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INTRODUCING OHANA TREES



A model of
the A-calculus

-1 M =g N iff [M] = [IN]

A A-theory
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A model of A M-theory
the A-calculus
(-1 M =5 Niff [M]] = [N]]

A A-theory 7 is a set of equalities between A-terms such that
M=p N P=y P P=yP" Q=7 Q
M=5 N AX.P = AX.P’ PQ =7 P'Q’

——
it contains B-conversion it is stable under contexts
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A model of A notion of
~> A A-theory o .
the A-calculus evaluation tree
M =g N iff BT(M) = BT(N) BT(-)
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A model of A notion of
~> A A-theory o .
the A-calculus evaluation tree
M =g N iff BT(M) = BT(N) BT(-)

The Bohm tree of a A-term M is defined coinductively by

AXq ... Xp.y if M —>p AXq ... Xn.YMq - M,
BT(M) ==y BT(M7) - BT(Mp)
1L otherwise.
For example: BT(l):=1 BT(Q):=1 BTY):=Af.f(f(f(...)))
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FROM A-THEORIES... TO AI-THEORIES

A model of " A A-theory - A notion of

the A-calculus evaluation tree
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FROM A-THEORIES... TO AI-THEORIES

A model of " A A-theory - A notion of

the A-calculus evaluation tree

The Al-calculus is the fragment of the A-calculus without erasure. Formally,

A= U NX), where A(X) is the set of Al-terms with free variables in X:
XSV

MeNX) xeX MeNX) NeN(Y)
x € N({x}) AX.M e N(X N\ {x}) MN e N(XuY)

For example: Ax.x e A(@) Axxy e N{y}) Axy ¢l
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FROM A-THEORIES... TO AI-THEORIES
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FROM A-THEORIES... TO AI-THEORIES

A model of " A A-theory - A notion of

the A-calculus evaluation tree

2

A Al-theory 7 is a set of equalities between A-terms such that

M =g N P=4P  xefuP)nfuP) P=rFP Q=40Q
M=4 N AX.P =4 AX.P’ PQ =4 P’Q’
it contains B-conversion it is stable under Al-contexts

« Every A-theory restricted to A, is a Al-theory.
+ The converse is false, e.g. the Al-theory generated by equating all Al-terms

without B-nf.
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FROM A-THEORIES... TO AI-THEORIES

A model of A notion of
~> A A-theory o .
the A-calculus evaluation tree
A Al-theory o ”?
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FROM A-THEORIES... TO AI-THEORIES

A model of " A A-theory - A not!on of
the A-calculus evaluation tree
A Al-theory o ”?

Bohm trees still generate a Al-theory B... but behave poorly wrt. A;:
Mis aAl-term = BT(M)is an “infinitary Al-term”

Indeed, abstracted variables may be:

« left behind an unsolvable subterm:  BT(Axy.x(Qy)) = Axy.xL.
- forgotten along infinite computations:

if Mxf —g f(Mxf), then BT(M) = AXf.f(F(f(...)).
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INTRODUCING OHANA TREES

The Ohana tree of a Al-term M is defined coinductively by

AXq ... Xp.y if M —>p AXq ... Xp.yMq - Mp,
PN
fu(My) fu(Mg)
OT(M) := - N
w OT(Mq) - OT(Mg)
Ley(m) otherwise.
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NO VARIABLE LEFT BEHIND!

AXq...Xp.Y if M —p AXq ... Xp.YMq - Mp,
VS
M) vy
OT(M) := e ~
OT(M1) - OT(Mg)
Liv(m) otherwise.

Whereas Bohm trees equate Ax.x(Qy)(Qz) and Ax.x(Qz)(Qy):
BT(Ax.x(Qx)(Qy)) = AxxLl = BT(Ax.x(Qy)(Q2))
Ohana trees do separate them:

OT(Ax.x(Qx)(QY)) = AXXLlgyliy # AXXLnlgy = BT(Ax.x(Qy)(Q2))

7116



NO VARIABLE FORGOTTEN!

AXq ... Xn.Y if M —p AXq ... Xp.YMq - Mp,
P
fv(My) V(M)
OT(M) := e ~
OT(Mq) - OT(Mg)
Liv(m) otherwise.

Klop’s Bible fixed-point combinator is E; := Ae.BYBel =g Ae.e(BYBel).
Whereas Bohm trees equate Yand 8;:  BT(Y) = Af.f(f(..)) = BT(&)),

Ohana trees do separate them: OT(Y) = Af.f + Af.f = OT(&E)).
\ \
{f} {f.0
\ \
f
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APPROXIMATION THEORIES FOR OHANA
EVALUATION




THE CONTINUOUS APPROXIMATION: IT WORKS AS USUAL

+ Add constant L to the syntax.
1L is “an undefined term”.
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THE CONTINUOUS APPROXIMATION: IT WORKS AS USUAL

- Add constants 1y (for X C¢ V) to the syntax.
1x is “an undefined term whose set of free variables is X".
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THE CONTINUOUS APPROXIMATION: IT WORKS AS USUAL

- Add constants Ly (for X C¢ V) to the syntax.
Ly is “an undefined term whose set of free variables is X".
- Define a (head) approximation ordering by
vi, M;CN;

LEM  AXYMq My CAXYNq - Np
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THE CONTINUOUS APPROXIMATION: IT WORKS AS USUAL

- Add constants Ly (for X C¢ V) to the syntax.
Ly is “an undefined term whose set of free variables is X".
- Define a (head) approximation ordering by

vi, MicN; fuM;) =fuN))
1xCEM AX.yMy - M CAXYN7 - Ny

- Define (head) approximants:
AnX) 3 AB,.. = 1y | AX1..Xp.YAq-Ap st (.)
and obtain the approximants of a Al-term:

Appm(M) :={Ae€A[3IM —»g N, AC N}.
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THE CONTINUOUS APPROXIMATION: IT WORKS AS USUAL

- Add constants Ly (for X C¢ V) to the syntax.
Ly is “an undefined term whose set of free variables is X".
- Define a (head) approximation ordering by
vi, M;CN; fuM;)="fu(N;)

IXEM  AXyM; Mg CAKyNy - Ny

- Define (head) approximants:
AnX) 3 AB,.. = 1y | AX1..Xp.YAq-Ap st (.)
and obtain the approximants of a Al-term:
Appm(M) :={Ae€A[3IM —»g N, AC N}.

- Continuous approximation theorem: ~ BT(M) =| |Appy,(M)
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THE CONTINUOUS APPROXIMATION: IT WORKS AS USUAL

- Add constants Ly (for X C¢ V) to the syntax.
Ly is “an undefined term whose set of free variables is X".
- Define a (head) approximation ordering by
vi, M;CN; fuM;)="fu(N;)

IXEM  AXyM; Mg CAKyNy - Ny

- Define (head) approximants:
AnX) 3 AB,.. = 1y | AX1..Xp.YAq-Ap st (.)
and obtain the approximants of a Al-term:
Appy(M) :={A € Ay [3M —g N, AT N}.

- Continuous approximation theorem: OT(M) = |_| App,,(M)
9/16



THE LINEAR APPROXIMATION (ORIGINAL ED.)

What you may usually call (multi)linear approximation:

Take a function:
fx)

to a formal sum of n-linear approximations:

1 )

n! oth

neN

via an operation of Taylor expansion.
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THE LINEAR APPROXIMATION (ORIGINAL ED.)

What you will now call (multi)linear approximation:

Take a A-term:
X | AxM | MN

to a formal sum of “multilinear A-terms” (aka resource A-terms):

X | Axs | s[tq,...,th]

via an operation of Taylor expansion. [Ehrhard & Regnier '08]
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THE LINEAR APPROXIMATION (ORIGINAL ED.)

We are also able to simulate B-reduction of A-terms:

AXM)N  —pg M[N/xX]

A
/
Ax
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THE LINEAR APPROXIMATION (ORIGINAL ED.)

We are also able to simulate B-reduction of A-terms...

using multilinear B-reduction of resource A-terms:

@

(ia-l

LS
And in the usual setting we obtain the celebrated

Commutation theorem: nf(7"(M)) = 7 (BT(M)). [Ehrhard & Regnier '06]
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THE LINEAR APPROXIMATION (OHANA ED.)

In our setting, the resource A-calculus is “fibered” over finite sets of variables:
seANX) xeX s e A(X) seNX)  tq,....thi € A(Y)
X € A|({X}) AX.S € A|(X — X) S[]y € A|(X uY) S[t1,...,tn+1] € A|(X uY)

and (for Taylor expansion nerds only!) here’s what changes in the substitution:

fug) Otherwise 0y, otherwise
[y (8 /x) ::{ (xifucayxg 1F 0= ey

Oxrv(a)/x; Otherwise s



ALL THESE DEFINITIONS WERE USEFUL

We denote by 7,,(M) the Taylor expansion with memory of a Al-term M.
We extend the construction to Ohana trees.

Commutation theorem
nf(Tm(M)) = Ty (OT(M)).

The corollary we wanted
The set of equations O := {M = N | OT(M) = OT(N)} is a Al-theory!
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CONCLUSION AND FURTHER WORK




WHAT HAPPENED SO FAR...

A model of A notion of
~> A A-theory o .
the A-calculus evaluation tree
M =z N iff BT(M) = BT(N) BT(-)
A Al-theory - A notion of

evaluation tree
M =, N iff OT(M) = OT(N) 0T(-)
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WHAT HAPPENED SO FAR... AND WHAT’S GOING ON

A model of A notion of
~> A A-theory o .
the A-calculus evaluation tree
M =z N iff BT(M) = BT(N) BT(-)
277 - A Al-theory - A not!on of
evaluation tree
M =4 N iff OT(M) = OT(N) OT(-)

« Is there a Al-model whose theory is O?

+ No straightforward way to turn our Taylor expansion into a relational model &
« Actually, what is a Al-model?

+ Should be something more general than a A-model

+ Our candidate: a cartesian closed multicategory with contractions
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OHANA TREES FOR THE FULL A-CALCULUS?

By the way, the Ohana tree of a A-term M can be defined coinductively by

AXq ... Xp.y if M —p AXq ... Xp.yMq - Mp,
PN
pfuMy)  pfv(Mp)
OT(M) := b ~
oT(M{) -  OT(Mp)
Lpfu(m) otherwise.
where

pfv(M) := {x € V | vM —g N, x € fu(N)}.

But Ohana tree equality does not induce a A-theory. ®
May Ohana trees induce an interesting observational equivalence?
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LONG-TERM GOAL: TO INFINITY AND BEYOND

Why do we care about all that?

« It's fun. (Right?)
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LONG-TERM GOAL: TO INFINITY AND BEYOND

Why do we care about all that?

« It's fun. (Right?)
- Finer models/theories allow to separate more non-B-convertible A-terms.

+ Example application: the famous double fixed-point combinator
open problem (is therea FPC Y sit. Y =g Y6, for 6 == Ayx.x(yx)?).
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LONG-TERM GOAL: TO INFINITY AND BEYOND

Why do we care about all that?

« It's fun. (Right?)
- Finer models/theories allow to separate more non-B-convertible A-terms.
+ Example application: the famous double fixed-point combinator
open problem (is therea FPC Y sit. Y =g Y6, for 6 == Ayx.x(yx)?).
« Our formalism accounts for free variables pushed to infinity.
It is a first step: what about pushing whole subterms to infinity?

« This suggests working with transfinite terms and investigate the associated
rewriting.

« It is not clear what evaluation trees and semantics may look like in such a
jungle. (But we have some preliminary ideas.)
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Thanks for your attention!
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