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INTRODUCING OHANA TREES



FROM λ-THEORIES...

𝜆 A model of
the λ-calculus

⇝ A λ-theory

[[−]] 𝑀 =𝒯 𝑁 iff [[𝑀]] = [[𝑁]]

A λ-theory 𝒯 is a set of equalities between λ-terms such that

𝑀 =𝛽 𝑁
𝑀 =𝒯 𝑁⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

it contains β-conversion

𝑃 =𝒯 𝑃′

𝜆𝑥.𝑃 =𝒯 𝜆𝑥.𝑃′
𝑃 =𝒯 𝑃′ 𝑄 =𝒯 𝑄′

𝑃𝑄 =𝒯 𝑃′𝑄′⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
it is stable under contexts
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FROM λ-THEORIES...

𝜆 A model of
the λ-calculus

⇝ A λ-theory ⇜ A notion of
evaluation tree

BT(−)𝑀 =ℬ 𝑁 iff BT(𝑀) = BT(𝑁)

The Böhm tree of a λ-term 𝑀 is defined coinductively by

BT(𝑀) ≔
⎧⎪
⎨⎪
⎩

𝜆𝑥1… 𝑥𝑛. 𝑦

BT(𝑀1) … BT(𝑀𝑘)

if 𝑀 →→ℎ 𝜆𝑥1… 𝑥𝑛.𝑦𝑀1⋯𝑀𝑘,

⊥ otherwise.

For example: BT(I) ≔ I BT(Ω) ≔ ⊥ BT(Y) ≔ 𝜆𝑓 .𝑓(𝑓(𝑓(… )))
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FROM λ-THEORIES... TO λI-THEORIES

𝜆 A model of
the λ-calculus

⇝ A λ-theory ⇜ A notion of
evaluation tree

𝜆I

The λI-calculus is the fragment of the 𝜆-calculus without erasure. Formally,
ΛI ≔ ⋃

𝑋⊆f𝒱
ΛI(𝑋), where ΛI(𝑋) is the set of 𝜆I-terms with free variables in 𝑋:

𝑥 ∈ ΛI({𝑥})
𝑀 ∈ ΛI(𝑋) 𝑥 ∈ 𝑋
𝜆𝑥.𝑀 ∈ ΛI(𝑋 ∖ {𝑥})

𝑀 ∈ ΛI(𝑋) 𝑁 ∈ ΛI(𝑌)
𝑀𝑁 ∈ ΛI(𝑋 ∪ 𝑌)

For example: 𝜆𝑥.𝑥 ∈ ΛI(∅) 𝜆𝑥.𝑥𝑦 ∈ ΛI({𝑦}) 𝜆𝑥.𝑦 ∉ ΛI
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⇝ A λ-theory ⇜ A notion of
evaluation tree
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it is stable under 𝜆I-contexts

• Every 𝜆-theory restricted to ΛI is a 𝜆I-theory.
• The converse is false, e.g. the 𝜆I-theory generated by equating all 𝜆I-terms
without β-nf.
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𝜆 A model of
the λ-calculus

⇝ A λ-theory ⇜ A notion of
evaluation tree

𝜆I A 𝜆I-theory ⇜ ???

Böhm trees still generate a 𝜆I-theory ℬ... but behave poorly wrt. ΛI:
𝑀 is a 𝜆I-term ⇏ BT(𝑀) is an “infinitary 𝜆I-term”

Indeed, abstracted variables may be:

• left behind an unsolvable subterm: BT(𝜆𝑥𝑦.𝑥(Ω𝑦)) = 𝜆𝑥𝑦.𝑥⊥.
• forgotten along infinite computations:
if 𝑀𝑥𝑓 →→𝛽 𝑓(𝑀𝑥𝑓), then BT(𝑀) = 𝜆𝑥𝑓 .𝑓(𝑓(𝑓(… ))).
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INTRODUCING OHANA TREES

The Ohana tree of a 𝜆I-term 𝑀 is defined coinductively by

OT(𝑀) ≔
⎧⎪⎪
⎨⎪⎪
⎩

𝜆𝑥1… 𝑥𝑛.𝑦

OT(𝑀1) … OT(𝑀𝑘)
fv(𝑀1) fv(𝑀𝑘)

if 𝑀 →→ℎ 𝜆𝑥1… 𝑥𝑛.𝑦𝑀1⋯𝑀𝑘,

⊥fv(𝑀) otherwise.
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NO VARIABLE LEFT BEHIND!

OT(𝑀) ≔
⎧⎪⎪
⎨⎪⎪
⎩

𝜆𝑥1… 𝑥𝑛.𝑦

OT(𝑀1) … OT(𝑀𝑘)
fv(𝑀1) fv(𝑀𝑘)

if 𝑀 →→ℎ 𝜆𝑥1… 𝑥𝑛.𝑦𝑀1⋯𝑀𝑘,

⊥fv(𝑀) otherwise.

Whereas Böhm trees equate 𝜆𝑥.𝑥(Ω𝑦)(Ω𝑧) and 𝜆𝑥.𝑥(Ω𝑧)(Ω𝑦):

BT(𝜆𝑥.𝑥(Ω𝑥)(Ω𝑦)) = 𝜆𝑥.𝑥⊥⊥ = BT(𝜆𝑥.𝑥(Ω𝑦)(Ω𝑧))

Ohana trees do separate them:

OT(𝜆𝑥.𝑥(Ω𝑥)(Ω𝑦)) = 𝜆𝑥.𝑥⊥{𝑦}⊥{𝑧} ≠ 𝜆𝑥.𝑥⊥{𝑧}⊥{𝑦} = BT(𝜆𝑥.𝑥(Ω𝑦)(Ω𝑧))
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NO VARIABLE FORGOTTEN!

OT(𝑀) ≔
⎧⎪⎪
⎨⎪⎪
⎩

𝜆𝑥1… 𝑥𝑛.𝑦

OT(𝑀1) … OT(𝑀𝑘)
fv(𝑀1) fv(𝑀𝑘)

if 𝑀 →→ℎ 𝜆𝑥1… 𝑥𝑛.𝑦𝑀1⋯𝑀𝑘,

⊥fv(𝑀) otherwise.

Klop’s Bible fixed-point combinator is 𝑙 ≔ 𝜆𝑒.BYB𝑒𝑙 =𝛽 𝜆𝑒.𝑒(BYB𝑒𝑙).
Whereas Böhm trees equate Y and 𝑙: BT(Y) = 𝜆𝑓 .𝑓(𝑓(… )) = BT( 𝑙),
Ohana trees do separate them: OT(Y) = 𝜆𝑓 .𝑓

𝑓

𝑓

{𝑓}

{𝑓}

≠ 𝜆𝑓 .𝑓

𝑓

𝑓

{𝑓 , 𝑙}

{𝑓 , 𝑙}

= OT( 𝑙).
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APPROXIMATION THEORIES FOR OHANA
EVALUATION



THE CONTINUOUS APPROXIMATION: IT WORKS AS USUAL

• Add constant ⊥ to the syntax.
⊥ is “an undefined term”.

• Define a (head) approximation ordering by

⊥ ⊑ 𝑀
• Define (head) approximants:

∋ 𝐴,𝐵, … ≔ ⊥ | 𝜆𝑥1… 𝑥𝑛.𝑦𝐴1⋯𝐴𝑘
and obtain the approximants of a 𝜆I-term:

Appm(𝑀) ≔ {𝐴 ∈ | ∃𝑀 →→𝛽 𝑁, 𝐴 ⊑ 𝑁}.

• Continuous approximation theorem:
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THE CONTINUOUS APPROXIMATION: IT WORKS AS USUAL

• Add constants ⊥𝑋 (for 𝑋 ⊆f 𝒱) to the syntax.
⊥𝑋 is “an undefined term whose set of free variables is 𝑋”.

• Define a (head) approximation ordering by

⊥𝑋 ⊑ 𝑀
∀𝑖, 𝑀𝑖 ⊑ 𝑁𝑖 fv(𝑀𝑖) = fv(𝑁𝑖)
𝜆𝑥.𝑦𝑀1⋯𝑀𝑘 ⊑ 𝜆𝑥.𝑦𝑁1⋯𝑁𝑘

• Define (head) approximants:
𝒜m(𝑋) ∋ 𝐴,𝐵, … ≔ ⊥𝑋 | 𝜆𝑥1… 𝑥𝑛.𝑦𝐴1⋯𝐴𝑘 s.t. (...)
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THE LINEAR APPROXIMATION (ORIGINAL ED.)

What you may usually call (multi)linear approximation:
Take a function:

𝑓(𝑥)
to a formal sum of 𝑛-linear approximations:

∑
𝑛∈N

1
𝑛! ×

𝜕𝑓(𝑡)
𝜕𝑡𝑛 ⋅ 𝑥𝑛

via an operation of Taylor expansion.
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THE LINEAR APPROXIMATION (ORIGINAL ED.)

What you will now call (multi)linear approximation:
Take a λ-term:

𝑥 | 𝜆𝑥.𝑀 | 𝑀𝑁

to a formal sum of “multilinear λ-terms” (aka resource λ-terms):

𝑥 | 𝜆𝑥.𝑠 | 𝑠[𝑡1, … , 𝑡𝑛]

via an operation of Taylor expansion. [Ehrhard & Regnier ’08]
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THE LINEAR APPROXIMATION (ORIGINAL ED.)

We are also able to simulate β-reduction of λ-terms:

(𝜆𝑥.𝑀)𝑁 →𝛽 𝑀[𝑁/𝑥]

And in the usual setting we obtain the celebrated

Commutation theorem: nf(𝒯 (𝑀)) = 𝒯 (BT(𝑀)) . [Ehrhard & Regnier ’06]
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THE LINEAR APPROXIMATION (OHANA ED.)

In our setting, the resource λ-calculus is “fibered” over finite sets of variables:

𝑥 ∈ ΔI({𝑥})
𝑠 ∈ ΔI(𝑋) 𝑥 ∈ 𝑋
𝜆𝑥.𝑠 ∈ ΔI(𝑋 − 𝑥)

𝑠 ∈ ΔI(𝑋)
𝑠[]𝑌 ∈ ΔI(𝑋 ∪ 𝑌)

𝑠 ∈ ΔI(𝑋) 𝑡1, … , 𝑡𝑛+1 ∈ ΔI(𝑌)
𝑠[𝑡1, … , 𝑡𝑛+1] ∈ ΔI(𝑋 ∪ 𝑌)

and (for Taylor expansion nerds only!) here’s what changes in the substitution:

𝑥 ⟨𝑢̄/𝑥⟩ ≔ { 𝑢 if 𝑢̄ = [𝑢]
0fv(𝑢̄) otherwise

𝑦 ⟨𝑢̄/𝑥⟩ ≔ { 𝑦 if 𝑢̄ = []fv(𝑢̄)
0{𝑦} otherwise

[]𝑋 ⟨𝑢̄/𝑥⟩ ≔ { []𝑋{fv(𝑢̄)/𝑥} if 𝑢̄ = []fv(𝑢̄)
0𝑋{fv(𝑢̄)/𝑥} otherwise
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ALL THESE DEFINITIONS WERE USEFUL

We denote by 𝒯m(𝑀) the Taylor expansion with memory of a 𝜆I-term 𝑀.
We extend the construction to Ohana trees.

Commutation theorem
nf(𝒯m(𝑀)) = 𝒯m(OT(𝑀)).
The corollary we wanted
The set of equations 𝒪 ≔ {𝑀 = 𝑁 | OT(𝑀) = OT(𝑁)} is a 𝜆I-theory!
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CONCLUSION AND FURTHER WORK



WHAT HAPPENED SO FAR...

𝜆 A model of
the λ-calculus

⇝ A λ-theory ⇜ A notion of
evaluation tree

BT(−)𝑀 =ℬ 𝑁 iff BT(𝑀) = BT(𝑁)

𝜆I A 𝜆I-theory ⇜ A notion of
evaluation tree

OT(−)𝑀 =𝒪 𝑁 iff OT(𝑀) = OT(𝑁)

• Is there a 𝜆I-model whose theory is 𝒪?
• No straightforward way to turn our Taylor expansion into a relational model

• Actually, what is a 𝜆I-model?
• Should be something more general than a 𝜆-model
• Our candidate: a cartesian closed multicategory with contractions
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OHANA TREES FOR THE FULL λ-CALCULUS?

By the way, the Ohana tree of a 𝜆-term 𝑀 can be defined coinductively by

OT(𝑀) ≔
⎧⎪⎪
⎨⎪⎪
⎩

𝜆𝑥1… 𝑥𝑛.𝑦

OT(𝑀1) … OT(𝑀𝑘)
pfv(𝑀1) pfv(𝑀𝑘)

if 𝑀 →→ℎ 𝜆𝑥1… 𝑥𝑛.𝑦𝑀1⋯𝑀𝑘,

⊥pfv(𝑀) otherwise.

where
pfv(𝑀) ≔ {𝑥 ∈ 𝒱 | ∀𝑀 →→𝛽 𝑁, 𝑥 ∈ fv(𝑁)}.

But Ohana tree equality does not induce a 𝜆-theory.
May Ohana trees induce an interesting observational equivalence?
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LONG-TERM GOAL: TO INFINITY AND BEYOND

Why do we care about all that?

• It’s fun. (Right?)

• Finer models/theories allow to separate more non-β-convertible λ-terms.
• Example application: the famous double fixed-point combinator
open problem (is there a FPC 𝑌 s.t. 𝑌 =𝛽 𝑌𝛿, for 𝛿 ≔ 𝜆𝑦𝑥.𝑥(𝑦𝑥)?).

• Our formalism accounts for free variables pushed to infinity.
It is a first step: what about pushing whole subterms to infinity?
• This suggests working with transfinite terms and investigate the associated
rewriting.

• It is not clear what evaluation trees and semantics may look like in such a
jungle. (But we have some preliminary ideas.)
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Thanks for your attention!
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