates a sequence of reductions with an
accumulation point A , but no limit.
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IN THE INFINITARY CASE, THE ACCORDION IS A COUNTEREXAMPLE

(0]

(P(Nr),~»,) is not a conservative extension of (/\%91 .8 ).
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IN THE INFINITARY CASE, THE ACCORDION IS A COUNTEREXAMPLE

(P(Nr),~»,) is not a conservative extension of (/\%91 , —>[°3°).

However, recall this:

(P(Nr),=,) is a conservative extension of (Agooj,=§°L 3

Proof. Immediate consequence of the infinitary Commutation
theorem (C. and V.A. 2022).
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FURTHER QUESTIONS

Can we fix this by restricting (P(Ar), w»)?
For instance, consider a stratified resource reduction...
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FURTHER QUESTIONS

Can we fix this by restricting (P(Ar), w»)?

For instance, consider a stratified resource reduction...
There is a simulation theorem in some other settings
(e.g. algebraic A-calculus):

Are these extensions conservative?
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Thanks for your attention!
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