

RATED 16+

λ-calculus, linear approximations

Ohana trees and Taylor expansion for the λI-calculus

No variable gets left behind, or forgotten!

Rémy Cerda, Giulio Manzonetto, Alexis Saurin (IRIF, CNRS and Univ. Paris Cité) FSCD, Birmingham, 18 July 2025

INTRODUCING OHANA TREES

A model of the λ -calculus

 $[\![-]\!]$

•

A λ -theory

$$M =_{\mathcal{T}} N \text{ iff } [\![M]\!] = [\![N]\!]$$

A model of the
$$\lambda$$
-calculus $M =_{\mathcal{T}} N \text{ iff } [\![M]\!] = [\![N]\!]$

A λ -theory \mathcal{T} is a set of equalities between λ -terms such that

$$\underbrace{\frac{M =_{\beta} N}{M =_{\mathcal{T}} N}}_{\text{it contains } \beta\text{-conversion}} \underbrace{\frac{P =_{\mathcal{T}} P'}{\lambda x.P =_{\mathcal{T}} \lambda x.P'}}_{\text{PQ } =_{\mathcal{T}} P' Q =_{\mathcal{T}} Q'} \underbrace{\frac{P =_{\mathcal{T}} P'}{\lambda x.P'}}_{\text{PQ } =_{\mathcal{T}} P' Q'}$$

A model of the λ -calculus

~

A λ-theory

A notion of evaluation tree

 $M =_{\mathcal{B}} N \text{ iff } BT(M) = BT(N)$ BT(-)

The **Böhm tree** of a λ -term M is defined **coinductively** by

$$\mathsf{BT}(M) := \left\{ \begin{array}{ccc} \lambda x_1 \dots x_n.y & \text{if } M \twoheadrightarrow_h \lambda x_1 \dots x_n.y M_1 \cdots M_k, \\ \\ \mathsf{BT}(M_1) & \cdots & \mathsf{BT}(M_k) \end{array} \right.$$

$$\perp & \text{otherwise.}$$

For example:
$$\mathsf{BT}(\mathsf{I}) \coloneqq \mathsf{I} \quad \mathsf{BT}(\Omega) \coloneqq \bot \quad \mathsf{BT}(\mathsf{Y}) \coloneqq \lambda f. f(f(f(\dots)))$$

From λ -theories... to λ l-theories

λ A model of the λ-calculus γ A λ-theory γ A notion of evaluation tree

FROM λ-THEORIES... TO λI-THEORIES

A model of the λ -calculus

→ A λ-theory

~~

A notion of evaluation tree

λΙ

The λ I-calculus is the fragment of the λ -calculus without erasure. Formally, $\Lambda_I := \bigcup_{X \subseteq_f \mathcal{V}} \Lambda_I(X)$, where $\Lambda_I(X)$ is the set of λ I-terms with free variables in X:

$$\frac{M \in \Lambda_{l}(X) \quad x \in X}{\lambda x.M \in \Lambda_{l}(X \setminus \{x\})} \qquad \frac{M \in \Lambda_{l}(X) \quad N \in \Lambda_{l}(Y)}{MN \in \Lambda_{l}(X \cup Y)}$$

For example: $\lambda x.x \in \Lambda_{I}(\emptyset)$ $\lambda x.xy \in \Lambda_{I}(\{y\})$ $\lambda x.y \notin \Lambda_{I}$

FROM λ-THEORIES... TO λI-THEORIES

A model of the λ-calculus A λ-theory A notion of evaluation tree

2777

From λ-theories... το λl-theories

A model of the \u03b3-calculus

A λ-theory

A notion of evaluation tree

???

A **\lambdaI-theory** \mathcal{T} is a set of equalities between λ -terms such that

$$\frac{M =_{\beta} N}{M =_{\mathcal{T}} N}$$

$$\frac{P =_{\mathcal{F}} P'}{}$$

$$\frac{P =_{\mathcal{T}} P' \qquad \mathbf{X} \in \mathsf{fv}(P) \cap \mathsf{fv}(P')}{\lambda \mathbf{X}.P =_{\mathcal{T}} \lambda \mathbf{X}.P'} \qquad \frac{P =_{\mathcal{T}} P' \qquad Q =_{\mathcal{T}} Q'}{PQ =_{\mathcal{T}} P'Q'}$$

$$P =_{\mathcal{F}} P' \qquad Q$$

 $PQ =_{\tau} P'Q'$

it contains β-conversion

it is stable under \(\lambda\)-contexts

- Every λ -theory restricted to Λ_1 is a λ 1-theory.
- The converse is false, e.g. the λI -theory generated by equating all λI -terms without β-nf.

From λ -theories... to λI -theories

FROM λ-THEORIES... TO λI-THEORIES

A model of the λ -calculus \longrightarrow A λ -theory \longleftarrow A notion of evaluation tree \longrightarrow A λ I-theory \longleftarrow ????

Böhm trees still generate a λI -theory $\mathcal{B}...$ but behave poorly wrt. Λ_I :

M is a λ I-term \Rightarrow BT(M) is an "infinitary λ I-term"

Indeed, abstracted variables may be:

- **left behind** an unsolvable subterm: $BT(\lambda xy.x(\Omega y)) = \lambda xy.x \perp$.
- forgotten along infinite computations: if $Mxf \twoheadrightarrow_{\beta} f(Mxf)$, then $BT(M) = \lambda x f. f(f(f(...)))$.

INTRODUCING OHANA TREES

The **Ohana tree** of a λI -term M is defined coinductively by

$$\mathsf{OT}(M) := \left\{ \begin{array}{ccc} \lambda x_1 \dots x_n.y & \text{if } M \twoheadrightarrow_h \lambda x_1 \dots x_n.y M_1 \cdots M_k, \\ \\ \mathsf{OT}(M_1) & \cdots & \mathsf{OT}(M_k) \\ \\ \bot_{\mathsf{fv}(M)} & \text{otherwise.} \end{array} \right.$$

No variable left behind!

$$\mathsf{OT}(M) := \left\{ \begin{array}{ll} \lambda x_1 \dots x_n.y & \text{if } M \twoheadrightarrow_h \lambda x_1 \dots x_n.y M_1 \cdots M_k, \\ \\ \mathsf{OT}(M_1) & \cdots & \mathsf{OT}(M_k) \\ \\ \bot_{\mathsf{fv}(M)} & \text{otherwise.} \end{array} \right.$$

Whereas Böhm trees equate $\lambda x.x(\Omega y)(\Omega z)$ and $\lambda x.x(\Omega z)(\Omega y)$:

$$BT(\lambda x.x(\Omega x)(\Omega y)) = \lambda x.x \perp \perp = BT(\lambda x.x(\Omega y)(\Omega z))$$

Ohana trees do separate them:

$$\mathsf{OT}(\lambda x. x(\Omega x)(\Omega y)) \ = \ \lambda x. x \bot_{\{y\}} \bot_{\{z\}} \ \neq \ \lambda x. x \bot_{\{z\}} \bot_{\{y\}} \ = \ \mathsf{BT}(\lambda x. x(\Omega y)(\Omega z))$$

NO VARIABLE FORGOTTEN!

$$\mathsf{OT}(M) := \left\{ \begin{array}{ll} \lambda x_1 \dots x_n.y & \text{if } M \twoheadrightarrow_h \lambda x_1 \dots x_n.y M_1 \cdots M_k, \\ \\ \mathsf{OT}(M_1) & \cdots & \mathsf{OT}(M_k) \\ \\ \bot_{\mathsf{fv}(M)} & \text{otherwise.} \end{array} \right.$$

Klop's **Bible fixed-point combinator** is $\blacksquare_l := \lambda e.BYBel =_{\beta} \lambda e.e(BYBel)$.

Whereas Böhm trees equate Y and \blacksquare_l : BT(Y) = $\lambda f.f(f(...))$ = BT(\blacksquare_l),

Ohana trees do separate them: $OT(Y) = \lambda f.f \neq \lambda f.f = OT(\mathbf{I}_l).$ $\begin{cases} f \\ f \end{cases} \qquad \begin{cases} f \\ f \end{cases} \qquad \begin{cases} f \\ f \end{cases} \qquad \begin{cases} f \\ f \end{cases} \end{cases}$

APPROXIMATION THEORIES FOR OHANA

EVALUATION

- Add constant \perp to the syntax.
- \perp is "an undefined term".

• Add constants $\perp_{\mathbf{X}}$ (for $X \subseteq_{\mathbf{f}} \mathcal{V}$) to the syntax.

 \perp_X is "an undefined term whose set of free variables is X".

- Add constants \perp_X (for $X \subseteq_f \mathcal{V}$) to the syntax. \perp_X is "an undefined term whose set of free variables is X".
- Define a (head) approximation ordering by

$$\frac{\forall i, \quad M_i \sqsubseteq N_i}{\lambda \vec{x}.y M_1 \cdots M_k \sqsubseteq \lambda \vec{x}.y N_1 \cdots N_k}$$

- Add constants \perp_X (for $X \subseteq_f \mathcal{V}$) to the syntax. \perp_X is "an undefined term whose set of free variables is X".
- Define a (head) approximation ordering by

$$\frac{\forall i, \quad M_i \sqsubseteq N_i \quad \mathsf{fv}(M_i) = \mathsf{fv}(N_i)}{\lambda \vec{x}.y M_1 \cdots M_k \sqsubseteq \lambda \vec{x}.y N_1 \cdots N_k}$$

- Add constants \perp_X (for $X \subseteq_f \mathcal{V}$) to the syntax. \perp_X is "an undefined term whose set of free variables is X".
- Define a (head) approximation ordering by

$$\frac{\forall i, \quad M_i \sqsubseteq N_i \quad \mathsf{fv}(M_i) = \mathsf{fv}(N_i)}{\lambda \vec{x}.y M_1 \cdots M_k \sqsubseteq \lambda \vec{x}.y N_1 \cdots N_k}$$

• Define (head) approximants:

$$\mathcal{A} \quad \ni \quad A, B, \dots \quad := \quad \bot \quad | \quad \lambda x_1 \dots x_n. y A_1 \cdots A_k$$

- Add constants \perp_X (for $X \subseteq_f \mathcal{V}$) to the syntax. \perp_X is "an undefined term whose set of free variables is X".
- Define a (head) approximation ordering by

$$\frac{\forall i, \quad M_i \sqsubseteq N_i \quad \mathsf{fv}(M_i) = \mathsf{fv}(N_i)}{\lambda \vec{x}.y M_1 \cdots M_k \sqsubseteq \lambda \vec{x}.y N_1 \cdots N_k}$$

• Define (head) approximants:

$$\mathcal{A}_{\mathsf{m}}(\mathsf{X}) \quad \ni \quad \mathsf{A}, \mathsf{B}, \dots \quad \coloneqq \quad \perp_{\mathsf{X}} \quad | \quad \lambda x_1 \dots x_n. y \mathsf{A}_1 \dots \mathsf{A}_k \quad \mathsf{s.t.} \; (\dots)$$

- Add constants \bot_X (for $X \subseteq_f \mathcal{V}$) to the syntax. \bot_X is "an undefined term whose set of free variables is X".
- Define a (head) approximation ordering by

$$\frac{\forall i, \quad M_i \sqsubseteq N_i \quad \text{fv}(M_i) = \text{fv}(N_i)}{\lambda \vec{x}.y M_1 \cdots M_k \sqsubseteq \lambda \vec{x}.y N_1 \cdots N_k}$$

• Define (head) approximants:

$$\mathcal{A}_{\mathsf{m}}(\mathsf{X}) \quad \ni \quad \mathsf{A}, \mathsf{B}, \dots \quad := \quad \perp_{\mathsf{X}} \quad | \quad \lambda \mathsf{x}_1 \dots \mathsf{x}_n . \mathsf{y} \mathsf{A}_1 \dots \mathsf{A}_k \quad \mathsf{s.t.} \; (\dots)$$

and obtain the approximants of a λI-term:

$$\mathsf{App}_{\mathsf{m}}(\mathsf{M}) := \{ \mathsf{A} \in \mathcal{A} \mid \exists \mathsf{M} \twoheadrightarrow_{\beta} \mathsf{N}, \ \mathsf{A} \sqsubseteq \mathsf{N} \}.$$

- Add constants \bot_X (for $X \subseteq_f \mathcal{V}$) to the syntax. \bot_X is "an undefined term whose set of free variables is X".
- Define a (head) approximation ordering by

$$\frac{\forall i, \quad M_i \sqsubseteq N_i \quad \text{fv}(M_i) = \text{fv}(N_i)}{\lambda \vec{x}.y M_1 \cdots M_k \sqsubseteq \lambda \vec{x}.y N_1 \cdots N_k}$$

• Define (head) approximants:

$$\mathcal{A}_{\mathsf{m}}(\mathsf{X}) \quad \ni \quad \mathsf{A}, \mathsf{B}, \dots \quad := \quad \bot_{\mathsf{X}} \quad | \quad \lambda x_1 \dots x_n . \mathsf{y} \mathsf{A}_1 \cdots \mathsf{A}_k \quad \mathsf{s.t.} \; (\dots)$$

and obtain the approximants of a λ I-term:

$$\mathsf{App}_{\mathsf{m}}(\mathsf{M}) := \{ \mathsf{A} \in \mathcal{A} \mid \exists \mathsf{M} \twoheadrightarrow_{\beta} \mathsf{N}, \ \mathsf{A} \sqsubseteq \mathsf{N} \}.$$

• Continuous approximation theorem: $BT(M) = \coprod App_m(M)$

- Add constants \bot_X (for $X \subseteq_f \mathcal{V}$) to the syntax. \bot_X is "an undefined term whose set of free variables is X".
- Define a (head) approximation ordering by

$$\frac{\forall i, \quad M_i \sqsubseteq N_i \quad \text{fv}(M_i) = \text{fv}(N_i)}{\lambda \vec{x}.y M_1 \cdots M_k \sqsubseteq \lambda \vec{x}.y N_1 \cdots N_k}$$

Define (head) approximants:

$$\mathcal{A}_{\mathsf{m}}(\mathsf{X}) \quad \ni \quad \mathsf{A}, \mathsf{B}, \dots \quad := \quad \bot_{\mathsf{X}} \quad | \quad \lambda x_1 \dots x_n . \mathsf{y} \mathsf{A}_1 \cdots \mathsf{A}_k \quad \mathsf{s.t.} \; (\dots)$$

and obtain the approximants of a λI-term:

$$\mathsf{App}_{\mathsf{m}}(M) := \{ A \in \mathcal{A}_{\mathsf{m}} \mid \exists M \twoheadrightarrow_{\beta} N, \ A \sqsubseteq N \}.$$

• Continuous approximation theorem: $OT(M) = \square App_m(M)$

What you may usually call (multi)linear approximation:

Take a function:

to a formal sum of n-linear approximations:

$$\sum_{n\in\mathbb{N}}\frac{1}{n!}\times\frac{\partial f(t)}{\partial t^n}\cdot x^n$$

via an operation of Taylor expansion.

What you will now call (multi)linear approximation:

Take a λ-term:

$$x \mid \lambda x.M \mid MN$$

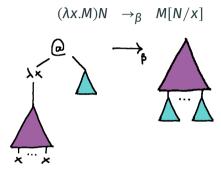
to a formal sum of "multilinear λ -terms" (aka **resource** λ -terms):

$$x \mid \lambda x.s \mid s[t_1,...,t_n]$$

via an operation of **Taylor expansion**.

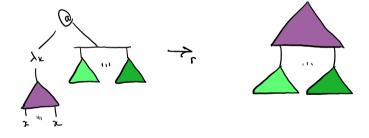
[Ehrhard & Regnier '08]

We are also able to simulate β -reduction of λ -terms:



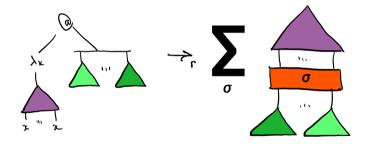
We are also able to simulate β -reduction of λ -terms...

using multilinear $\beta\text{-reduction}$ of resource $\lambda\text{-terms}\text{:}$



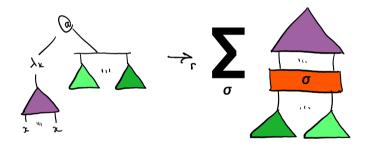
We are also able to simulate $\beta\text{-reduction}$ of $\lambda\text{-terms...}$

using multilinear $\beta\text{-reduction}$ of resource $\lambda\text{-terms}\text{:}$



We are also able to simulate $\beta\text{-reduction}$ of $\lambda\text{-terms...}$

using multilinear $\beta\text{-reduction}$ of resource $\lambda\text{-terms}\text{:}$



And in the usual setting we obtain the celebrated

Commutation theorem: $nf(\mathcal{F}(M)) = \mathcal{F}(BT(M))$.

[Ehrhard & Regnier '06]

In our setting, the resource λ -calculus is "fibered" over finite sets of variables:

$$\frac{s \in \Delta_{I}(X) \qquad x \in X}{\lambda x.s \in \Delta_{I}(X - x)} \qquad \frac{s \in \Delta_{I}(X)}{s[]_{Y} \in \Delta_{I}(X \cup Y)} \qquad \frac{s \in \Delta_{I}(X) \qquad t_{1}, \dots, t_{n+1} \in \Delta_{I}(Y)}{s[t_{1}, \dots, t_{n+1}] \in \Delta_{I}(X \cup Y)}$$

and (for Taylor expansion nerds only!) here's what changes in the substitution:

$$x \, \langle \bar{u}/x \rangle \coloneqq \left\{ \begin{array}{ll} u & \text{if } \bar{u} = [u] \\ \mathbf{0}_{\mathsf{f}\mathsf{V}(\bar{u})} & \text{otherwise} \end{array} \right. \quad y \, \langle \bar{u}/x \rangle \coloneqq \left\{ \begin{array}{ll} y & \text{if } \bar{u} = []_{\mathsf{f}\mathsf{V}(\bar{u})} \\ \mathbf{0}_{\{y\}} & \text{otherwise} \end{array} \right.$$
$$[]_X \, \langle \bar{u}/x \rangle \coloneqq \left\{ \begin{array}{ll} []_{X\{\mathsf{f}\mathsf{V}(\bar{u})/x\}} & \text{if } \bar{u} = []_{\mathsf{f}\mathsf{V}(\bar{u})} \\ \mathbf{0}_{X\{\mathsf{f}\mathsf{V}(\bar{u})/x\}} & \text{otherwise} \end{array} \right.$$

ALL THESE DEFINITIONS WERE USEFUL

We denote by $\mathcal{F}_m(M)$ the **Taylor expansion with memory** of a λI -term M. We extend the construction to Ohana trees.

Commutation theorem

$$\mathsf{nf}(\mathcal{T}_\mathsf{m}(M)) = \mathcal{T}_\mathsf{m}(\mathsf{OT}(M)).$$

The corollary we wanted

The set of equations $\mathcal{O} := \{M = N \mid \mathsf{OT}(M) = \mathsf{OT}(N)\}$ is a λI -theory!

CONCLUSION AND FURTHER WORK

WHAT HAPPENED SO FAR....

λ

λL

A model of the λ-calculus

A λ-theory

 $M =_{\mathcal{B}} N \text{ iff } BT(M) = BT(N)$

A λI-theory

 $M =_{\Omega} N$ iff OT(M) = OT(N)

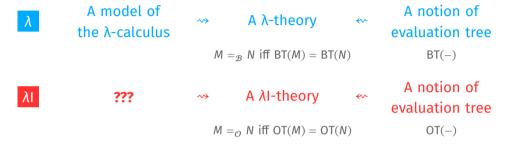
A notion of evaluation tree

BT(-)

A notion of evaluation tree OT(-)

14/16

WHAT HAPPENED SO FAR... AND WHAT'S GOING ON



- Is there a λ I-model whose theory is \mathcal{O} ?
 - No straightforward way to turn our Taylor expansion into a relational model 😀
- Actually, what is a λI-model?
 - Should be something more general than a λ -model
 - Our candidate: a cartesian closed multicategory with contractions

OHANA TREES FOR THE FULL λ-CALCULUS?

By the way, the Ohana tree of a λ -term M can be defined coinductively by

$$\mathsf{OT}(M) := \left\{ \begin{array}{ccc} \lambda x_1 \dots x_n.y & \text{if } M \twoheadrightarrow_h \lambda x_1 \dots x_n.y M_1 \cdots M_k, \\ \\ \mathsf{OT}(M_1) & \cdots & \mathsf{OT}(M_k) \\ \\ \bot_{\mathsf{pfv}(M)} & \text{otherwise.} \end{array} \right.$$

where

$$\mathsf{pfv}(M) := \{ x \in \mathcal{V} \mid \forall M \twoheadrightarrow_{\beta} N, \ x \in \mathsf{fv}(N) \}.$$

But Ohana tree equality does **not** induce a λ -theory. \bigcirc

May Ohana trees induce an interesting observational equivalence?

LONG-TERM GOAL: TO INFINITY AND BEYOND

Why do we care about all that?

• It's fun. (Right?)

LONG-TERM GOAL: TO INFINITY AND BEYOND

Why do we care about all that?

- It's fun. (Right?)
- Finer models/theories allow to separate more non- β -convertible λ -terms.
 - Example application: the famous **double fixed-point combinator** open problem (is there a FPC Y s.t. $Y =_{\beta} Y \delta$, for $\delta := \lambda yx.x(yx)$?).

LONG-TERM GOAL: TO INFINITY AND BEYOND

Why do we care about all that?

- It's fun. (Right?)
- Finer models/theories allow to separate more non- β -convertible λ -terms.
 - Example application: the famous **double fixed-point combinator** open problem (is there a FPC Y s.t. $Y =_{\beta} Y \delta$, for $\delta := \lambda y x. x(y x)$?).
- Our formalism accounts for free variables pushed to infinity.
 It is a first step: what about pushing whole subterms to infinity?
 - This suggests working with transfinite terms and investigate the associated rewriting.
 - It is not clear what evaluation trees and semantics may look like in such a jungle. (But we have some preliminary ideas.)

Thanks for your attention!

