How To Play The Accordion

On the (Non-)Conservativity of the Reduction Induced by the Taylor Approximation of λ -Terms

Rémy Cerda, Aix-Marseille Université, I2M (jww. Lionel Vaux Auclair)

TLLA 2023, Rome, 2nd July 2023

OUTLINE

The characters

Infinitary λ-calculi

The Taylor expansion

The story

The conservativity conjecture

In the finitary case, it works...

In the infinitary case, it doesn't!

THE CHARACTERS

The well known $Y = \lambda f.(\lambda x.(f)(x)x)\lambda x.(f)(x)x$ does not normalise, but still computes "something":

The well known $Y = \lambda f.(\lambda x.(f)(x)x)\lambda x.(f)(x)x$ does not normalise, but still computes "something". We would like:

▶ Well, **Böhm trees** have existed for a long time (Barendregt 1977, following Böhm 1968)...

- Well, Böhm trees have existed for a long time (Barendregt 1977, following Böhm 1968)...
- ... but infinitary λ-calculi were formally introduced in the 1990s (Kennaway et al. 1997; Berarducci 1996) as an example of infinitary rewriting.

- Well, Böhm trees have existed for a long time (Barendregt 1977, following Böhm 1968)...
- ... but infinitary λ-calculi were formally introduced in the 1990s (Kennaway et al. 1997; Berarducci 1996) as an example of infinitary rewriting.
- Original definition: metric completion on the syntactic trees (infinitary terms) and strong notion of convergence (infinitary reductions).

- Well, Böhm trees have existed for a long time (Barendregt 1977, following Böhm 1968)...
- ... but infinitary λ-calculi were formally introduced in the 1990s (Kennaway et al. 1997; Berarducci 1996) as an example of infinitary rewriting.
- Original definition: metric completion on the syntactic trees (infinitary terms) and strong notion of convergence (infinitary reductions).
- Coinductive reformulation in the 2010s (Endrullis and Polonsky 2013).

Our favorite infinitary $\lambda\text{-calculus: }\Lambda^{001}_{\infty}$

... and Λ^{001}_{∞} is endowed with a reduction $\longrightarrow_{\beta}^{\infty}$.

$$\frac{M \longrightarrow_{\beta}^{*} x}{M \longrightarrow_{\beta}^{\infty} x} \qquad \frac{M \longrightarrow_{\beta}^{*} \lambda x.P \qquad P \longrightarrow_{\beta}^{\infty} P'}{M \longrightarrow_{\beta}^{\infty} \lambda x.P'}$$

$$\frac{M \longrightarrow_{\beta}^{*} (P)Q \qquad P \longrightarrow_{\beta}^{\infty} P' \qquad Q \longrightarrow_{\beta}^{\infty} Q'}{M \longrightarrow_{\beta}^{\infty} (P')Q'}$$

$$\frac{M \longrightarrow_{\beta}^{*} x}{M \longrightarrow_{\beta}^{\infty} x} \qquad \frac{M \longrightarrow_{\beta}^{*} \lambda x.P \qquad P \longrightarrow_{\beta}^{\infty} P'}{M \longrightarrow_{\beta}^{\infty} \lambda x.P'}$$

$$\frac{M \longrightarrow_{\beta}^{*} (P)Q \qquad P \longrightarrow_{\beta}^{\infty} P' \qquad \triangleright Q \longrightarrow_{\beta}^{\infty} Q'}{M \longrightarrow_{\beta}^{\infty} (P')Q'}$$

$$\frac{M \longrightarrow_{\beta}^{\infty} (P')Q'}{M \longrightarrow_{\beta}^{\infty} M'}$$

WE GET WHAT WE WANTED

$$\frac{f \longrightarrow_{\beta}^{*} f}{(\Delta_{f})\Delta_{f} \longrightarrow_{\beta}^{*} (f)(\Delta_{f})\Delta_{f}} \quad \frac{f \longrightarrow_{\beta}^{*} f}{f \longrightarrow_{\beta}^{\infty} f} \quad \frac{(\Delta_{f})\Delta_{f} \longrightarrow_{\beta}^{\infty} f^{\infty}}{(\Delta_{f})\Delta_{f} \longrightarrow_{\beta}^{\infty} f^{\infty}}$$

$$(\Delta_{f})\Delta_{f} \longrightarrow_{\beta}^{\infty} f^{\infty} = (f)f^{\infty} \qquad \qquad (\Delta_{f})\Delta_{f} \longrightarrow_{\beta}^{\infty} f^{\infty}$$

where $\Delta_f := \lambda x.(f)(x)x$, so that $(Y)f \longrightarrow_{\beta} (\Delta_f)\Delta_f$.

What is this thing called β-reduction?

What is this thing called β-reduction?

Now, what is a multilinear approximation of β -reduction?

What is this thing called β -reduction?

Now, what is a multilinear approximation of β -reduction?

What is this thing called β -reduction?

Now, what is a multilinear approximation of β -reduction?

THE TAYLOR EXPANSION

 $\mathcal{I}(-)$ maps a term to the sum of its approximants.

Terms	u	Ån ▲	
Approximants	u	An d	(a)

Terms may look like this:

Terms may look like this:

In which case they are approximated by terms like this:

We have a nice (?) theorem:

Simulation theorem (V.A. 2017)

For all $M, N \in \Lambda$, if $M \longrightarrow_{\beta}^{*} N$ then $\mathcal{T}(M) \leadsto_{r} \mathcal{T}(N)$.

We have a nice (?) theorem:

Simulation theorem (C. and V.A. 2022)

For all $M, N \in \overline{\Lambda^{001}_{\infty}}$, if $M \longrightarrow_{\beta}^{\infty} N$ then $\mathcal{F}(M) \rightsquigarrow_{r} \mathcal{F}(N)$.

We have a nice (?) theorem:

Simulation theorem (C. and V.A. 2022)

For all $M, N \in \Lambda^{001}_{\infty}$, if $M \longrightarrow_{\beta}^{\infty} N$ then $\mathcal{T}(M) \leadsto_{r} \mathcal{T}(N)$.

(It's not the point of this talk, but this has many nice consequences!)

We have a nice (?) theorem:

Simulation theorem (C. and V.A. 2022)

For all $M, N \in \Lambda^{001}_{\infty}$, if $M \longrightarrow_{\beta}^{\infty} N$ then $\mathcal{T}(M) \leadsto_{r} \mathcal{T}(N)$.

What about the converse?

Conjecture (conservativity)

For all $M, N \in \overline{\Lambda_{\infty}^{001}}$, if $\mathcal{T}(M) \leadsto_r \mathcal{T}(N)$ then $M \longrightarrow_{\beta}^{\infty} N$.

WHAT WE CALL CONSERVATIVITY

Definition (conservative extension)

Let (A, \rightarrow_A) and (B, \rightarrow_B) be two abstract rewriting systems. The latter is an *extension* of the former if:

- 1. there is an injection $i: A \hookrightarrow B$, (inclusion)
- 2. $\forall a, a' \in A$, if $a \to_A a'$ then $i(a) \to_B i(a')$, (simulation)

Furthermore, this extension is conservative if:

3. $\forall a, a' \in A$, if $i(a) \rightarrow_B i(a')$ then $a \rightarrow_A a'$. (conservativity)

WHAT WE CALL CONSERVATIVITY

Definition (conservative extension)

Let (A, \rightarrow_A) and (B, \rightarrow_B) be two abstract rewriting systems. The latter is an *extension* of the former if:

- 1. there is an injection $i: A \hookrightarrow B$, (inclusion)
- 2. $\forall a, a' \in A$, if $a \to_A a'$ then $i(a) \to_B i(a')$, (simulation)

Furthermore, this extension is conservative if:

3. $\forall a, a' \in A$, if $i(a) \rightarrow_B i(a')$ then $a \rightarrow_A a'$. (conservativity)

Reformulated conjecture

 $(\mathcal{P}(\Lambda_r), \leadsto_r)$ is a conservative extension of $(\Lambda_{\infty}^{001}, \longrightarrow_{\beta}^{\infty})$.

Theorem 1 (finitary conservativity)

For all $M, N \in \Lambda$, if $\mathcal{T}(M) \leadsto_r \mathcal{T}(N)$ then $M \longrightarrow_{\beta}^* N$.

Theorem 1 (finitary conservativity)

For all $M, N \in \Lambda$, if $\mathcal{T}(M) \leadsto_r \mathcal{T}(N)$ then $M \longrightarrow_{\mathcal{B}}^* N$.

- 1. $M \stackrel{\sim}{\vdash} \mathcal{T}(M)$.
- 2. If $M \longrightarrow_{\beta}^{*} N$ and $N \widetilde{\vdash} S$, then $M \widetilde{\vdash} S$.
- 3. If $M \vdash s$ and $N \vdash^! \bar{t}$, then $\forall s' \in s(\bar{t}/x)$, $M[N/x] \vdash s'$.
- 4. If $M \stackrel{\sim}{\vdash} S$ and $S \rightsquigarrow_r \mathcal{T}$, then $M \stackrel{\sim}{\vdash} \mathcal{T}$.
- 5. If $M \stackrel{\sim}{\vdash} \mathcal{T}(N)$, then $M \longrightarrow_{\beta}^{*} N$.

Theorem 1 (finitary conservativity)

For all $M, N \in \Lambda$, if $\mathcal{T}(M) \leadsto_r \mathcal{T}(N)$ then $M \longrightarrow_{\beta}^* N$.

- 1. $M \stackrel{\sim}{\vdash} \mathcal{T}(M)$.
- 2. If $M \longrightarrow_{\beta}^{*} N$ and $N \widetilde{\vdash} S$, then $M \widetilde{\vdash} S$.
- 3. If $M \vdash s$ and $N \vdash^! \bar{t}$, then $\forall s' \in s(\bar{t}/x)$, $M[N/x] \vdash s'$.
- 4. If $M \stackrel{\sim}{\vdash} S$ and $S \rightsquigarrow_r \mathcal{T}$, then $M \stackrel{\sim}{\vdash} \mathcal{T}$.
- 5. If $M \stackrel{\sim}{\vdash} \mathcal{T}(N)$, then $M \longrightarrow_{\beta}^{*} N$.

Theorem 1 (finitary conservativity)

For all $M, N \in \Lambda$, if $\mathcal{F}(M) \leadsto_r \mathcal{F}(N)$ then $M \longrightarrow_{\beta}^* N$.

- 1. $M \stackrel{\sim}{\vdash} \mathcal{T}(M)$.
- 2. If $M \longrightarrow_{\beta}^{*} N$ and $N \widetilde{\vdash} S$, then $M \widetilde{\vdash} S$.
- 3. If $M \vdash s$ and $N \vdash^! \bar{t}$, then $\forall s' \in s(\bar{t}/x)$, $M[N/x] \vdash s'$.
- 4. If $M \stackrel{\sim}{\vdash} S$ and $S \rightsquigarrow_r \mathcal{T}$, then $M \stackrel{\sim}{\vdash} \mathcal{T}$.
- 5. If $M \stackrel{\sim}{\vdash} \mathcal{T}(N)$, then $M \longrightarrow_{\beta}^{*} N$.

Theorem 1 (finitary conservativity)

For all $M, N \in \Lambda$, if $\mathcal{T}(M) \leadsto_r \mathcal{T}(N)$ then $M \longrightarrow_{\beta}^* N$.

- 1. $M \stackrel{\sim}{\vdash} \mathcal{T}(M)$.
- 2. If $M \longrightarrow_{\beta}^{*} N$ and $N \widetilde{\vdash} S$, then $M \widetilde{\vdash} S$.
- 3. If $M \vdash s$ and $N \vdash^! \bar{t}$, then $\forall s' \in s(\bar{t}/x)$, $M[N/x] \vdash s'$.
- **4.** If $M \stackrel{\sim}{\vdash} S$ and $S \rightsquigarrow_r \mathcal{T}$, then $M \stackrel{\sim}{\vdash} \mathcal{T}$.
- 5. If $M \stackrel{\sim}{\vdash} \mathcal{T}(N)$, then $M \longrightarrow_{\beta}^{*} N$.

IN THE INFINITARY CASE, THE MASHUP TECHNIQUE FAILS

5. If $M \stackrel{\sim}{\vdash} \mathcal{T}(N)$, then $M \longrightarrow_{\beta}^{*} N$.

IN THE INFINITARY CASE, THE MASHUP TECHNIQUE FAILS

5. If
$$M \stackrel{\sim}{\vdash} \mathcal{T}(N)$$
, then $M \longrightarrow_{\beta}^{*} N$.

Proof (finitary).

There is some $[N] \in \mathcal{T}(N)$ mimicking N.

By assumption, $M \vdash \lfloor N \rfloor$.

Proceed by induction on N, for instance:

$$\frac{M \longrightarrow_{\beta}^{*} \lambda x.P \qquad P \ \vdash \lfloor P' \rfloor}{M \vdash \lfloor N \rfloor \ = \lfloor \lambda x.P' \rfloor}$$

IN THE INFINITARY CASE, THE MASHUP TECHNIQUE FAILS

5. If
$$M \stackrel{\sim}{\vdash} \mathcal{T}(N)$$
, then $M \longrightarrow_{\beta}^{\infty} N$.

Proof attempt (infinitary).

There is some $[N]_d \in \mathcal{T}(N)^{\mathbb{N}}$ mimicking N.

By assumption, $M \vdash [N]_d$.

Proceed by induction on N, for instance:

$$\forall d \in \mathbb{N}, \quad \frac{M \longrightarrow_{\beta}^{*} \lambda x. P_{d} \qquad P_{d} \vdash \lfloor P' \rfloor_{d}}{M \vdash \lfloor N \rfloor_{d} = \lfloor \lambda x. P' \rfloor_{d}}$$

IN THE INFINITARY CASE, THERE'S A COUNTEREXAMPLE

Theorem 2 (non-conservativity)

There are terms $\mathbf{A}, \bar{\mathbf{A}} \in \Lambda^{001}_{\infty}$ such that:

- $ightharpoonup \mathcal{T}(\bar{\mathbf{A}}) \leadsto_r \mathcal{T}(\bar{\mathbf{A}}),$
- there is no reduction $\mathbf{A} \longrightarrow_{\beta}^{\infty} \bar{\mathbf{A}}$.

IN THE INFINITARY CASE, THE ACCORDION IS A COUNTEREXAMPLE

Theorem 2 (non-conservativity)

There are terms $\mathbf{A}, \bar{\mathbf{A}} \in \Lambda_{\infty}^{001}$ such that:

- $\triangleright \mathcal{T}(\mathbf{A}) \leadsto_{\mathbf{f}} \mathcal{T}(\bar{\mathbf{A}}),$
- there is no reduction $\mathbf{A} \longrightarrow_{\beta}^{\infty} \bar{\mathbf{A}}$.

In the infinitary case, the Accordion is a counterexample

Theorem 2 (non-conservativity)

There are terms $\mathbf{A}, \bar{\mathbf{A}} \in \Lambda_{\infty}^{001}$ such that:

- $\triangleright \mathcal{T}(\mathbf{A}) \leadsto_{\mathbf{r}} \mathcal{T}(\bar{\mathbf{A}}),$
- there is no reduction $\mathbf{A} \longrightarrow_{\beta}^{\infty} \bar{\mathbf{A}}$.

From the topological point of view:

- ▶ Ω = (Δ)Δ generates a sequence of reductions with an accumulation point (and limit) Ω ∈ Λ, but no strong limit,
- ▶ $\Omega_3 = (\Delta_3)\Delta_3$ generates a sequence of reductions with an accumulation point $(\Delta_3^{\infty})^{(\infty)} \notin \Lambda_{\infty}^{001}$, but no limit.
- ▶ A generates a sequence of reductions with an accumulation point $\bar{\mathbf{A}} \in \Lambda_{\infty}^{001} \setminus \Lambda$, but no limit.

IN THE INFINITARY CASE, THE ACCORDION IS A COUNTEREXAMPLE

Theorem 2 (non-conservativity, reformulated)

 $(\mathcal{P}(\Lambda_r), \leadsto_r)$ is **not** a conservative extension of $(\Lambda_{\infty}^{001}, \longrightarrow_{\beta}^{\infty})$.

IN THE INFINITARY CASE, THE ACCORDION IS A COUNTEREXAMPLE

Theorem 2 (non-conservativity, reformulated)

 $(\mathcal{P}(\Lambda_r), \leadsto_r)$ is **not** a conservative extension of $(\Lambda_{\infty}^{001}, \longrightarrow_{\beta}^{\infty})$.

However, recall this:

Consolation 3

 $(\mathcal{P}(\Lambda_r), \cong_r)$ is a conservative extension of $(\Lambda_{\infty\perp}^{001}, =_{\beta_{\perp}}^{\infty})$.

Proof. Immediate consequence of the infinitary Commutation theorem (C. and V.A. 2022).

FURTHER QUESTIONS

► Can we fix this by restricting $(\mathcal{P}(\Lambda_r), \leadsto_r)$? For instance, consider a **stratified** resource reduction...

FURTHER QUESTIONS

- ► Can we fix this by restricting $(\mathcal{P}(\Lambda_r), \leadsto_r)$? For instance, consider a **stratified** resource reduction...
- There is a simulation theorem in some other settings (e.g. algebraic λ-calculus):

Are these extensions conservative?

REFERENCES I

- Barendregt, Henk P. (1977). "The Type Free Lambda Calculus." In: Handbook of Mathematical Logic. Ed. by Jon Barwise. Studies in Logic and the Foundations of Mathematics 90. Elsevier, pp. 1091–1132. DOI: 10.1016/s0049-237x(08)71129-7.
- Berarducci, Alessandro (1996). "Infinite λ-calculus and non-sensible models." In: Logic and Algebra. Routledge, pp. 339–377. DOI: 10.1201/9780203748671-17.
- Böhm, Corrado (1968). "Alcune proprietà delle forme β-η-normali nel λ-K-calcolo." In:
 Pubblicazioni dell'Instituto per le Applicazioni del Calcolo 696. URL:
 http://www.enslyon.fr/LIP/REWRITING/TYPES_AND_L_CALCULUS/bohm696.pdf.
 - Cerda, Rémy and Lionel Vaux Auclair (2022). Taylor Expansion Finitely Simulates Infinitary β-Reduction. arXiv: 2211.05608 [cs.L0]. Submitted to Logical Methods in Computer Science.
- Endrullis, Jörg and Andrew Polonsky (2013). "Infinitary Rewriting Coinductively." In: TYPES 2011, pp. 16–27. doi: 10.4230/LIPIcs.TYPES.2011.16.

REFERENCES II

- Kennaway, Richard et al. (1997). "Infinitary lambda calculus." In: Theoretical Computer Science 175.1, pp. 93–125. DOI: 10.1016/S0304-3975(96)00171-5.
- Kerinec, Axel and Lionel Vaux Auclair (2023). The algebraic λ-calculus is a conservative extension of the ordinary λ-calculus. arXiv: 2305.01067 [cs.L0].
 - Vaux, Lionel (2017). "Taylor Expansion, β-Reduction and Normalization." In: 26th EACSL Annual Conference on Computer Science Logic (CSL 2017), 39:1–39:16. DOI: 10.4230/LIPICS.CSL.2017.39.

Thanks for your attention!

