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THERE’S MORE THAN JUST STRICT
EVALUATION



STRICT AND LAZY EVALUATION

Head reduction reduces head redexes

𝜆𝑥.(𝜆𝑦.𝑃)𝑄𝑀1…𝑀𝑛
unless we see a head normal form (HNF)

𝜆𝑥.𝑦𝑀1…𝑀𝑛.

The full evaluation of 𝑀 is given by its
Böhm tree

BT(𝑀) ≔
⎧
⎨
⎩

𝜆𝑥.𝑦BT(𝑀1) …BT(𝑀𝑛)
if 𝑀 ⟶∗

𝛽 HNF,
⊥ otherwise.

Weak head reduction reduces weak
head redexes

(𝜆𝑦.𝑃)𝑄𝑀1…𝑀𝑛
unless we see a weak head normal form
(WHNF)

𝜆𝑥.𝑀′ or 𝑦𝑀1…𝑀𝑛.
The full evaluation of 𝑀 is given by its
Lévy-Longo tree

LLT(𝑀) ≔
⎧
⎨
⎩

𝜆𝑥.LLT(𝑀′) if (...),
𝑦LLT(𝑀1) … LLT(𝑀𝑛) if (...),
⊥ otherwise.
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A REFORMULATION IN INFINITARY λ-CALCULI

Consider 001-infinitary λ⊥-terms:

𝑥 ∈ Λ001⊥

𝑃 ∈ Λ001⊥

𝜆𝑥.𝑃 ∈ Λ001⊥

𝑃 ∈ Λ001⊥ 𝑄 ∈ Λ001⊥

𝑃𝑄 ∈ Λ001⊥ ⊥ ∈ Λ001⊥

together with 001-infinitary β⊥-reduction:
⟶𝛽⊥ ≔ ⟶𝛽 + {𝑀⟶ ⊥ | 𝑀 has no HNF } + lifting to contexts

𝑀 ⟶∗
𝛽⊥ 𝑁

𝑀 ⟶001
𝛽⊥ 𝑁

𝑀 ⟶∗
𝛽⊥ 𝜆𝑥.𝑃 𝑃 ⟶001

𝛽⊥ 𝑃′

𝑀 ⟶001
𝛽⊥ 𝜆𝑥.𝑃′

𝑀 ⟶∗
𝛽⊥ 𝑃𝑄 𝑃 ⟶001

𝛽⊥ 𝑃′ 𝑄 ⟶001
𝛽⊥ 𝑄′

𝑀 ⟶001
𝛽⊥ 𝑃′𝑄′

Theorem [KKSdV’97]
⟶∞

𝛽⊥ is confluent, and BT(𝑀) is the unique infinitary β⊥-nf of 𝑀.
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A REFORMULATION IN INFINITARY λ-CALCULI
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A LAZY TAYLOR EXPANSION



LAZY RESOURCE λ-CALCULUS

Linear approximation provides a nice

linearity!

refinement of continuous approximation

by taking λ-terms to a sum of “multilinear λ-terms”, aka resource terms:

𝑠, 𝑡, … ≔ 𝑥 | 𝜆𝑥.𝑠 | 𝑠[𝑡1, … , 𝑡𝑛].

• Multilinear substitution:
𝑠⟨[𝑡1, … , 𝑡𝑛]/𝑥⟩ ≔ { ∑𝜎∈𝔖(𝑛) 𝑠[𝑡𝜎(1)/𝑥1, … , 𝑡𝜎(𝑛)/𝑥𝑛] if deg𝑥(𝑠) = 𝑛

0 otherwise.

• Resource reduction: { (𝜆𝑥.𝑠) ̄𝑡 ⟶ℓr 𝑠⟨ ̄𝑡/𝑥⟩
o ̄𝑡 ⟶ℓr 0

+ lifting to contexts and fin. sums.

• Lifting to sets: ⋃𝑖 {𝑠𝑖} −↠ℓr ⋃𝑖 |t𝑖| whenever ∀𝑖, 𝑠𝑖 ⟶∗ℓr t𝑖.
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LAZY TAYLOR EXPANSION

The lazy Taylor expansion of 𝑀 is the set 𝒯ℓ(𝑀) ≔ {𝑠 ∈ Λℓr | 𝑠 ⊑𝒯ℓ 𝑀}, with:

𝑥 ⊑𝒯ℓ 𝑥 o ⊑𝒯ℓ 𝜆𝑥.𝑀
𝑠 ⊑𝒯ℓ 𝑀

𝜆𝑥.𝑠 ⊑𝒯ℓ 𝜆𝑥.𝑀
𝑠 ⊑𝒯ℓ 𝑀 𝑡1 ⊑𝒯ℓ 𝑁 … 𝑡𝑛 ⊑𝒯ℓ 𝑁

(𝑠)[𝑡1, … , 𝑡𝑛] ⊑𝒯ℓ (𝑀)𝑁

Simulation theorem in the style of [CV’23]

If 𝑀 ⟶101
𝛽⊥ 𝑁 then 𝒯ℓ(𝑀) −↠ℓr 𝒯ℓ(𝑁).

Commutation theorem in the style of [ER’06]
nfℓr(𝒯ℓ(𝑀)) = 𝒯ℓ(LLT(𝑀)).
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LAZY TAYLOR EXPANSION: IT WORKS!

Corollaries:

• If nfℓr(𝒯ℓ(𝑀)) ≠ ∅ then 𝑀 has a WHNF.

• Approximants 𝑠 ⊑𝒯ℓ 𝑀 s.t. nfℓr(𝑠) ≠ 0 correspond to derivations of Γ ⊢ 𝑀 ∶ 𝛼 in
the non-idempotent intersection type system with

Γ ⊢ 𝜆𝑥.𝑀 ∶ ∗

• ⟶101
𝛽⊥ is confluent.

• The continuous approximation theorem:

LLT(𝑀) = ⨆∞
𝒜wh(𝑀).

• {𝑀 = 𝑁 | LLT(𝑀) = LLT(𝑁)} is a λ-theory.
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THERE’S MORE THAN JUST STRICT AND
LAZY EVALUATION



INFINITARY λ-CALCULI MODULO MEANINGLESS TERMS

A meaningless set is a set 𝒰 of λ-terms s.t. [KOV’99, SV’11]

• all the very bad terms are in 𝒰,
• 𝒰 is closed under (...).

⟶𝛽⊥𝒰 is ⟶𝛽 +
𝑀 ∈ 𝒰

𝑀 ⟶𝛽⊥𝒰 ⊥ + lifting to contexts.

⟶∞
𝛽⊥𝒰 is its (111-)infinitary closure.

Theorem
⟶∞

𝛽⊥𝒰 is confluent.

Hence each 𝑀 has a unique 𝛽⊥𝒰-nf, denoted by T𝒰(𝑀).
This induces a normal form model.

6/8



NO TAYLOR EXPANSION OUTSIDE THE STRICT AND LAZY CASES

Unsurprising examples:

ℋ𝒩 ≔ {𝑀 ∈ Λ∞ | 𝑀 has no HNF} 𝒲𝒩 ≔ {𝑀 ∈ Λ∞ | 𝑀 has no WHNF}
Tℋ𝒩 = BT T𝒲𝒩 = LLT

One more corollary. LLT ∶ Λ∞ → Λ∞ (and similarly BT) is Scott-continuous.
Proof.
For all directed 𝐷, observe that 𝒯ℓ(⨆𝐷) = ⋃𝒯ℓ(𝐷).
Conclude using this and Commutation. □

Theorem. T𝒰 is Scott continuous only when 𝒰 isℋ𝒩 or𝒲𝒩. [SV’05]

Hence there is no (reasonable) Taylor expansion for more than BTs and LLTs!
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RANDOMLY CHOSE FURTHER QUESTIONS

Further work:

• None. :-)

Well, in fact we could consider extensionality...

• but LLT + 𝜂 collapses to BT + 𝜂, so I think there’s nothing left to do.

Otherwise, any extension of the linear approximation to other infinitary
evaluations needs more or less heavy adaptions:

• For Berarducci trees, it would be non-monotonous (do we want this?).
• For our funny Ohana trees (cf. FSCD), it is restricted to λI.
• Any comments?
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