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THERE'S MORE THAN JUST STRICT
EVALUATION



STRICT AND LAZY EVALUATION

Head reduction reduces head redexes
AX.(Ay.P)QM; ... M,
unless we see a head normal form (HNF)
AX.YyMq ... M,,.

The full evaluation of M is given by its
Bohm tree

AX.yBT(M4)...BT(M,,)
BT(M) := if M —>E HNF,

1 otherwise.
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A REFORMULATION IN INFINITARY A-CALCULI

Consider 001-infinitary A L-terms:

p e N0 Pen)” Qe
xe N axpen) PQ e NI Len™
together with 001-infinitary B -reduction:
—pg, = —pg + {M— L|MhasnoHNF} + liftingto contexts
M—z N M—p AP P—oR'P M—; PQ PP Q' Q@
M —" N M —90" Ax.P’ M —0" P
Theorem [KKSdV'97]

—>E°l is confluent, and BT(M) is the unique infinitary B_L-nf of M.
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A LAZY TAYLOR EXPANSION



LAZY RESOURCE A-CALCULUS

linearity! ﬁ

Linear approximation provides a nice refinement of continuous approximation
by taking A-terms to a sum of “multilinear A-terms”, aka resource terms:

s,t,... = x | Axs | S[tq,....tg].
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LAZY RESOURCE A-CALCULUS

linearity! ﬁ

Linear approximation provides a nice refinement of continuous approximation
by taking A-terms to a sum of “multilinear A-terms”, aka lazy resource terms:

s,t,... = x | Axs | o | s[tq,....tgh].

+ Multilinear substitution:
20€©(n) S[to(1)/X1s s tony/ Xn] if degy(s)=n
tq,...,t = .
s(lt nl/%) { 0 otherwise.

. Ax.s)t s(t/x .
. Resource reduction: | (XSt S/X) lifting to contexts and fin. sums.
Ot _){fr 0

- Lifting to sets: | J; {sj} — U; |t;| whenever vi, s; —; t;.
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LAZY TAYLOR EXPANSION

The lazy Taylor expansion of M is the set (M) = {s € Ay | s C, M}, with:

SCy M Sty M tCy N .. tHhCq N

X Cg, X 0 Cg, AX.M AX.S Cor, AX.M (St ... th] E5, (MN
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LAZY TAYLOR EXPANSION

The lazy Taylor expansion of M is the set (M) = {s € Ay | s C, M}, with:

SCy M Sty M tCy N .. tHhCq N
XEr, X 0Cq, AXM AX.s Cg, AX-M (St ... th] E5, (MN
Simulation theorem in the style of [CV'23]

If M —>[1331 N then J(M) —»¢ Ti(N).

Commutation theorem in the style of [ER'06]
Nfer (F(M)) = F(LLT(M)).
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LAZY TAYLOR EXPANSION: IT WORKS!

Corollaries:

* If nfy (F;(M)) = @ then M has a WHNF.
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LAZY TAYLOR EXPANSION: IT WORKS!

Corollaries:

o If nfp(7;(M)) = @ then M has a WHNF.
* Approximants s Cy~ M sit. nf,(s) # 0 correspond to derivations of ' =M : a in
the non-idempotent intersection type system with

F=AXM :

. 101 ;
—p, IS confluent.

+ The continuous approximation theorem:
LLT(M) = | | Awn(M).

* {M =N | LLT(M) = LLT(N)} is a A-theory.
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THERE'S MORE THAN JUST STRICT AND
LAZY EVALUATION




INFINITARY A-CALCULI MODULO MEANINGLESS TERMS

A meaningless set is a set U of A-terms s.t. [KOV'99, SV'11]

« all the very bad terms are in U,
* U is closed under (...).
MelUu

—pluls —pg o+ M—>—W + lifting to contexts.

—>§°Lu is its (111-)infinitary closure.

Theorem
o
— g 1S confluent.

Hence each M has a unique B_Ly-nf, denoted by Ty (M).
This induces a normal form model.

6/8



NO TAYLOR EXPANSION OUTSIDE THE STRICT AND LAZY CASES

Unsurprising examples:
HN :={M € A®° | M has no HNF} WN :={M e AN* | M has no WHNF}
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NO TAYLOR EXPANSION OUTSIDE THE STRICT AND LAZY CASES

Unsurprising examples:
HN :={M € A®° | M has no HNF} WN :={M e AN* | M has no WHNF}

One more corollary. LLT : A® — A® (and similarly BT) is Scott-continuous.

Proof.

For all directed D, observe that 7;(| | D) = | Z(D).

Conclude using this and Commutation. O
Theorem. Ty is Scott continuous only when U is HN or WN. [Sv'05]

Hence there is no (reasonable) Taylor expansion for more than BTs and LLTs!
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RANDOMLY CHOSE FURTHER QUESTIONS

Further work:

- None. :-)
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RANDOMLY CHOSE FURTHER QUESTIONS

Further work:
- None. :-)
Well, in fact we could consider extensionality...
 but LLT + n collapses to BT + n, so | think there’s nothing left to do.

Otherwise, any extension of the linear approximation to other infinitary
evaluations needs more or less heavy adaptions:

« For Berarducci trees, it would be non-monotonous (do we want this?).
« For our funny Ohana trees (cf. FSCD), it is restricted to Al.

* Any comments?
8/8
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